Fachbeitrage

Characteristics of
Object Oriented Modeling Methods

Roland Kaschek and Heinrich C. Mayr

Department of Business Informatics and Application Systems
University of Klagenfurt, Universititsstrasse 65-67
A-9020 Klagenfurt, Austria

{kaschek I mayr} @ ifi.uni-klu.ac.at

Abstract

Object modeling 1s replacing classical data oriented modeling approaches. There is
a variety of methods, the differences and similarities of which are not obvious as
well as their suitability for a given purpose. This is mainly due to the lack of a
common meta model which would allow for describing the different approaches in
a uniform way. Consequently, it 18 a non-trivial task for practitioners to make a
reasonable choice. The paper is motivated by this problem. Therefore we present a
model based treatment of the notion method and specialize it to the notion of
object oriented modeling method (OOMM). A set of high level characteristics of
OOMM is presented that cover the relevant aspects of well known methods as will
be exemplified by their application to OMT. Finally, we review the relevant
literature by classifying recent approaches to the comparison of OOMM.

1. Introduction

Object orientation is the today’s key paradigm for software development. Object oriented
development methods promise to lead to substantial improvements of software development
processes ([B194]). As a consequence, object oriented software development methods are 'in'.
New methods or modifications of already established ones are continuously placed on the
market. Practice, however, needs standards. This need led to unification attempts with respect
to methods and notation (see, e.g. the COMMA and OPEN process [He%96a,b, HB%6, HF97,
H*97a-c]) as well as the UML process {(e.g. [Bu97, FS98, La98]), which lead to the OMG
language standard.

UML initially was intended to be the basis for a unified development method (UDM) [BR95].
It was to improve and unify OOAD, OMT as well as OOSE ([Bo94, Ru91, Ja92]). OPEN on

10

the other hand, focuses more on the second wave methods (compare for this classification
[He96a]) like MOSES, SOMA, Martmf()deli and BGN (see [HE94, Gr95, MQ95, WN93)).
Clearly, a standard, regardles& Whether it is an ofﬁc;af’ or ‘de facto’, could significantly
improve the state of the art in object modehng But umfymg concepts, techmques, procedures
or notation of different methods is by no means a s1m§ie task.

There are the dangers that deficiencies will be inherited to the intended standard and that the
mixture of concepts, notation and techniques is not well designed. A unified method
regardless, whether it is intended to be a core method (OPEN) or an integration ([S0971), is a
method and thus, foliowing [Ru93], has: “..its own choice of concepts, notation and
priorities, subject to the same evaluation criteria as any other new method.”

Moreover, a core method might have to be tatlored to the particular needs of a given user, a

probably complex task that must be taken into account in the context of method selection.

Similar criticism also applies to the less ambitious UMIL project that concentrates mainly on
notation, thus neglecting the dimension of pragmatics. Obviously the pragmatics of a certain
symbol is not (at least not fully) determined by itself or by its semantics but by the way people
deal with it in modeling. Thus the UML approach might suffer from non-harmonized
pragmatics of the incorporated methods. We conclude that dealing with more comprehensive
methods, their description, comparison and selection, is still an important issue though the
actual trend to unification.

Within this paper we use the term object oriented modeling instead of the more common term
object oriented analysis and design. For, the currently propagated object oriented analysis
methods support modeling (of requirements, of a given universe of discourse (UoD) or of a
software solution to the problem at hand) but nearly no model analysis. An analysis method,
however, should also provide notions, techniques and guidelines for investigating the items at
hand in order to generate propositions on the modeled system. Think, e.g. of the identification
of invariants in Petri Nets (see [Ba90, p.120ff]), or of properties like reachability or safety,
which - at least in principal - can be mathematically studied and used to derive knowledge
about the modeled system. For a similar understanding of the notion analysis see [M*98,
p.45].

In the following we will present an approach to a comprehensive description of OOMM. For
that purpose, section 2 starts with discussing the challenges of method description and
selection. We then proceed to a working definition of the notions method (section 3) and
object oriented modeling method (section 4). Section 5 focuses on research objectives in

OOMM comparison and prepares the ground for a classification of comparison approaches as

11

found in the literature {section 6). The relationship between OOMM and tools for their
application is investigated within section 7. The paper closes with a short summary and an
outlook at further work to do (section 8). Appendices A and B’ contain the complete hierarchy
of method characteristics as well as the result of applying them to OMT.

We started our work by identifying limitations of object oriented approaches (see [K*93]) and
by a case study (see[K*94a, K*94b, H*97]), which we ran as a 'multi analysis project’ by in
total 8 teams of students each applying one of the following OOMM: OOA [CY91], OOSE
[Ja92], OMT [Ru91], RDD [W*90], SOM [FS93], BOOAD [B094]. Each method was
applied to the same UoD, namely an extension of the well known IFIP conference
organization problem [OI86]. A subsequent study concentrated on the analysis and
characterization of tools supporting that methods (see [KM96, H*97]).

2. Challenges in Method Description and Selection

Our work is triggered by the problem to select, for a given environment, a particular object
oriented modeling method. This problem is complicated by certain aspects like the necessity
to protect previous investments, to work with industry approved hard- and software and to
comply with standard interfaces, to pay staff, tools and offices based on project outcome, as
well as the necessity to organize for a homogeneous development style and for homogeneous
product structure and quality. Our paper is intended to impact this complex decision by

carefully analyzing the basic material, i.e. the modeling methods.

In practice, an OOMM would not be used without the support of a computerized tool for its
application: Means for navigating through deliveries, providing for various views on them and
for keeping deliveries consistent over the project duration are indispensable [W*98]. Since
such tools are available in a huge variety, continuously changing due to new releases and
method enhancements, the selection process increased its complexity. Therefore it is hard to
choose, within a given environment, the method and tool that best fit into the local conditions
(environment needs, tasks, development life cycle/proceeding model for software

development).

We believe that a traceable and rational approach to method selection presupposes method

comparison. Comparison in turn presupposes a comparison theory based on a comprehensive

{ o s e .
Due to space limitations we don’t compare our characteristics to ether sach lists.

12

and uniform description of the methods to be compared. This may be done on the basis of a
set of characteristic properties, i.c. characteristics w.r.t. which the methods may be compared.
Characteristics are un_derstood here like attributes, i.e. descriptive entities, the type of which in

general is not restricted.

3. Methods

In order to get to a comprehensive description of OOMM’s we take a model based approach,
i.e. an approach focussing on a model of what usually is called method. Other approaches are
possible but they don’t necessarily focus on the above mentioned assumptions and thus might
have a somewhat reduced significance w.r.t. method selection. We therefore discuss the
general understanding of what methods are, i.e. (for the scope of this paper) what properties
they have and consequently what can be done with them. The purpose of methods, i.e. the
goals they are intended to support and the tasks they are to give guidance consequently are in

our scope.

Following [CI89, D*90] and [Bl194] a method is a systematic goal driven procedure for
gaining knowledge or practical results. This definition more or less coincides with the one in
Langenscheidt- Longman’s Dictionary of Contemporary English. It furthermore is compatible
with Webster’s Dictionary, which according to [LLG97, p. 74] defines the notion method with
help of the phrase ‘regular, orderly and definite procedure’. [Ru95} in his definition of the
notion method does not mention, that it should be systematical. This may cause problems in
enhancing, learning and applying the method. Furthermore that paper does not explicitly
mention goals but just activities the enactment of which is guided by the method. We follow a
goal or result oriented approach, since various activities may produce the same result and thus
can be used interchangeably depending on the actual conditions. Our view is supported by
[$a90, SR92] and also by the meaning of the Greek word for ‘method’, which strictly
speaking means ‘following a way towards a specific location’. Other sources, see, e.g.
[He95a,b, Fi95, C*96, S097, B*98, G*97], although dealing with modeling of OOMM don’t
define the notion method in abstract terms. Thus the way to deal with comparison issues is not
necessarily convincing and important aspects might be ignored. Some sources, e.g. [G*97],
immediately define the notion object oriented modeling method by means of a conceptual
model, i.e. by enumerating their aspects and relationships among them. The relevance of them

however is not discussed in that book,

The literal meaning of the word method leads us to identify the following aspects, that

i3

somehow are present within a method: a task model, a product model’, a producer model, a
navigational model, and a tool model. We identify this aspects because a method somehow
must tell, what kind of job it is good for, i.e. what kind of practical results or knowledge can
be accomplished by following it. Additionally the form within which these results are to be
obtained needs to be given. Furthermore the method must be directed to a potential user who
is the one to produce the products, i.e. the practical results or knowledge described by the
product model. Especially in case it is not a trivial job to follow the way prescribed by the
method it must provide means for to navigate through the area of problem solving. With
respect to the distance between two navigation points succeeding one another immediately the
method must denote what tools can be used to bridge the respective gap and how they are to
be used.

Having identified the most important aspects to be addressed by a method we now can care
for a language to speak about methods. We only are interested in methods humans might
benefit from. Thus we assume that the method’s assumptions, hints and results or intermediate
results can be presented to humans, which necessarily is done by means of a language. A
further language aspect in methods is the necessity to teach and improve the method.
Therefore to construct our method meta language we can consider the languages used by
methods to guide human method users. Clearly this langnages depend on the intended users,
their organizational context and the desired level of precision and granularity. In practice there
will be no universal method allowing to gain interesting knowledge or practical results
concerning arbitrary tasks, i.e. we believe that the broader the method’s task class the less
interesting the possible knowledge and results. Therefore, we expect methods to have
restricted domain of method application and universe of discourse (UoD) within it as well as a

task class of importance with respect to the UoD.

Since the domain of method application, the UoD) and the task class must be distinguished
from other entities and described a method needs a language, the method language. E.g. the
notions provided by OMT for describing static aspects (the object model} form such a
language. Obviously for such languages not every syntactically correct phrase also is an
appropriate or meaningful one. Therefore, a method should guide its users to build or select
appropriate language phrases. For that we introduce the concept of style, i.e. the way things
are done and represented following the method. This to some extent is realized in OPEN (see
[G*97]) where there are recommendations to use or not to use certain phrases which in OPEN

are called deliveries. A method then has to state what is good and what is bad style. Cur

2 1t seems to be the case, that this term was introduced by C. Atkinson from the Max Planck nstitate for Experimental

Software Engincering at Karlsruhe, Germany.

14

concept of style thus generalizes the concept of architectural style discussed in [M*97]. The
method style andfz_ﬁf{_éitéd aspects are covered by the proceeding model .

A set of géal téﬁiplafés‘ (e.g., ‘ensure reusabiliitly’,' ‘exploit parallelism’, guarantee required
‘performanée’, ‘s'gfé:-t:y’ or ‘security’ aspects) from which the user might choose should also be
present. In case of simple methods the set of goal templates even may be empty or only
implicitly present. Those methods which offer its users to select goal templates force them to
judge about the current situation. The selection of goal templates then may drive the whole
process of method application. As was observed by [G*97] one can distinguish between
activity and product life cycle. Thus although the product life cycle might decompose into a
predefined way by means of phases or stages (see [BM97, C*96]) this structure might not
impact the activity life cycle. An iterative activity life cycle might result from goal selections
since the judgements whether a particular goal is reached or not are rather problematic. Those
modeling methods which provide for easy done model modifications and offer goal templates
thus result in a highly iterative activity life cycle. The respective activities are put together in
choice and sequence felt to be necessary by the designer, see, e.g. [W196, He98 p. 1281.].

Finally, usage rules should be provided telling the user what style or goal templates apply in
what situation, as well as rules on how to build sentences of good style or how to reach a
particular goal efficiently.

To summarize we identify the following main method constituents:
o the domain of method application DoMA: a setting wherein the OOMM typically is to be
used to solve certain tasks,

o the method’s task class TC: denotes the tasks to solve the method is designed for,
o the method language ML: allows to state everything important for method application,

o the proceeding model PM: guides the method user to proceed during method application.
It consists of the following parts:

% a set of statements on method style MS: states what kind of ML-statements are to prefer or
to reject,

% a set of method goal templates MG: lists objectives a method user might or should try to
reach,

% a set of usage rules UR: specifies what style or goal is suitable for what state of affairs
within the DoMA,

3 Since process might be a modeling notion utilized by modeling methods we don’t use the more common term

process model to prevent from confusing object and meta level concepts.

15

% a set of construction rules CR: tells how to produce expressions of desired style or to
reach a desired goal efficiently.

4. Objec't Oriented Modeling Methods

We consider an OOMM to be a method for the development of object oriented models. These
correspond to the stages or phases proposed by the product life cycle of the respective method.
They may, depending on the method, range from conceptual to logical or physical models’.
Furthermore they may, also depending on the method, offer various views on systems. We
believe that the domain of method application of an OOMM is systems modeling without any
further restriction of the UoD herein. The task class is the production of the respective models.
In the following the method constituents introduced above will be specialized to what we call
high level OOMM characteristics. A refinement of these characteristics is presented in
Appendix A.

4.1 High level characteristics of OOMM

Conception

Additional to the specification of its DoMA an OOMM must state what kind of development
process is to be instantiated, i.e. what product and activity life cycle a method user should
follow. Connected with these cycles the deliveries to be produced must be specified.
Additionally effective techniques to produce them should be explained. The roles, persons
should or might take in the modeling process together with their responsibilities, are a special
to OOMM compared to methods in general. The producer model additionally should lead the
potential method users to have a clear understanding of what they expect from using the
method and what their needs are. Also the users should be supported in finding out whether
their expectations and needs were met by methed application. Furthermore the philosophical
assumptions underlying the modeling method should be specified. These assumptions concern
the world view incorporated in the method, e.g. what view of concepts like truth or meaning
the method presupposes. All this together we call conception of the OOMM, i.e. the way the
OOMM looks at the production of object oriented models from a high level perspective.

4
A discussion of this concepts can be found, e.g. in [B*92a, G*97].

16

Modeling system

We comprehend a model as an imagination that an individual establishes from a thing or
process in its environment, see [LM78]. Thus, models reflect judgements on the observed
environmeﬁt by notions and relationships between them. For a systematic treatment of
judgements and notions see, e.g. {Pf21]. Since judgements in that source are understood to be
certain triplets of notions the method language of an OOMM must offer a system of modeling
notions’. A modeling notion supports an abstract view at some entity (, e.g. a UoD, some piece
of software or of a software development process) which is dealt with during OOMM

application.

Furthermore the method fanguage must allow to distinguish, from each other, entities within
the UoD, modeling notions and modeling notions instantiated to cover UoD entities. The
language also should have means to address the goal templates as well as the method style. In
addition to the notions, their representations (words, symbols) are in the realm of the
language, too. Important properties of the provided representation concepts, stating how to
represent modeling notions instantiated to the UoD, see [LM78], are their practicability, well-
definedness and intuitiveness. This leads to the notion of modeling system, which is the
method’s set of modeling notions together with an adjusted set of representation concepts and
a modeling concept (see [LM78]) which states how to apply the modeling notions in order to
construct the deliveries prescribed by the product life cycle.

Typical OOMM modeling notions are:

s object, class, value, message, association, object link,
s abstraction concepts like aggregation, generalization, classification, clustering,
s event, state, state transition, guard, process, actor, activity, action.

Modeling notions we believe to be necessary in OOMM deal with:

5 dependency and compatibility with respect to the relationships between instances of
(the same or different generic views,

S gquantitative UoD aspects (e.g. timing, money, amount of data, or other sorts of
constraints),

S architectural concepts describing types of system structure, behavior or constraints,

S patterns describing types of connection of system components at a level between
classes or objects and architectural concepts,

S meta notions concerning developed models and schemas or the development process

itself (e.g. quality, reuse, safety, security and management related notions).

’ Note that a method thus has a tendency to make the method user blind for things beyond s medeling notions.
Consequently each method has principal limitations w.r.t. the knowledge which may be elaborated by following

it.

17

An OOMM should offer certain specifications concerning tool support. It should specify:

— the minimum set of deliveries to be supported as well as possible substitutes for
symbols or diagram types, =

- the minimum requirements for methodology support,

— the minimum requirements for project management support

Clearly, all the modeling notions should conform to the OOMM conception. Concerning the
representation concept of an OOMM it has to be considered, that the intended users or
customers should be able to validate the produced model. Thus the representation concept
should also be adjusted to the capabilitics of the users that are typical for the DoMA of the
OOMM. If necessary, several representation concepts could be provided for different user

groups.

Methodology

Object oriented modeling is a design activity, often performed in teams (as a source to design
theory, see [BM971). Consequently, in contrast to methods in general OOMM need concepts
for team support. Design activities often employ design primitives (i.e. elementary operations
modifying deliveries, which are the building blocks for complex operations on deliveries, see,
e.g. [B*92]), so that OOMM should have means for dealing with such primitives, too.
Furthermore, the analysis of design artifacts, though not a standard task in practice, should be
supported by high quality OOMM. In total, these topics form, together with the OOMM
proceeding model, what we call the OOMM merthodology, denoting, similar to
[C189,B194,5a90], a theory of techniques, procedures and joint goal templates, the aim of
which is to guide the OOMM user in applying the modeling system to solve development
tasks as addressed by the OOMM conception. It supports
- the selection and instantiation of goal templates that fit into the actual development
situation,
- the instantiation of the proceeding model to a development process adequate to the
realization of the selected goals,
- realization of the instantiated goal templates under the instantiated development
process,

- gaining help in the case that the OOMM is not (or no further) applicable.

Possible goals templates among others are

- complexity treatment,

- reuse of all kinds of former development results (model components, patterns {see e.g.
[Fo97, 1.a98, BP98]} or programs)

- organizing all types of reuse (sewing and earning, ...), see {J*971,

18

- exploitation of UoD inherent parallelism,

- ensuring perf__ormance requirements, safety, security,

- ensuring quality s_téndards or improving quality (for a treatment of quality aspects in
conceptual rﬁodéls see, e.g., [L*94, K*95b}),

- a controlled design document evolution,

- validation and verification of deliveries,

- reduction of development costs and economical resource usage,

- support of (various kinds of) prototyping.

Note that modeling notions are required for each goal template in order to address related
UoD aspects as well as guidance to reach the instantiated goal. In turn modeling notions and
guidance each depend on adeguate goal templates. Clearly neither goal templates nor
modeling notions or guidelines should conflict the OOMM conception. The goal templates
together with the respective selection and realization support contain most of the knowledge
incorporated into the OOMM. Thus it is a good rule of thumb to concentrate on this part of an
OOMM during selecting for an OOMM.

Documentation

Especially with respect to method selection in practice we add documentation as a further
constituent for OOMM. It covers the presence and distinction of the method in literature and
practice, the kind of available literature as well as the clearness of the available method

descriptions and case studies. Further topics are training material and courses, certificates.

There is an increasing amount of literature on OOMM in general and of specific
documentation material in detail. The OPEN method, e.g. requires several books for its
documentation, see [G*97]. Clearly this might lead to problems in understanding and applying
the resp. method.

For more details of the OOMM characteristics see appendix A.

For a specific OOMM the proceeding model aspects might be empty or not fully elaborated.
Especially its language may lack of notions to reason about the UoD. We could view, e.g., the
classical entity relationship model (ERM) (see [Ch76]) as an OOMM for UoD having a
significant time invariant, i.e. static aspect. It has practically no proceeding model.

There are several investigations in the domain of semantic modeling, see e.g. [PM88, HM90,

UDS86] and [KL85]: They concentrate to a large extent on the language means that are offered

19

by the respective'daﬁa 'ﬁﬁé&e}(viewed as a modeling method) and on its semantics. [B*92] and
others try to give a prf}Ceéding model (rules for obtaining 'good' schemas in the above sense)
for an ERM-based seftware developmeni method. [E191} proposes style preferences and usage
rules for a specxfzc ERM

With respect to the domain of application the characteristics concentrate on specific aspects of
the OOMM, which we believe to be rather independent. We furthermore believe, that

methodology and conception are the most important characteristics of an OOMM.

5. Research objectives in OOMM comparisons

OOMM comparisons necessarily are strongly influenced by their objectives. We present some

objectives we found in the literature:

- [Be92] points out three objectives:
(O to improve the understanding of object orientation in general and of OOMM in
particular,
(2) to improve the process of selecting among OOMM and
(3) to identify problems of OOMM that might be used as arguments against the

introduction of such a method into the 'comparers' environment.

- [SO94a, SO94b] and [{Gi93] use comparison as a means for integrating various
OOMM into one (new} OOMM. [Gi93] and [S094b] take the construction of a case
tool supporting various OOMM as a reason for the integration of the respective
methods. This objective to some extent also applies to the UML process. Additionally
UML tries to provide for an OOMM language standard.

- The proponents [H*97b] of the OPEN process try to provide for a standard OOMM,
which is a core method to be extended if necessary. This project poses the new

questions how to find out what tasks cannot efficiently be mapped into the task class

of the core method and how to find and instantiate the appropriate extension.

6. A classification of comparison approaches

Some work has been conducted recently focussing on the comparison of OOMM or SDM’s in
general, see [St94, SO94a, FK92, MP92, 1i94, SO9%b, B194, Be92, SC93, DTLZ93, KHS87,

20

Gi93 and Hu94]. Methodological differences may be observed in these approaches. [SO92]
give a classification of possible approaches based on [So83]; it turns out that the differences
between thé:.appm&_cheé consist mainly in the way these approaches define a mefta-language
for reasoniné about the OOMM at hand. This is not very striking since comparing OOMM, in
first, affords to speak about them. Taking a more sophisticated view we observe, that there are

the following (possibly overlapping) classes of approaches to method comparison:

(1) Case based approach: Determined by

(a) the definition of a new OOMM which is to serve as a reference model for
comparison; or

(b) by the derivation of a set of OOMM characteristics from the OOMM that are
to be compared; the elements of that set then become the basic notions of the
meta-language; or

(©) by the definition of some meta-language from scratch; or

(d) by the integration of the OOMM to be compared on the basis of a formalized
description. The meta-language then consists of the integration result together
with the description means (e.g. a data model). This approach has been
introduced by [S094a] and [SO94b].

(2) DoMA centered approach: Determined by relating OOMM to DoMA types and by
defining an appropriate meta-language for a DoMA specific comparison. Examples for
more specific DoMA are: process control systems, information systems, multi media
or virtual reality systems.

(3) Model based approach: Determined by identifying those characteristics of OOMM
that are essential with respect to the comparison purpose, and by matching concrete
methods against these characteristics. The challenge of this approach consists in
determining of what is to be considered as essentjal thus getting a clear understanding

of OOMM. Our approach as presented in the foregoing sections belongs to this class.

Most of the approaches mentioned so far suffer from the lack of assessing advantages a
certain OOMM has compared to others (with respect to the given DoMA), a point that is
essential for method selection. {D*93] report on a case study where they employed a human
expert for to assess schemas that were developed by several groups of students. Each group
used a specific OOMM. The expert assessed for each group two schemas: the initial one (first
result) and the final one (last result after enhancements). Each method then was ranked
according to the scores of their respective schemas.

21

[SC93] use software metrics to assess the schemas that were produced in a case study. They
again take the resulting score as the'_(ﬁ}uhi dimensional) method score. Both rankings
however, do not take into account that they depend (among other factors) on the UoD.

Another approach is to use metrics for assessing methods themselves. Le., method
characteristics are instrumentalized to criteria by providing a value range for each of them. All
that leads to a fourth class of comparison approaches. It focuses on ranking OOMM according

to a quantifying procedure, that does not take into account organizational needs:
(4) Method ranking approach.

Though not limited to OOMM comparisons also [B*98] 1s worth to being mentioned, since it
attempts to develop a set of benchmark problems. Method selection then may be done by
comparing the problem at hand with the benchmark problems and the choosing the method
which performed best w.r.t. this problem. This approach is related to the DoMA-centered
approach and the ranking approach. We create a new class for approaches like this because
within a given DoMA methods might perform differently on benchmark problems.
Additionally no formal ranking mechanism needs to be given for this approach. The designers
taste might be viewed as sufficient. The class crated is called:

(5) Benchmark problems approach

Like every kind of investigation OOMM comparison affords a certain underlying philosophy,
i.e., a conception of the real world and the role of OOMM within it. Think, e.g., of ontology,
epistemology, subjectivism, objectivism. Some of the most common approaches for a theory
of truth are discussed in [An92]. Various approaches to a theory of meaning are documented
in [HK95]. The comparison approaches cited above don’t deal with questions like these. The
same holds for the methods that were under our investigation (see introduction). Nevertheless
the topic has been discussed by [KH87] with respect to data models. Further research
concerning OOMM and their philosophical assumptions is done in [KO94], [TW91] and in
[Ka88]. More research concerning this topic seems to be necessary. We therefore create a
further class focussing on the philosophical assumptions made by OOMM to gain practical

results or knowledge:
(6) Epistemological approach.

At the first glance it might seem that the above classification of approaches is thought to be

non-overlapping. We explicitly mention that this is not the case. E.g., if one wants to deal

22

with measurement issues, class (4) seems to be appropriate. But since measurement implies
the identification of the things tobe measured also class (3) is affected. Thus, the classes more
likely correspond to clusters of comparison aspects.

[Be92] describes formally, as an essential ingredient of an OOMM, the fundamentals of the
proceeding model proposed by the methods he investigated. These descriptions are organized
according to a software life cycle model. However, this approach does not help to match the
methods against the customers needs. This weakness can be solved by focussing on the goals
the proceeding model of the methods suppose and the selectors needs. The present paper
therefore contributes to this aim and is intended to continue the work in [Be92].

[SO9%4] mention as a deficiency of recent OOMM comparisons that they are not at a sufficient
level of detail. [Gi93], e.g., describes OMT without any reference to its proceeding model.
This is in contradiction with [1i94] where OMT is analyzed at a higher level of detail and 1s
estimated because of its good (modeling) instructions. A further deficiency is mentioned in

[Be92], who criticizes that some method comparisons are suffered from untraceability.

Clearly, concerning the selection problem, only those comparison approaches are adequate
that help to focus on the goals that are relevant with respect to the enterprise policy and needs.
Furthermore, when designing a comparison method one has to take into account that
weaknesses of some parts of an OOMM language can be compensated by other parts and by
the process model (see e.g. [SO94b]).

7. The Relationship Between Methods and Tools

As has been mentioned before our long-term objective is method selection. In practice this
nearly implies the selection of a tool since OOMM application without support by a tool is not
the practitioners work and life.

Methods are (abstract) means for managing a certain class of tasks. In contrast to that, we
consider a tool to be a (concrete) means that supports the use of a method for to solve concrete
tasks. i.e. instances of that method's task class. Consequently, an OOMM tool is to support the
use of the respective OOMM. Therefore in principle we suppose to first choose the OOMM
and then a supporting tool. Occasionally an OOMM may be defined by a tool. But this has no
impact on their relationship.

23

There are tooEs supportmg severa} Q(}MM (sce e.g. Object Maker [OM93], Paradigm
Plus[PP93] or Raﬂona} Rasefc++ 3. O [RRE(}}) we may see them as a tool box containing
tools for more or Iess samxlar ;mrposes Withm the framﬁ:work of OOM (think, e.g. of a box
with different screw drwers} OOM toois usuaﬂy are software systems so that besides of
characteristics that facus on teoi aspects also software characteristics have to be considered.

According to the precedence of methods over tools their characteristics mainly have to fit to
method characteristics. E.g., the modeling notions and representation concepts of the method's
modeling system should be supported appropriately and completely; the achievement of
methodology goals should be ensured. Not all of the method characteristics must give raise for
a tool characteristic. This especially holds for the philosophical assumptions as part of method
conception (a tool may not force its user to follow it's method's philosophy: think, e.g., of a
craftsman driving a nail into a wall by punches with a screwdriver) and to some extent also for
some of the method documentation characteristics. But with respect to certain important

aspects the method should prescribe properties a supporting tool has to observe.

In case of OOMM tool boxes (see above) another characteristic is that they offer means for
the translation of deliveries from the language of one method into the language of another
method they support. Concerning this we point out, that the meta model of such tools must be
essentially enlarged compared to those of the methods since layout information must be kept
as far as possible during translations. Our experience with some products indicates that this

stifl is a challenge for tool producers.

To sum up, we introduce again four top level characteristics: methodology support, general
software characteristics, documentation and environment. For more details concerning
tool characteristics see [KM96].

8. Summary And Outlook

Starting with the objective of OOMM selection we identified OOMM comparison to be a
fundamental issue. Starting from the Greek origin of the word method we analyzed the
method concept and derived characteristics of OOMM. We discussed approaches to method
comparison known from the literature, to classify and analyze them with respect to their

relevance for method selection.

It turned out that to deal with selections of OOMM their methodology in general and the goal
templates in particular have to be investigated since one of the promises of object orientation

is simplicity of model modification. To do so we developed, based on the results of a multi-

24

project study, a hierarchy of characteristics, the most important of which were conception and
methodology. These characteristics may be used to describe COMM.

A tool is to be constructed that will help users to compare OOMM. It can be based on benefit
analysis as was done in [St94]. Clearly user needs and expectations have to be taken into
account for this analysis. These needs and expectations need to be assessed according to two
dimensions. The first is the relevance or importance of the respective item. The second is its

relative amount of fulfillment.

Additionally a procedure is needed to find out the needs and expectations the method is to
meet. We intend to approach this task by observing the capability maturity model, see [Hu89],

and relate the selection to the specific maturity level of the selecting organization.

Finally, a comparison and analysis of the known lists of OOMM characteristics will have to
be done. The respective investigation will give an improved insight in the value of our model
based approach to method selection.

References

[An92] Andersson, G.: Wahr und falsch; Wahrheit. In [SR92,pp. 369-375],

[A*O1] Van Assche, F., Moulin, B., Rolland, C. (eds.): Object Oriented Approach in Information Systems.
North Helland 1991.

[Ba%0] Baumgarten, B.: Petri-Netze. BI-Wissenschaftsverlag. Mannheim, Wien, Ziirich. 1990.

[Be92! Berard Software Engineering, Inc.:A Comparisen of Object-Oriented DevelopmentMethods. Berard
Software Engineering, Inc. 1992,

[B194] Blum, B.1.:A Taxonomy of Software Development Methods. In: Communications of the ACM Vol
37, No 11, 1994, pp. §2-94.

[Bo%4} Booch, G.: Object-Oriented Analysis and Design with Applications. Benjamin/Cummings

Publishing Company, Inc.. Redwood City, Cal. et al.. 1994,
[Bud7] Burkhard, R.: UML- Unified Modeling Language. Addison-Wesley. Bonn et al.. 1997.

[BM97] Braha, D., Maimon, O.. The Design Process: Properties, Paradigms, and Structure. IEEE
Transactions on Systems, Man, And Cybernetics, Part A: Systems and bumans, Vol
27,2(1997):146-166.

[BP98] Rlaha M., Premerlani W.. Object-Oriented Modeling and Design for Database Applications,

Prentice Hall, Inc., Simon & Schuster / A Viacom Company, Upper Saddle River, New Jersey,
1998.

{BRO5] Booch, G., Rumbaugh, J.: Unified Method for Object-Oriented Development. Rational Software
Corporation. Santa Clara, CA. 1995.

[B*92] Batini C., Ceri S., Navathe S.: Conceptual Database Design: An Entity Relationship Approach.
Benjamin Cummings Publishing Company, Inc.. Redwood City, Cal. et al.. 1992,

[B*98] Bahilf A.T., Alford M., Bharatan K., Clymer I.R., Dean D L., Duke }., Hill G:, LaBudde EV.,
Taipale E.J., Wymore A 'W.: The Design- Methods Comparison Project, IEEE Transactions on
Systems, Man And Cybernetics Part C 28,1(1998):80-103.

25

[Ch76]

[C189]

[CY91]
[C*06]

[*90]

[D*93]

(Ei91]

[EN94]

{FS93]

[FE92]

{F598}

{Gi93]

{Gros]
[G*95]

[G*97]

[He96a]
[He96b]
[He98]

[Hu89]
[Hu94]
[HBI6]
[HE94]

[HF97]
[HK95]

[HM90]

{H*061

{H*07a}

iH*97h]

Chen, P .Th E:;z_zty-Reiauonshsp Mc)dei- T(}ward a Umﬁe{i View of Data. ACM Transactions on
Database Sysi&ms, 1(19’?6) 166 192 ' .

Ccad P Yomden B C}bjact Oﬁerzted Anaiysxs Pmntsca Haii Eneiewood Cliffs. 1991.

Chonoles M J Schax:it 5 Al Magrogan PL Speakmg of Methods, ROAD Mar.-Apr. 1996:8-
12,15

DFOSd()WSki Cf‘ Mu%lar W Scholze- SEubenrecht W., Wernke M, (Eds.): Duden Fremdwdorterbuch,
Blbhovraphische_s Institut & F.A. Brockhaus AG, Mannheim, 1990.

Drake, T, 'Tsai, W.T.Lee, H.J, Zualtkernan, L: Object-Oriented Analysis: Criteria and Case-
Study.Interpational Journal of Software Enginecering and Knowledge Engineering 3,3(1993), pp.
319-350,

Eick, C.F.: A Methodology for the Design and Transformation of Conceptual Schemas. Im
Proceedings of the 17th Internaticnal Conference on Very Large Data Bases. pp. 25-34.

Elmasri, R., Navathe, S.: Fundamentals of Database Systems. The Benjamin/Cummings Publishing
Company, Inc.. Redwood City, CA et al.. 1994,

Ferstl, 0., Sinz, E.: Der ModeHicrungsansatz des Semantischen Objekimodels (SOM). In:
Bamberger Beitriige zur Wirtschaftsinformatik, Nr. 18(1993}.

Fichman, R.G.Kemerer, CF.Object-Oriented and Conventional Analysis and Design
Methodologies. IEEE Computer. October 1992, pp. 22-39,

Fowler M., Scott K.: UML konzentriert, Addison-Wesley Longman Verlag GmbH, Bonn et al.
1995,

Gilpin,M.:A Comparison of Object Oriented Analysis and Design Methods. Mike Gilpin,
INTERSOLV. CASE WORLD, March 8-10, 1993.

Graham LM.: Migrating to Object Technology, Addison-Wesley, Wokingham, UK, 1995,

Gyirkos, J., Krisper, M., Mayr, H.C. {eds.): Re-Technologies for Information Systems. Oldenbourg
Verlag, 1995,

Graham 1LM., Henderson-Sellers B., Younessi H.: The OPEN Process Specification, Addison
Wesley Longman L4d., Edinburgh Gate Harlow, England, 1997,

Henderson-Sellers B.: Convergence Is in the Air, ROAD Mar /Apr. 1996:47-49 54,
Henderson-Sellers B.: The COMMA Project: First Steps, ROAD May/June 1996:49.52.

Hesse W.: Vorgehensmodelle fiir objektorientierte Software- Entwickhing, In: Kneuper R., Miiller-
Luschnat G., Oberweis A. (eds.): Vorgehensmodelle fiir die betriebliche Anwendungsentwicklung,
B.G. Teubner, Stuttgart, Leipzig, 1998, pp. 110-135.

Humphrey, W.S.: Managing the Software Process. Addison-Wesley, Reading, MA. 1989,
Hutt, A.: Object Analysis and Design, Description of Methods. John Wiley & Sons, N.Y.. 1994,
Henderson-Sellers B., Bulthuis A.: COMMA: Sample metamodels, JOOP Nov./Dec. 1996:44-48.

Henderson-Sellers B., Edwards JM.: Book two of Object-Oriented Knowledge: The Working
Object, Prentice Hall, Sydney, 1994,

Hendersen-Sellers B., Firesmith D.G.:COMMA Proposed core model, JOOP Jan, 1997:48-53.

Holm, P., Karlgren, K.: Theories of meaning and different perspectives on information systems. In
[FHO95, pp. 3-35].

Hong, S., Maryanski, F.: Using a Meta Model to Represent Object Oriented Data Models.
Proceedings of the 6th. International Conference on Data Engineering. February 5-9, 1990. Los
Angeles, CA, pp. 11-16.

Hochmiiller, E., Kohl, C., Mayr, H.C., Mittermeir, R.: CASE-Tools - Perspektivenwandel am Weg
vom Anfiinger zum Experten Informatik/Informatique, SI, Nr. 3 June 1996, pp. 47 - 50.

Henderson-Sellers B.. Firesmith D.G., Graham LM.: OML metamodel: Relationships and state
modeling, JOOP Mar./Apr. 1997 47-51.

Henderson-Sellers B., Firesmith D.G., Graham IM.: Methods Unification: The OPEN

26

[H*97¢]
[1i94]
[Ja02]
[1%97)
[Ka83]
[KHS87]
[KL85]
[KM96]
[KO94]
[K*03]

[K*94a]

[K*94b]

[K*053]
[K*95b]
iL.ao8]

[LG97]
[LM78]

{L%86]
(L*94]
[MO95]
[MP92]
[MW93]
[M*98]

[0186]

methodology, JOOP May 1997: 41-43,55.

Henderson-Sellers B., Firesmith D.G., Graham LM.: The Benefits of Common Object Modeling
Notation, JOOP Sep. 1997:28-34.
Tivari, J.:Object-oriented information system analysis: A comparison of six object-oriented analysis
methods. In: [VO941. pp. 85-110.

JTacchson, 1., Christerson, M., Jonsson, P., C}vergaaré (.: Object-Oriented Software Engineering - A
Use Case Driven Approach. Addison Wesley. 1992,

Jacobson I, Griss M., Jomsson P Making the Reuse Business Work, IEEE Computer Oct.
1997:36-42.

Kangassalo, H.: Foundations of conceptual modeling: A Theory construction view. In: Information
Modeling and Knowledge Bases. IOS Press. Amsterdam, Washington DC, Tokyo. 1990, pp. 19-35.

Klein, H.K., Hirschheim, R.A.: A Comparative Framework of Data Modeling Paradigms and
Approaches. The Computer Journal, Vol. 30, Ne. 1, 1987. pp. 8-15,

King, R, McLeod, D.: Semantic Data Models, In: [Ya85], pp. 115-150.

Kaschek, R., Mayr, H.C.: A Characterization of OOA Tools. In: Znd International Symposium on
the Assessment of Software Tools, held in Toronto, Canada in May 1996. IEEE Computer Society
Press. 1996,

Kristensen, B.B., Osterbye, K.: Conceptual Modeling and Programming Languages. ACM
SIGPLAN Notices, Vol. 29. No. 9. 1994, pp. 81-90.

Kaschek, R., Kohl, C., Mayr, H.C.: Grenzen objekt-orientierter Analysemeth oden am Beispiel
einer Fallstudie mit OMT. In: [MW93] pp. 153-154.

Kaschek R., Mayr H.C., Kop C.. Kohl C.: Characteristics of QOOA Methods and Tools — A First
Step to Method Selection in Practice, Technical Report 01/1994, University of Klagenfurt,
Kiagentfurt, 1994,

Kaschek R., Khoust B., Koht C., Kop C., Mayr H.C.: A Hierarchical Classification System for
Comparing OOA Methods and Tools, Poster Presentation at CRIS 94, University of Limburg,
Maastricht, The Netherlands, September 26-28, 1994,

Kaschek, R., Kohl, C., Mayr, H.C.: Cooperations-An Abstraction Concept Suitable for Business
Process Reengineering. In: [G*953], pp. 161-172.

Krogstie, 1., Lindland, O], Sindre, G.: Defining quality aspects for conceptual models. In
fFHO95,pp. 216-231].

Larman: C.: Applying UMIL And Patlerns. Prentice Hall PTR Prentice Hall, Inc., Upper Saddle
River, NJ, 1998.

Lugi, Goguen J.A.: Formal Methods: Promises and Problems, IEEE Software Jan./Feb. 1997:73-85.

Lockemann P.C., Mayr H.C.. Rechnergestiitzte Informationssysteme. Springer Verlag. Berlin et
al..1978.

Langefors, B.. Verrijn-Stuart A.A., Bracchi, G. (Eds.); Trends in Information Systems. North
Holland. [986.

Lindiand, O.1., Sindre, G., Solvberg, A.:Understanding Quality in Conceptual Modeling. IEEE
Software. March 1994, pp. 42-49.

Martin 1., Odell 1.1.: Obiect-Oriented Methods: A Foundation, Prentice Hall, Englewood Cliffs, NJ,
1995,

Monarchi, D.E., Puhr, G.I.:A Research Typology for Object-Oriented Analysis and Design.
Communications of the ACM Vol. 35, No. 9, 1992. pp. 35-47.

Mayr, H.C.. Wagner, R. (Eds.): Objektorientierte Metheden fiir Informationssysteme. Informatik
akiuell. Springer Verlag. 1993

Monroe R.T., Kompanek A., Meltoa R., Garlan D.: Architectural Styles, Design Patterns, and
Objects, [FEE Software Jan./Feb. 1997:43-52

Olle, TW.: IFIP Comparative Review of Information Systems Design Methodologies: Problem
Definition. In: [L*86], pp. 55-56.

27

{OMT93]
[OM93]

[O*83]

[Pf21]
[PMES]

[FP93]

[RR30]
[Ru91]

[Sa%0]

[So83]

[St94]

[SC93]

{5092]

150944

[S094b]

{SR92]

{TW91]

{UDS6]

IV094]

[Wi96]
[WINO5]

FW*90]
[W*98]

OMTool User Guide, Februar 1993 for OMTool Release 1.2

Ob;ektMaker Tutorial Version 2.1 for UNIXNMS "(bjekt Maker User's Guid Version 2.1 for
UNIX/VMS .

Olle T., Sol H., Tully C. (Eds.): Infosmaﬂqa Systems Design Methodologies: A Feature Analysis.

‘North Holland. Amsterdam et al.. 1983,

Pfinder A.: Logik. Verlag von Max Niemeyer, Halle an der Saale.1921.

P’_af:kh_aﬁl 1., Marjanski F.: Semantic Data Models, ACM Computing Surveys 20,3(1988), pp. 153-
189,

Paradigm Plus Reference Manual, Release 2.0 for UNIX and Windows Workstations. Paradigm
Plus Methods Manual Release 2.0 for UNIX and Windows Workstation.

Rational Rose/C++ 3.0

Rumbaugh 1., Blaha, M., Premerlani, W., Eddy, F., Lorensen W.: Object Oriented Modeling and
Design. Prentice Hall 1991,

Sandkiihler H.J. (Ed.): Europiiische Enzyklopidie zu Philosophie und Wissenschaften, Felix Meiner
Verlag, Hamburg, 1990,

Sol, H: A Feature Analysis of Information Systems Design Methedologies: Methodological
Considerations, In [O*83], pp. 1-9.

Stein. W.. Objektorientierte Analysemethoden - Vergleich, Bewertung Auswahl. Reihe:
Angewandte Informatik, Band 12. Herausgegeben von Balzert, H. Wissenschaftsverlag, Mannheim,
Leipzig, Wien, Ziirich. 1994,

Sharble, R.C., Cohen, 5.5.; The Object-Oriented Brewery: A Comparison of Two Object-Oriented
Development Methods. ACM SIGSOFT Software Engineering Notes 18,2(1993), pp. 60-73.

Song, X., Osterweil, L.J.Toward Objective Systematic Design-Method Comparisons. IEEE
Software. May 1992, pp. 43-53.

Song, X., Osterweil, L.J:Experience with an Approach to Comparing Software Design
Methodologies. IEEE Transaction on Software Engineering 20,5(1994), pp. 364-384

Song, X., Osterweil, L.J.:Using Meta-Modeling to Systematically Compare and Integrate Object-
Oriented Modeling Techniques. Manuscript 1994, pp. 1-20.

Seiffert, H., Radnitzky, G.{Eds.): Handlexikon zur Wissenschaftstheorie. Deutscher Taschenbuch
Verlag GmbH & Ko KG. Miinchen. 1992,

Tagaki, K., Wand, Y.: An Object-Oriented Information Systern Model based on Ontology. In:
IA*01], pp. 275-296.

Urban, 8.D., Delcambre, L.M.L.: An Analysis of the structural, dynamic and temporal aspects of
semantic data models. In: Proceedings of the International Conference on Data Engineering. 1986,
pp. 382-387,

Verrijn-Stuart A.A., Olle T.W.: Methods And Associated Tools for the Information System Life
Cycle. North-Holland. Amsterdam et al., 1994.

Williams I.DD.: Managing lteration in OO Projects, IEEE Computer Sep. 1996:39-43.

Walden K., Nerson J.-M.: Seamless Object-Oriented Architeciure, Prentice Hall, Englewood Cliffs,
NJ, 19935,

Wirfs-Brock, R., Wilkerson B., Wiener, 1..; Prentice Hall, Englewood Cliffs, NJ, 1990.

Weidenhaupt K., Pohl K., Jarke M., Haumer P.: Scenarios in System Development: Current
Practice, IEEE Software, Mar./Apr. 1998:34-45.

28

Appendices:

Appendix A: A Hierarchy of method characteristics

I. O0OMM Conception
1. intended domain of method application
A. real time applications
B. dialogue intensive applications
C. applications with intringic
concurrency
D. data intensive applications
E. knowledge intensive applications
F. computation intensive applications
G. planning systems
H. contiguration management systems
L decision suppor systems
1 distributed systems
K. CSCW
L. diagnosis systems
M. CAD
N. embedded systems
O. life critical systems
P. enterprise modeling
Q. others
2. software life cycle (SLC) medel supposed and

SL.C-phases to be instantiated

3. basic philosophy

A

ontological: basic view/model at/of
UoD (a priori semantics, basic
notions)

epistemological: basic view/model
at/of instantiated knowledge gaining

processes; prototyping

29

1L

basic principles describing the roles
and interactions of humans and

enterprises in the real world

intended design products {(documents}

A.
B.
C.

types and instances
contents

usage operations

starting point of the COMM

Al
B.

prerequisites

pre-phases

involved persons with their roles, guatification

profiles and responsibilities

Modeling System of the OOMM

provided set of modeling notions

Al

for static UoD aspects, e.g., object,
class, value, value set, relationship,
attribute, role, cardinality

for dynamic UcD aspects, e.g., state,
event, state {transition, operation,
condition, time,

concurrency, constraint

for functional UoD aspects, e.g.,
process, data flow, data store, actor,
process specification

for communicational Uol} aspects,

e.g., message, communication role

{master, slave, sfc), _co%%amuni_c_"ﬁ,tioﬁ

E for Gr(éanizati_onai Q{_ﬁl)___czspégt.éa e.E.
business process, cooperation, job-
unit, task _ =

F. for arckitecmrai'-.:ﬁd.b aspects, e.g.,
system, subsystem, module, layer

G. for tempoval Uold aspects, e.g.,

before, after, simultaneously

H. for operational Ucl) aspects
a simptle, complex
h. short or long ruaning
C. CONsistency preserving

and/or checking

. extracting {queries) or
generating

e. others

1 for relational UoD aspects

a. aggregation

b. generalization

c. inheritance

d. uses

e has

f. instance of

g communication:
- synehironcus,

adequacy of the modeling system with respect

to the conception

guantitative aspects

Al concepts for assessing data volumes
B concepis for assessing quality

C. concepts for assessing performance
D concepts for assessing validity of

design documents

30

- asynchronous or
- synchronizing
h. existence or identification

dependency, qualification

i. clustering
i others
L others

2. defined sub models (i.e. coberent modeling
subsystems)
A, their scope with respect o the
universe of discourse
B. inerdependencies between sub
models
compatibility of sub models
integration of sub models
3. independence of modeling notions
A, selectivity of notions w.r.t
UoD aspects
overlapping semantics
C. restriction of modeling
notions to certain UeD
types or UoD parts
D practicability for modeling
E. concepts for assessing consistency of
design documents
F. concepts for assessing correctness of
design documents
6. ilfustration of modeling notions by examples
A number of examples
B. ithestrated modeling notions
C. ignored modeling notions

number of examples containing all
maoddeling notiens

incorrect defined modeling notions
maodeling notions with illustrations

that conflict their definition

sets of representation concepts; per set:

A

correspondence between

representation concepls and

modeling notions

a. completeness of the set of
representalion concepts

b. unigueness in addressing
modeling notions

c. complexity of the
representation concepts

d. minimality of
representation concepts

extendability of representation

concepts

practicability of representation

concepts
a. reasons for practicability
b. reasons for

impracticability

novelty of the represeniation
concepts
a. similarity with well known

repzesemation concepts

b. necessary learning effort

quality criteria

Al

local quality criteria with respect
sub model design documents (sub
schema)

alobal quality criteria for the whole

schema

understandability and persuasion

power of quality criteria

1. Methodology

1. process model

A,

31

covered parts of the application
demain

covered life cycie phases
completeness with respect to the
defined sub models

goals

a. intention

- 0 reach

security, safety, ergonomy, quality,

- to describe
concurrency/ paratlelism or timing
aspects in the UoD,

- to cope with
complexity,

- to validate or
verify the schemas (design products),

- to reuse former
thought and design results,

- to do inter or
intra sub schema integration,

- to assess data

volumes or performance,

- to produce
executable and/or animatable
specifications,

- to cope with
vague knowledge

- to focus on real
bua_é_iness processes in the enterprise
to encourage BPR

- other intentions
b. evidéﬁce of goals (o the

involved persons

C. power of persuasion
d. distinctness of goal
description

goal realization support

a covered goals

b. reachable goals

<. quality of realization
support

goal selection support

a. covered goals
b ignored goals
c. guality of selection support

flexibility of schema-modification

a. restrictions
b. articulation of sub schema-
interdependencies

method style support

A, for the use of modeling notions,
technigues or procedures in special
situations

B. document making

C. usage of data dictionary

applicability

A appropriate support for every process
model step

B. feasibility of proposed process modei

steps

. support in handling sub

schema-interdependencies

H. user participation
a user roles
b. selection support

concerning user roles

2. design primitives (schema or design process

‘melecules’)

Al proposed design primitives

B, adjustment o the proceeding model
and te the representation concepts
advantages
support of intuitive use
avajlable guidelines when to use

which primitive

F. controlled schema evolution
G. others
3. means for design product analysis, e.g.,

reachability analysis, invariants

C. transition between process model
steps
a. definedness of transitions
b. order of proposed steps

D. conclusiveness of process meodel
steps
a. intaitive
h. reasonabie
c. convincing

E. adequacy with respect to the
conception

F. teamnability of the process model

6. management

32

iv.

A, single team work support
multiple team work
sup?qst_
C. a{ijixéffnent to coaception, modeling

notions and methodoiogy

Documentation

references

A, publicly available definition of the
OOMM

B. completeness

C. availability of completely

documented case studies
D. reports of experience

presence in practice

F. others
cducation
Al textbook
B. courses
C. certificates
clearness
A, distinction from other OOMM in
literature
B. tolerance against variations of
a. conception
b, methodology
C. process model
C. description of scope of the OOMM

33

Appendix B:”A;’Si)}iéaﬁon of method characteristics to OMT¢

OOMM Conception

intenided domain of method application

OMT is 2 general purpose method which was
appiied by Rumbaugh et al. [Ru%l, p. 91 at
General Electrics among others to the
following tasks: compiler construction, graphic
applications, user interfaces, database
applications, CAD systems, conirol systems,

simulation and metamodels.

software life cycle (SLC) model supposed and
SLC-phases to ke instantiated
SLC model consists of the phases analysis,

systemn design, object design {in this order).

basic philosophy

No philosophical assumptions are stated.

A. ontolagy: basic view/model atfof
UsD {a priovi semantics, basic

notions)

OMT is an obicct oriented method and thus
uses object identity as a modeling notion.
Therefore OMT assumes that different objects

may not be distinguishable by their attributes.

6 This study is based on the material that was accessible to us.

34

Further OMT assumes that all UoD> can be
understood as a system of communicating
objects. Objects in general are thought to be

independent.

B, epistemology: basic viewhmodel at/of

instantiated knowledge gaining
processes; protoryning

No such assumptions are stated.

C. basic principles describing the roles and
interactions of humans and enterprises in

the real world

No such principles are stated.

intended design products (documents}
A, types and instances

types: PROBLEM STATEMENT, OBJECT MODEL
DIAGRAM, STATE DIAGRAM, GLOBAL EVENT
FLOW DIAGRAM, SCENARIO, EVENT TRACE,

DATA FLOW DIAGRAM, DATA DICTIONARY

instances: OBIECT MODEL DIAGRAM, STATE
DIAGRAM, EVENT TRACE, GLOBAL EVENT
FLOW DIAGRAM and DATA FLOW DIAGRAM
each take a graphical form whereas
PROBLEM STATEMENT, SCENARIO and DATA

DICTIONARY fake a textual form.

B. contents

PROBLEM STATEMENT, a description of the
universe of d_iscz;;urée and the customers

needs;.

OBJECT MODEL DIAGRAM: description of
the static aspects [Ru9i, p. 21], 1. e. to

what something happens to;

STATE DIAGRAM: description of the flow of
control [RuS1, p.84], i. e. causality of the

things happening.

DATA FLOW DIAGRAM: specifies the result
of computations without specifying how
or when they are computed, 1. e. what

happens {Ru%i, p.123];

SCENARIO, EVENT TRACE: show

communication between specific objects;

GLOBAL EVENT FLOW DIAGRAM; shows the

collection of all messages exchanged

hetween all or a specific set of objects;
usage operations

STATE DIAGRAMS are constructed out of
EVENT TRACES each of which is derived
from a SCENARIO. GLOBAL EVENT FLOW
DMAGRAMS are used for testing whether all
objects do have the necessary methods,
The DATA FLOW DIAGRAMS are used as

for dyramic UoD aspects,

Additionally to the notions mentioned

OMT offers TIMING CONSTRAINTS,

NESTING, ENTRY- and EXIT ACTIONS,
{operations are detailed into ACTIVITY and
ACTION), SPLITTING and SYNCHRONISATION

of centrol

{or functional UoD aspects

35

1L

basis of algorithm design in object design,

a method phase belonging to
implementation, which in general is out of
the scope of OOA. EVENT TRACES may be

used to validate STATE DIAGRAMS.

starting point of the OOMM

No special assumptions are made. The
method starts with the production of a
PROBLEM STATEMENT, OMT does not give
hints how

to prepare the problem

statement.

involved persons with their roles, qualification

profiles and responsibilities

Requestor, analyst, designer, developer.

Modeling System of the OOMM

provided set of modeling notions

G.

Sfor static UoD aspects

Additionally to the notions mentioned
OMT offers NESTING and ORDERiNG. The

method authors emphasize that one

should not use associations between more

than three classes.
Additionally to the notions mentioned
OMT offers nesting

for architectural UoD aspecis

OMT offers SYSTEM, SUBSYSTEM, MODULE

and SHEET,

for temporal UoD aspects

No modeling notions are provided. But
with respect to timing conditions' it is
assumed that the _metimgf__ gs’_érs_haye an
flaive understanding of. t1me Especially
BEFORE, AFTER, SIMULTANEOUSLY have to

be understood.

for operational UoD aspects

a. simple, complex, these are action and

activity respectively. A further
modeling notion for operational
aspects could be ‘business process,

see e.g. [K*05a],

d. extracting {(querics) or genersling,
cbject generating operations are
supported

for relational UeD aspects

A, AGGREGATION

B. GENERALIZATION

€. INHERITANCE: also multiple

inheritance is offered,

h. existence or identification
dependency: existence dependency
may be expressed with
MULTIPLICITIES which are the OMT
corresponding to cardinalities.
Identification dependency may be

expressed with QUALIFICATION.

defined sub models {ie. colerent modeling

subsystems}

Al

their scope with respect to the universe of

discourse

STATIC - DYNAMIC - FUNCTIONAL sub

model. The static sub mode!l describes

36

structural UoD aspects which don’t
change over system evolution. The
dynamic sub model describes the
communicational behavior. The functional
sub mode! describes the input/output

behavior of the UaD.

interdependencies between sub models
The three sub models are heavily
interdependent.

compatibility of sub models

They are compatible.

integration of sub models

The sub models in general are not
explicitly integrated. They are just
virtually integrated by the idea that each
of the sub models gives a view at a real or

at a software systerm.

independence of modeling notions

A

selectivity of notions w.r.t UoD aspects

It is refatively clear which modeling
notiens are to be applied to given UoD
aspects, Of course a certain semantic

relativism is inherent to OMT.

overlapping semantics

Certain UoD) aspects can be modeled with
in the static sub model as well as within
the dynamic sub model. The same holds
true for the connection between the
functional and the dynamic model (see

[K*93]).
practicability for modeling

The systern of meodeling notions is

practicable because it offers powerful

abstraction concepis - and is relatively
closed with respect to them; . ie.
abstraction concepts may. be applied to
modeling notions. .

Adequacy of the modeéing_ .‘syﬂem with respect

to the conception

The modeling system is not complete with

respect to the congeption, ie there is no
modeling notion for handling time. But the

notions provided are adeguate,

quantitative aspects

none

correspondence between representation

concepts and modeling notions

a. completeness of the set of

rep resentation CORCEHS

yes

b, uniqueness in addressing modeling

notions

Probably not. It seems, e.g. to be the

case that some identification
dependencies, can be expressed with
help of multiplicities or qualifiers.
Another example is the placement of

attributes of relationships.

¢, complexity of the representation

concepis
Generally no, however nested state
diagrams {with concurrency) tend to

become complex

d. minfmality of representation

concepts

37

6.

tlustration of modeling notions by examples

A,

number of examples

sufficient in the accessible literature

illustrated modeling notions

all modeling notions appear within some
examples, however, for to illustrate the
notions of the dynamic model mostly
technical and not information system

oriented examples are given.

sels Of represen!ation concepls; per sel!

yes
extendability of representation concepts

is not recommended by the method

authors, but also net prohibited.
practicability of representation concepts

The representation concepis are

practicable,
novelty of the representation concepts

a. simiarity with well known
representation concepls
Similarities are to the ER model, to

structured design notation and to

harel state charts.

b. necessary learning effort

fow

quality criteria

A,

local quality criteria with respect to sub

model] design documents {sub schema)

1.

There are some hints concerning how to
develop the a'sf_ialysis model and what has
to be 0bs§;v_é§ in analysis (see [Ru91 p.
148[’]).. o

Methodology

proceeding model
A, covered parts of the application domain

all.

B. covered life cycle phases

all, But the life cycle model is not

complete. Maintenance 1s missing.

C. completeness with respect fo the defined

sub models

all.

D goals

a. intention: OMT doees not explicitly
mention goals for the conceptual sphere.
Implicitly it -as an object oriented
method- more or less helps in doing reuse,
exploiting UoD inherent parallelism and
increasing maintenance although the laiter

is not part of the development life cycle.

Because of the powerful modeling system
and the adjusted representation concepts

OMT helps in coping with complexity.

The analyst is encouraged together with
the customer to do a review of analysis

documents in erder to validate them.
E. goal realization support
does not apply

F.goal selection support

38

!\)

does not apply

G, flexibility of schema-modification
a. restrictions:

only a single integrity condition has
to be observed, name and structure

cor:flicts have to be avoided.

b, articulation of sub schema-
interdependencies: Such
interdependencies very rarely can be
made explicit because there are no

notions for that purpose.

¢, support in handling sub schema-

interdependencies:

the only support is via the global
EVENT FLOW DIAGRAMS. It allows to
check whether the messages
appearing in the dynamic medels
may be understood by the requested
objects, i.e. whether they have the

necessary methods.
Design primitives and configuration rules

The methed does not offer any design
primitives, Configuration mies are restricted to

the modeling notions offered.

means for design product analysis, e.g.,

reachability analysis, invariants

None.

method style support

A, for the use of modeling notions,
techniques or procedures in special

situations

a ot of good hints.

applicability

A. appropriate support for every process
model step .
yes.
B. feasibility of proposed process model
steps
ves.
C. transition between process madel steps
a. definedness of transitions
yes,
b, order of proposed steps
yes.
D. conclusiveness of process model steps
a. intuitive
yes
b reasonable
yes.
¢ convincing
yes
E. adequacy with respect to the conception
yes.
F. learnability of the process model
Casy.
managenient
A, single team work support
ne.
B, multiple team work support
no.
C. adjustment to conception, modeling

notions and methodology

does not apply.

39

JAA

Documentation
references

A, publicly available definition of the
OOMM

yes [Rug1}.
B. completeness
Yes.

C. availability of (completely} documented

case studies

For case studies see various issues of the
‘Journal of Object Oriented Programming’

and e.g. [K*93].
D. reports of experience
yes.
E. presence in practice
yes, OMT seems to be one of the most
applied OOMM.

F. others

Within the Joumal of Object Oriented
Programming; there often is published

material concerning OMT.
education
A, textbook

ves FRu911.
clearness

A. distinction from other OOMM in
literature
yes.

B. tolerance against variations of

conception, methodology and process

model is given.

