Coauthor Index - Ask others: ACM DL/Guide - CiteSeerX - CSB - MetaPress - Google - Bing - Yahoo

* | 2008 | |
---|---|---|

14 | EE | Mary Cryan, Martin E. Dyer, Haiko Müller, Leen Stougie: Random walks on the vertices of transportation polytopes with constant number of sources. Random Struct. Algorithms 33(3): 333-355 (2008) |

2007 | ||

13 | EE | Mary Cryan, Martin Farach-Colton: Preface. Theor. Comput. Sci. 382(2): 85 (2007) |

2006 | ||

12 | EE | Mary Cryan, Martin E. Dyer, Leslie Ann Goldberg, Mark Jerrum, Russell A. Martin: Rapidly Mixing Markov Chains for Sampling Contingency Tables with a Constant Number of Rows. SIAM J. Comput. 36(1): 247-278 (2006) |

2005 | ||

11 | EE | Mary Cryan, Martin E. Dyer, Dana Randall: Approximately counting integral flows and cell-bounded contingency tables. STOC 2005: 413-422 |

2003 | ||

10 | EE | Mary Cryan, Martin E. Dyer, Haiko Müller, Leen Stougie: Random walks on the vertices of transportation polytopes with constant number of sources. SODA 2003: 330-339 |

9 | EE | Mary Cryan, Martin E. Dyer: A polynomial-time algorithm to approximately count contingency tables when the number of rows is constant. J. Comput. Syst. Sci. 67(2): 291-310 (2003) |

2002 | ||

8 | EE | Mary Cryan, Martin E. Dyer, Leslie Ann Goldberg, Mark Jerrum, Russell A. Martin: Rapidly Mixing Markov Chains for Sampling Contingency Tables with a Constant Number of Rows. FOCS 2002: 711-720 |

7 | EE | Mary Cryan, Martin E. Dyer: A polynomial-time algorithm to approximately count contingency tables when the number of rows is constant. STOC 2002: 240-249 |

2001 | ||

6 | EE | Mary Cryan, Peter Bro Miltersen: On Pseudorandom Generators in NC. MFCS 2001: 272-284 |

5 | EE | Mary Cryan, Leslie Ann Goldberg, Paul W. Goldberg: Evolutionary Trees Can be Learned in Polynomial Time in the Two-State General Markov Model. SIAM J. Comput. 31(2): 375-397 (2001) |

1999 | ||

4 | EE | Mary Cryan, Leslie Ann Goldberg, Cynthia A. Phillips: Approximation Algorithms for the Fixed-Topology Phylogenetic Number Problem. Algorithmica 25(2-3): 311-329 (1999) |

1998 | ||

3 | EE | Mary Cryan, Leslie Ann Goldberg, Paul W. Goldberg: Evolutionary Trees can be Learned in Polynomial Time in the Two-State General Markov Model. FOCS 1998: 436-445 |

1997 | ||

2 | EE | Mary Cryan, Allan Ramsay: Constructing a Normal Form for Property Theory. CADE 1997: 237-251 |

1 | Mary Cryan, Leslie Ann Goldberg, Cynthia A. Phillips: Approximation Algorithms for the Fixed-Topology Phylogenetic Number Problem. CPM 1997: 130-149 |

1 | Martin E. Dyer | [7] [8] [9] [10] [11] [12] [14] |

2 | Martin Farach-Colton (Martin Farach) | [13] |

3 | Leslie Ann Goldberg | [1] [3] [4] [5] [8] [12] |

4 | Paul W. Goldberg | [3] [5] |

5 | Mark Jerrum | [8] [12] |

6 | Russell A. Martin | [8] [12] |

7 | Peter Bro Miltersen | [6] |

8 | Haiko Müller | [10] [14] |

9 | Cynthia A. Phillips | [1] [4] |

10 | Allan Ramsay | [2] |

11 | Dana Randall | [11] |

12 | Leen Stougie | [10] [14] |