dblp.uni-trier.dewww.uni-trier.de

Klaus Madlener Vis

List of publications from the DBLP Bibliography Server - FAQ
Coauthor Index - Ask others: ACM DL/Guide - CiteSeerX - CSB - MetaPress - Google - Bing - Yahoo
Home Page

*1998
39EEBirgit Reinert, Klaus Madlener, Teo Mora: A Note on Nielsen Reduction and Coset Enumeration. ISSAC 1998: 171-178
38EEFriedrich Otto, Andrea Sattler-Klein, Klaus Madlener: Automatic Monoids Versus Monoids with Finite Convergent Presentations. RTA 1998: 32-46
37EEJürgen Avenhaus, Reinhard Gotzhein, Theo Härder, Lothar Litz, Klaus Madlener, Jürgen Nehmer, Michael M. Richter, Norbert Ritter, H. Dieter Rombach, Bernd Schürmann, Gerhard Zimmermann: Entwicklung großer Systeme mit generischen Methoden - Eine Übersicht über den Sonderforschungsbereich 501. Inform., Forsch. Entwickl. 13(4): 227-234 (1998)
36 Klaus Madlener, Birgit Reinert: A Generalization of Gröbner Basis Algorithms to Polycyclic Group Rings. J. Symb. Comput. 25(1): 23-43 (1998)
35EEKlaus Madlener, Birgit Reinert: Relating Rewriting Techniques on Monoids and Rings: Congruences on Monoids and Ideals in Monoid Rings. Theor. Comput. Sci. 208(1-2): 3-31 (1998)
1997
34 Jürgen Avenhaus, Klaus Madlener: Theorem Proving in Hierarchical Causal Specifications. Advances in Algorithms, Languages, and Complexity 1997: 1-51
33EEKlaus Madlener, Birgit Reinert: A Generalization of Gröbner Basis Algorithms to Nilpotent Group Rings. Appl. Algebra Eng. Commun. Comput. 8(2): 103-123 (1997)
32 Klaus Madlener, Friedrich Otto: Some Undecidability Results for Finitely Generated Thue Congruences on aTwo-Letter Alphabet. Fundam. Inform. 30(1): 31-44 (1997)
1996
31EEKlaus Madlener: Applications of Rewrite Techniques in Monoids and Rings (Abstract). RTA 1996: 260
30 Jürgen Avenhaus, Klaus Madlener: Theorembeweisen in hierarchischen bedingten Spezifikationen. Inform., Forsch. Entwickl. 11(2): 53-60 (1996)
1994
29 Norbert Kuhn, Klaus Madlener, Friedrich Otto: Computing Presentations for Subgroups of Polycyclic Groups and of Context-Free Groups. Appl. Algebra Eng. Commun. Comput. 5: 287-316 (1994)
1993
28EEKlaus Madlener, Birgit Reinert: Computing Gröbner Bases in Monoid and Group Rings. ISSAC 1993: 254-263
27 Klaus Madlener, Andrea Sattler-Klein, Friedrich Otto: On the Problem of Generating Small Convergent Systems. J. Symb. Comput. 16(2): 167-187 (1993)
26 Friedrich Otto, Daniel E. Cohen, Klaus Madlener: Separating the Intrinsic Complexity and the Derivational complexity of the Word Problem for Finitely Presented Groups. Math. Log. Q. 39: 143-157 (1993)
25 Klaus Madlener, Paliath Narendran, Friedrich Otto, Louxin Zhang: On Weakly Confluent Monadic String-Rewriting Systems. Theor. Comput. Sci. 113(1): 119-165 (1993)
1992
24EEKlaus Madlener, Friedrich Otto, Andrea Sattler-Klein: Generating Small Convergent Systems Can Be Extremely Hard. ISAAC 1992: 299-308
23EENorbert Kuhn, Klaus Madlener, Friedrich Otto: Computing Presentations for Subgroups of Context-Free Groups. ISSAC 1992: 240-250
1991
22EEKlaus Madlener, Paliath Narendran, Friedrich Otto: A Specialized Completion Procedure for Monadic String-Rewriting Systems Presenting Groups. ICALP 1991: 279-290
21EEKlaus Madlener, Friedrich Otto: Decidable Sentences for Context-Free Groups. STACS 1991: 160-171
1990
20EENorbert Kuhn, Klaus Madlener, Friedrich Otto: A Test for lambda-Confluence for Certain Prefix Rewriting Systems with Applications to the Generalized Word Problem. ISSAC 1990: 8-15
1989
19EENorbert Kuhn, Klaus Madlener: A Method for Enumerating Cosets of a Group Presented by a Canonical System. ISSAC 1989: 338-350
18EEJürgen Avenhaus, Klaus Madlener, Joachim Steinbach: COMTES - An Experimental Environment for the Completion of Term Rewriting Systems. RTA 1989: 542-546
17 Klaus Madlener, Friedrich Otto: About the Descriptive Power of Certain Classes of Finite String-Rewriting Systems. Theor. Comput. Sci. 67(2&3): 143-172 (1989)
1988
16 Klaus Madlener, Friedrich Otto: Commutativity in Groups Presented By Finite Church-Rosser Thue Systems. ITA 22(1): 93-111 (1988)
15 Klaus Madlener, Friedrich Otto: Pseudo-Natural Algorithms for Finitely Generated Presentations of Monoids and Groups. J. Symb. Comput. 5(3): 339-358 (1988)
1987
14 Jürgen Avenhaus, Richard Göbel, Bernhard Gramlich, Klaus Madlener, Joachim Steinbach: TRSPEC: A Term Rewriting Based System for Algebraic Specifications. CTRS 1987: 245-248
13EEKlaus Madlener, Friedrich Otto: Groups Presented by Certain Classes of Finite Length-Reducing String-Rewriting Systems. RTA 1987: 133-144
12 Klaus Madlener, Friedrich Otto: Using String-Rewriting for Solving the Word Problem for Finitely Presented Groups. Inf. Process. Lett. 24(5): 281-284 (1987)
1986
11EEJürgen Avenhaus, Benjamin Benninghofen, Rüdiger Göbel, Klaus Madlener: TRSPEC: A Term Rewriting Based System for Algebraic Specifications. CADE 1986: 665-667
1985
10 Klaus Madlener, Friedrich Otto: Pseudo-Natural Algorithms for the Word Problem for Finitely Presented Monoids and Groups. J. Symb. Comput. 1(4): 383-418 (1985)
1984
9 Jürgen Avenhaus, Klaus Madlener: On the Complexity of Intersection and Conjugacy Problems in Free Groups. Theor. Comput. Sci. 32: 279-295 (1984)
8 Jürgen Avenhaus, Klaus Madlener: The Nielsen Reduction and P-Complete Problems in Free Groups. Theor. Comput. Sci. 32: 61-76 (1984)
1982
7 Jürgen Avenhaus, Klaus Madlener: The Nielsen Reduction as Key Problem to Polynomial Algorithms in Free Groups. EUROCAM 1982: 49-56
1981
6EEJürgen Avenhaus, Klaus Madlener: How to Compute Generators for the Intersection of Subgroups in Free Groups. CAAP 1981: 88-100
5EEJürgen Avenhaus, Klaus Madlener: P-Complete Problems in Free Groups. Theoretical Computer Science 1981: 42-51
4 Jürgen Avenhaus, Klaus Madlener: An Algorithm for the Word Problem in HNN Extensions and the Dependence of Its Complexity on the Group Representation. ITA 15(4): 335-371 (1981)
1978
3 Jürgen Avenhaus, Klaus Madlener: Subrekursive Komplexität bei Gruppen: II. Der Einbettungssatz von Higman für entscheidbare Gruppen. Acta Inf. 9: 183-193 (1978)
1977
2 Jürgen Avenhaus, Klaus Madlener: Subrekursive Komplexität bei Gruppen: I. Gruppen mit vorgeschriebener Komplexität. Acta Inf. 9: 87-104 (1977)
1975
1 Jürgen Avenhaus, Klaus Madlener: En\En-1-entscheidbare Gruppen. Automata Theory and Formal Languages 1975: 42-51

Coauthor Index

1Jürgen Avenhaus [1] [2] [3] [4] [5] [6] [7] [8] [9] [11] [14] [18] [30] [34] [37]
2Benjamin Benninghofen [11]
3Daniel E. Cohen [26]
4Richard Göbel [14]
5Rüdiger Göbel [11]
6Reinhard Gotzhein [37]
7Bernhard Gramlich [14]
8Theo Härder [37]
9Norbert Kuhn [19] [20] [23] [29]
10Lothar Litz [37]
11Teo Mora [39]
12Paliath Narendran [22] [25]
13Jürgen Nehmer [37]
14Friedrich Otto [10] [12] [13] [15] [16] [17] [20] [21] [22] [23] [24] [25] [26] [27] [29] [32] [38]
15Birgit Reinert [28] [33] [35] [36] [39]
16Michael M. Richter [37]
17Norbert Ritter [37]
18H. Dieter Rombach [37]
19Andrea Sattler-Klein [24] [27] [38]
20Bernd Schürmann [37]
21Joachim Steinbach [14] [18]
22Louxin Zhang [25]
23Gerhard Zimmermann [37]

Colors in the list of coauthors

Copyright © Tue Nov 3 08:52:44 2009 by Michael Ley (ley@uni-trier.de)