
Data in Business Processes

Andreas Meyer, Sergey Smirnov, and Mathias Weske

Business Process Technology Group
Hasso Plattner Institute at the University of Potsdam
Prof.-Dr.-Helmert-Str. 2–3, D-14482 Potsdam, Germany

{andreas.meyer,sergey.smirnov,mathias.weske}@hpi.uni-potsdam.de

Abstract. Process and data are equally important for business pro-
cess management. Process data is especially relevant in the context of
automated business processes, process controlling, and representation
of organizations’ core assets. One can discover many process modeling
languages, each having a specific set of data modeling capabilities and the
level of data awareness. The level of data awareness and data modeling
capabilities vary significantly from one language to another.
This paper evaluates several process modeling languages with respect to
the role of data. To find a common ground for comparison, we develop
a framework, which systematically organizes process- and data-related
aspects of the modeling languages elaborating on the data aspects. Once
the framework is in place, we compare twelve process modeling languages
against it. We generalize the results of the comparison and identify clusters
of similar languages with respect to data awareness.

1 Introduction

In the mid-nineties, the primary focus of business process management (BPM) was
on the design and documentation of processes. Business process models captured
activities and their ordering necessary to achieve a business goal. In this way
control flow was the dominant aspect in business process models. During the last
decade, BPM received much attention as “a systematic and structured approach
to analyze, improve, control, and manage business processes” [7]. Being widely
adopted by industry, business process management faced new challenges and
opportunities. Process models focusing only on control flow become insufficient.
It turned out that additional aspects have to be addressed, including data.

We motivate the relevance of data within three areas: Service-oriented Ar-
chitectures, representation of organizations’ core assets, and process controlling.
The emergence of Service-oriented Architecture (SOA) opened new horizons for
automated business process execution, yet revealed new challenges. SOA trans-
formed enterprise landscapes slicing the functionality of large software systems
into services. As services are capable of accomplishing atomic business tasks,
they can be effectively used for task automation. Thereafter, SOA catered for
automation of business processes. While control flow oriented business processes
made the process routing logic explicit, data was still “hidden” inside IT systems.



However, this data highly impacts process execution. For instance, many decisions
in processes are data driven. As a result, the role of data in process models grew
significantly. It became essential to model the data and data flow within the
process. Thereby, process modeling languages that emerged in the last decade,
e.g., Business Process Model and Notation (BPMN) [24], demonstrated higher
data awareness.

Another driver for explicit data representation in process models is the
representation of core assets which capture essential properties of an organization
without the value creation cannot take place. Organizations’ value creation mainly
base on information about their own value chain, customers, production, and
research and development cycles. This information is captured in terms of data
in different IT systems which combine the enterprise-wide data utilized in the
everyday work. All customer information, for instance, is stored in the customer
relationship management (CRM) system. The organizations’ actual value creation
is performed by executing the organizations’ business processes which depend on
the information mentioned above. Following, these business processes need access
to the IT systems and its contained data to keep an organization operational.

Finally, we refer to business process controlling as another motivator of data
support in process modeling. For ensuring process quality by process controlling,
key performance indicators (KPIs) are measured and interpreted using business
process intelligence techniques. KPIs reflect business goals of an organization.
These goals are defined referring to data. Following, KPIs rely on data. For
instance, one business goal might be to achieve the highest customer satisfaction
in the market. This goal is reflected by several KPIs; one of them deals with
delayed credit applications. This number should be minimized for increasing
the customer satisfaction. For process controlling, the activities contributing to
this goal need to be identified for evaluating them. This is done by selecting
the activities performing work on the appropriate data objects - in this case the
credit application. Following, an explicit statement supports process controlling.
Additionally, the data objects are considered for the evaluation itself as well. State
and content changes provide insights with regard to the progress and long lasting
steps can be identified amongst others. Against this background, process models
focused on control flow and describing how to achieve business goals rather than
what has to be achieved are insufficient. One approach to goal externalization is
shifting the focus from control flow to data [2,34].

The three considered contexts motivate the need for extensive data modeling
capabilities in business process modeling languages. The contribution of this
paper is an evaluation of the data awareness level of current business process
modeling languages. To organize the evaluation, we develop a framework. This
framework assesses data awareness of process modeling languages against a set
of criteria. We use the framework to compare the properties of twelve modeling
languages emerged from industrial and academic initiatives. We also reflect on
the results of the evaluation and organize the studied approaches according to
their capabilities.



The remainder of this paper is structured as follows. Section 2 presents
the evaluation framework enabling process modeling language comparison in
Section 3. Afterwards, we discuss the summarized evaluation results and cluster
the approaches amongst different criteria in Section 4. Section 5 discusses the
related work. Section 6 concludes the paper.

2 Evaluation Framework

In this section, we present the framework for the evaluation of process modeling
languages with a main focus on their data modeling capabilities. The framework
assesses modeling languages against 23 criteria organized into four groups. The
first group comprises criteria reflecting process modeling capabilities. The second
group includes criteria that assess data modeling capabilities. The third group
reveals how strongly process and data modeling capabilities are related. Finally,
the criteria of the fourth group deal with general execution semantics and specific
execution capabilities comprising the influence of data for execution.

2.1 Process Modeling Capabilities

Process modeling capabilities describe, whether the modeling language enables
process modeling from the process perspective. A process perspective describes
which activities have to be performed in which order to achieve the process’
business goal. We distinguish the following process modeling capabilities:

1. Activity Modeling. An activity represents an unit of work. An activity example
is Create order. Activity modeling capability indicates, whether the modeling
language provides a construct for activity modeling.

2. Event Modeling An event represents something that happens within the course
of the business process. Event examples are sending of a message, timing-
incidents, and exception alerts. Event modeling capabilities show, whether
the modeling language has a standalone construct for event modeling.

3. Gateway Modeling. A gateway is a model element realizing routing logic in
the process. Gateways are used to model decisions or concurrency. A gateway
example is the AND split, where two paths are executed concurrently. For
instance, customer address details and customer bank details can be verified
independently. Gateway modeling capability reveals whether the modeling
language has specific constructs for gateways and specific gateway types.

4. Control Flow Modeling. The control flow represents the partial order between
(if existing) activities, events, and gateways for one process. Therefore, it
visualizes the set of all valid execution traces of a process. An example is the
Handle order process, where the order will be received via a message event
first, followed by creation and check of the order. Based on the outcome of
the check, i.e. the order is approved or rejected, the order will be packed and
sent to the customer or the order will be canceled. Control flow modeling
capability evaluates whether the modeling language enables the modeler to
order activities, events, and gateways explicitly.



created

approved rejected

Fig. 1. Example of a life cycle for data object Order

2.2 Data Modeling Capabilities

Data structure modeling constructs introduce the capabilities representing data
and of considering data possibly based on concrete data values or states. Addi-
tionally, relations between data objects play a key role for data modeling. The
identified modeling constructs are as follows:

5. Data Modeling. Data modeling indicates whether a modeling language is
capable of considering information, i.e. data, in the process specification by
any means. This data awareness may be achieved via variables, (primitive)
data types, or objects in the sense of object orientation (see below). These
data representations may exist with any complexity. Examples are an Order,
a Product description, or the Value of an item. Data modeling capability
indicates, if a modeling language provides constructs to include the utilization
of information and data within the process model.

6. Data Object Modeling. A data object is a model element that captures a unit
of data manipulated during the business process. A data object is utilized as
object in the sense of object orientation, i.e. a data object has an identity and
encapsulates the behavior of the object: The life cycle, and either complex or
a set of primitive variables and data types. An example of a data object is
Order in the Handle order process. Data object modeling capability indicates,
if a process modeling language provides constructs for capturing data objects
explicitly.

7. Data Object State Modeling. A data object state is the set of property values
characterizing the unique configuration of information of this data object.
For instance, let data object Order has the only property status with the
possible values created, approved, and rejected. Then Order can be in states
created, approved, or rejected. Data object state modeling capability shows, if
a modeling language enables the user to express data object states.

8. Data Object Life Cycle Modeling. Data object life cycle describes data object
states and the allowed state transitions. The life cycle of data object Order,
see Fig. 1, may allow the transitions from state created to state approved and
from state created to state rejected. If the modeling language has data object
life cycle modeling capability, the modeler can specify both data object states
and transitions between them.

9. Modeling of Data Object Collections. Often business processes operate with
several data objects of one type at a time. For instance, activity Pack order
may consider several Items to be delivered within one Order. In this case
modeling data objects collections is handful.

10. Persistence Mechanism Modeling. Certain process modeling scenarios re-
quire to show how data is persisted. The persistence mechanism can be



Data Modeling
(5)

Data Object
Modeling (6)

Data Object 
States (7)

Data Object 
Collections (9)

Data Object 
Relations

Persistence 
Mechanism (10)

Is-A Relation 
(12)

Part-Of 
Relation (11)

Data Object 
Life Cycle (8)

Fig. 2. Relations of data modeling capability criteria

realized, e.g., by means of a database management system. Returning to the
example of order handling, the persistence mechanism may provide means
to store information about the orders in the corporate IT infrastructure.
Modeling of data persistence mechanisms enables the designer to specify
explicitly in which storage data objects are persisted.

11. Data Object part-of Relation Modeling. While some data objects are prim-
itives, others can be decomposed into more fine-grained objects. Such a
decomposition is formalized with a part-of relation. For instance, a Package
data object includes Items, each of which is a part of this package. The
part-of relation models this fact. Thereby, this criterion shows if the process
modeling language enables modeling of part-of relation for data objects.

12. Data Object is-a Relation Modeling. The is-a relation is another fundamen-
tal modeling relation. Data object is-a relation shows that one data object
type is the specialization of another data object type. An example is Order
and Purchase order, where Purchase order is-a Order. The data object is-
a relation modeling capability indicates, if the process modeling language
supports modeling of the is-a relation for data objects.

13. Are data objects mandatory elements in the process design phase?
Answering this question determines whether data must be added to
the business process model. Thereby, we assume that the potential necessity
is valid for design- as well as run-time representations, if both aspects are
supported by a modeling language.

Figure 2 interrelates the different criteria of this category and visualizes
existing dependencies. Each shown connection conforms to a leads-to relation.
Exemplarily, this means that data object life cycle modeling might only be
supported by a modeling language if data object states are supported as well.

2.3 Connection of Process and Data Modeling Capabilities

As we argued in Section 1, process and data aspects should not be examined
separately. Hence, we assess the modeling languages with regards to their capa-
bilities of data flow modeling. Data flow represents the evolution of data objects



within a business process. In particular, the data flow is captured by relations
between the process elements and the data objects. Hence, data flow shows the
order of manipulations for each data object along with activities performing these
manipulations. This linkage is supported by the following modeling constructs:

14. Modeling of Typed Relations between Process Elements and Data. The rela-
tions between a data object and the process element indicate the fact of data
access. These relations can be typed. The principle of relation typification
can vary depending on the notation. One example is the distinction of read
and write relations.

15. Are data object life cycle state transitions associated with activities?
Associations between state transitions and activities connect the control flow
with data of a business process and determine which actions manipulate
which data object.

2.4 Execution Semantics

For automated processes, the execution semantics of the utilized modeling ap-
proach describes how the execution eventually takes place. Therefore, we evaluate
the execution capabilities with a strong focus on data and highlight the capabilities
of including data as important part into the execution of a process.

16. Formal Token Flow Semantics. Formal token flow semantics rely on a for-
mally specified execution semantic.

17. Informal Token Flow Semantics. Informal token flow semantics rely on exe-
cution semantics which can be represented by using the token flow approach
(including multiple token flow per instance), but a formal token flow specifi-
cation is missing.

18. Data-based Decisions. Data-based decisions allow decisions based on data
which directly influence the process control. An example is for instance the
choice how to deal with an Order based on the order’s current state. Path
one is taken if the Order is in the state approved and path two is taken if
the Order is in the state rejected. Alternatively, the current value of a data
object may be used for decision making, e.g., the price of the Order is above
or below 500 Euro.

19. Execution Controlled by Control Flow only. Control flow controlled process
execution is indicated by an exclusive process guidance by the elements
introduced in group one (see Subsection 2.1), especially item number four:
Control flow. An example is a sequence of activities to Pack, Label, and Ship
an Order after the event order is accepted occurred.

20. Execution always Controlled by Data and its Dependencies. Data controlled
process execution is indicated by process guidance always basing on data
objects, their states and possibly their values or their pure existence. Thereby,
the current state and value of a data object specifies upcoming actions, which
map to activities, towards the business process goal.



Execution

Control Flow 
Only (19)

Control Flow +
Data (21)

Always Data 
(20)

Data
Existence (22)

Data Object 
States (23)

Fig. 3. Relations of execution semantics criteria

21. Execution Controlled by Data and Control flow. Process control influenced
by both control flow and data is indicated if execution semantics and the
execution order base on control flow dependencies as well as data dependencies,
data states, data values or data existence, whereby we do not differentiate
the driving force. An example for such collocated process control is that
the control flow specifies the general execution order and that the data
dependencies influence the enabling of activities due to state and value
requirements. For instance, the activity Check warehouse status is planned to
be enabled after Verify order, but it can only be enabled if the data objects
Internal order and Warehouse stock are in the states approved and updated
respectively to ensure proper execution of the activity.

22. Process Control via Existence of Data. This criterion indicates that process
control is influenced by the existence or non-existence of a data object
independently from the value and the state of the data object. Existence
in our case means that the data object is defined and contains a value of
business use. An example for this criterion is the activity Verify customer
which needs a customer existing to be enabled and executed.

23. Process Control via Data Object States. This criterion builds up on the one
before but contains stricter requirements for activity enabling. The data
object does not only need to exist but it must also exist in the specified
state to be executed. An Order in state created cannot enable the activity
Pack shipment, but an Order in state accepted can do so with respect to the
business process definition.

Figure 3 outlines the relations between the criteria of this category. Each
edge of the graph conforms to a leads-to relation. Exemplarily, this means that
criteria 22 can only be supported if criteria 20 or 21 are supported by a specific
modeling language.

3 Evaluation

We evaluate twelve process modeling languages against the criteria introduced in
Section 2. Because of space limitations, we present the details of four modeling



Warehouse 
management

Customer 
processing

Order 
preprocessing

Order 
creation Order delivery Order 

invoicing
Order 

completion

Fig. 4. Value chain of Handle order business process

languages. Therefore, we choose the Web Services Business Process Execution
Language (BPEL) as the de-facto industry standard for process execution, the
Business Process Model and Notation (BPMN) as modeling standard, Corepro
as representation of joint work between academia and industry, and Business
Artifacts as strongly industry driven approach. The complete evaluation of
all twelve modeling languages can be found in the technical report [16]. The
further evaluated approaches are Workflow nets, Yet Another Workflow Language
(YAWL), event-driven process chains (EPC), UML activity diagrams, Document-
driven workflows, ADEPT, Case handling, and State charts.

The modeling capabilities of the evaluated approaches are illustrated by a
running example of a Handle order business process. This process is presented in
Fig. 4 and comprises seven main steps. To illustrate the modeling capabilities,
we use an appropriate subset of these steps for each of the evaluated modeling
languages. Following, we introduce the complete scenario.

Handle order business process. First, the order is received from a cus-
tomer and created internally to deal with it. Based on the order information,
customer details are extracted and checked. If the customer is already registered,
nothing has to be done in this respect. Otherwise, the new customer needs to
be registered and verified afterwards. The verification includes checks for the
provided address details, the bank account information, and the bank account
cash balance. If the customer could not be verified, the order is canceled and the
process closed. Otherwise, the process continuous with the Order preprocessing
step which includes a possibly iterative verification of the order. Each iteration
includes an order refinement which is performed in close cooperation with the
customer. A rejected order skips the following process steps and continuous
with the Order completion step. Approved orders are passed to the Warehouse
management step. There, the order packaging good supply are performed. After
packaging, the Order delivery step is initiated. In case the ordered products are
not on stock completely, the order can be split into two parts: The available
and the pending one. The available part is packaged and the pending part is
backordered from the customer point of view. Internally, the necessary products
are reordered and put to the warehouse after arrival. Following, the pending order
is executed again analogously to the original order. For instance, if the arrived
products are not sufficient to handle all orders, still open orders are put into
another backorder iteration. In case a product is not deliverable at all, the order
is rejected and canceled. Then, Order completion is the next process step. For
deliverable orders, the Order delivery comprises labeling, sending, and tracking
of the order. Following, the Invoice order step comprises the creation and sending
of the invoice as well as the receiving of the payment. In case the customer is
not paying, the invoice can be re-send. Alternatively, a dunning letter might be



created and sent to the customer. After receiving the payment, the process is
continued with the Order completion. If the order has been split earlier, it will
be consolidated again. The final task performed is to archive the order including
all related information.

3.1 BPEL

WS-BPEL, the Web Services Business Process Execution Language, has been
introduced by IBM, BEA Systems, Microsoft, Siebel Systems, and SAP. The
current version 2 has been introduced in [22] and focuses on activities, services
linked to these activities, and their order visualized by an XML structure. The
support for events and gateways is presented by the pick, switch and flow
statements. The latter one introduces parallelism into BPEL whereas the first one
allows decision taking based on external events. switch provides the capability
to include decisions based on process aspects. Comprising these aspects, BPEL
supports control flow specification which is the main driver for process execution
utilizing BPEL. Currently, BPEL is the de-facto standard for web-service-based
and IT systems supported enactment and execution of business processes.

Data Capabilities and Limitations. Data is modeled through variables
contained in globally or locally visible data containers, which might be shared
among the participants of the process. The variables represent in- and output
messages of the activities. The exchange of specific data and the manipulation of
variables is handled through BPEL’s assign statement. This either copies specified
data from one container the appropriate service cannot access to another container
the service can access or it assigns a new value to the current variable. Execution
is mainly driven by the control flow specification. However, data plays a role
with respect to existence assumptions. Services linked together by the control
flow can only be executed if the data assigned to this web service exists. Data-
based decisions are supported by references to variables in the switch statement.
Execution semantics neither follow a formal nor an informal token flow semantics.

To extend these capabilities, Habich et al. introduced a data aware extension
to BPEL in [10]. They utilize so-called Data-Grey-Box Web Services [9], which
are web services enhanced with an explicit data aspect specifying how and from
where input information and is gathered and output information is stored. This
information is added as data pointers to the SOAP message. Additionally, they
introduce a new link type to connect services from the data perspective. Following,
data dependencies and storage locations can be utilized. Altogether, the authors
propose an orthogonal extension to the control flow concept: A separate data
flow layer, which is eventually added on top of the specified process by a data
modeling expert. However, specific aspects known from data modeling, e.g., data
relations and states are not covered by this approach.

Altogether, data dependencies can be specified in BPEL, but data plays a
supporting role only.



Example. The BPEL example presented in Listing 1.1 covers the passing of the
order information from the Seller Administration dealing with the first steps until
and including the Order verification to the Seller Warehouse where packaging
and warehouse activities are performed.

1 <a s s i gn>
2 <copy>
3 <from conta ine r=” Se l l e r Admin i s t r a t i on ” part=” Inte rna lOrder ”/>
4 <to conta ine r=” Se l l e r Warehouse ” part=” Inte rna lOrder ”/>
5 </copy>
6 </ a s s i gn>

Listing 1.1. Copying order information within Handle order business process in
BPEL

As the aforementioned data containers usually only allow limited access,
step three in the overall order process requires a transmission of the created
and verified order from the administration to the warehouse department where
packaging will continue the process. The data passing is solved in BPEL via the
copy tag with indication of the information to be transferred and its source and
its target.

The example in Listing 1.2 presents BPEL’s capabilities with respect to data-
based decision taking. Alongside the Order variable, a second variable stating
the current state of the order is introduced. Based on the value of this variable,
the order is changed in cooperation with the customer, the customer is informed
about the rejection, or the warehouse staff deals with order packaging.

1 <switch>
2 <case cond i t i on=” getVar iableData ( stateOfOrder)==undecided ”>
3 <invoke partnerLink=”Customer” operat ion=”Change order ”/>
4 </ case>
5 <case cond i t i on=” getVariableData ( stateOfOrder)==r e j e c t e d ”>
6 <invoke partnerLink=”Customer” operat ion=”Reject order ”/>
7 </ case>
8 <case cond i t i on=” getVar iableData ( stateOfOrder)==undecided ”>
9 <sequence>

10 <invoke partnerLink=” Se l le r Warehouse ” operat ion=”Check wh s ta tu s ”/>
11 . . .
12 </ sequence
13 </case>
14 </ a s s i gn>

Listing 1.2. Modeling a Decision within Handle order business process in BPEL

3.2 BPMN

The initial version of the Business Process Modeling Notation, BPMN 1.0, was
introduced in 2004 in [5]. Within years, BPMN 1.X has experienced a large
uptake by the industry and matured to the current version 2.0 [24]. BPMN 2.0
evolves with new model elements, diagram types, and model execution semantics.
BPMN has rich expressiveness and provides numerous modeling constructs. In
essence, BPMN is a graph-based modeling notation. The graph nodes correspond
to modeling constructs as events, activities, data objects, and gateways. Graph
edges represent object relations, e.g., control flow, message flow, and associations.



Those graph nodes that are related by the control flow relation are referenced
as flow nodes, e.g., events, activities, and gateways. The other nodes like data
objects are non-flow nodes.

Data Capabilities and Limitations. BPMN enables explicit specification of
data objects by associating them with flow nodes. An association indicates that
the flow object accesses the data object. While undirected associations capture
only the fact of data access, directed associations indicate, whether the data
object is read or written. The modeler can also specify data objects as process
input and output to show that the specific data object is read from or written to
an process external source. A data object can be also associated with a sequence
flow to visualize data passing. In this context, it is relevant to mention the
message exchange mechanism of BPMN: Different organizations communicate
with each other via message exchange. BPMN enables capturing of messages as
graph nodes, simplifying modeling of message content.

Additionally, each data object may get assigned a data object state. While the
data object life cycle can be derived from the data object states and associations
connecting flow elements with data objects, there is no explicit life cycle modeling
support. BPMN enables modeling of neither is-a nor part-of relations of data
objects. BPMN 2.0 introduces the concept of data object collections, organizing
similar data objects. Additionally, data stores are introduced as a data persistence
instrument. Notice that the process flow is mainly driven by the control flow
elements and data is not a mandatory aspect within the process design phase.

BPMN specification prescribes the execution semantics based on tokens
informally. The basic execution order is determined by the control flow. At the
same time, data impacts the process execution in terms of data-based decisions
on gateways or as prerequisite of activity to allow activity execution. Following,
the process is driven by both the control flow and data.

Example. The BPMN example presented in Fig. 5 comprises the Order invoicing
and Order completion steps of the Handle order process. First, the invoice needs
to be created. This requires data objects Customer and Order to be retrieved from
an external source: Order from the ERP System and Customer from Customer
Database. Next, the invoice is sent to the customer, the state of the Invoice data
object is set to sent, and the Order state is set to invoiced. After sending the
invoice, the organization awaits the payment from the customer completing the
step of Order invoicing. If the payment is not received within a defined timespan,
the Receive payment activity is terminated. Based on environmental aspects,
either the invoice is re-sent or the dunning letter is created and sent to the
customer, each utilizing the specified data objects. After reminding the customer,
the Receive Payment activity is enabled again. If the payment is received, prior
split orders need to be consolidated. If no split occurred earlier, the default
path is taken. The existence of a split order leads to consolidation realized as
a sequentialized multiple instance activity where each instance adds one list



C
us

to
m

er
S

el
le

r A
dm

in
is

tra
tio

n

Archive order

Order
[sent]

Create 
invoice Send invoice

Receive 
payment Create and 

send dunning 
letter

Invoice
[created]

Invoice
[sent]

Invoice Payment Dunning letter

Order
[invoiced]

Order
[payed]

Customer
[verified]

Order
[archived]

Dunning letter
[sent]

Dunning letter
[initial]

Consolidate 
split orders

Order
[payed]

Order
[consolidated]

consolidationnc
necessary

cconsolidation
necessary

Customer
[verified]

Re-send 
invoice

Invoice

Customer
[verified]

Invoice
[sent]

Invoice
[re-sent]

ERP System

ERP System Customer
Database

Invoice
sent 3 times

2 weeks

Fig. 5. Extract of business process Handle order modeled using BPMN

element to the consolidated Order. The final step is archiving the Order within
an ERP System.

3.3 Corepro

Corepro is a framework providing an approach for enacting and changing data
driven process structures belonging to the same complex process structure. Basi-
cally, there this complex process structure has an initial state, several intermediate
states, and one final state with respect to the business goal. Between these states,
processes perform business related steps to achieve the subgoals (intermediate
states), whereas branching is allowed. The Corepro approach is presented in [18]
and [19].

The core idea is to automatically create data driven process structures.
Corepro is a four-step-approach. First, the data model is defined. The data model
comprises the involved data objects and their part-of relations determining the
dependencies independently from specific representations of the data object, i.e.
instances. Afterwards, the life cycle coordination model is determined which
comprises the data object life cycles of each data object specified in the data
model and its dependencies for state transitions. This also includes dependencies
between states of life cycles of different data objects. Therefore, the inter-relation
between all involved data objects is defined. These both steps influence the
model level and act as schema for the instance level tackled by the remaining
steps. Step three deals with the definition of actual data structures, i.e. deriving
dependencies for actually utilized data objects from the model level. Based on
these data structures and the prior defined life cycle coordination model, the
data driven process structures are created automatically in step four. Following,



due to the given complex process structure and the defined data aspects, process
execution is highly influenced from both: Control flow and data. Based thereon,
support for all process modeling criteria can be derived.

Data Capabilities and Limitations. The execution of the processes being
part of the complex structure leads to state changes within the life cycles towards
the ultimate business goal. Within these processes, events and gateways may be
utilized. Additionally, gateways are supported on a higher level by the created
data driven process structures. For instance, parallel execution of different lifecycle
fragments and their according processes may occur.

Due to the high data involvement and the object orientation during creation
of the data driven process structures, data modeling in terms of data object
modeling is covered by Corepro. As mentioned above, each data object has
assigned a life cycle comprising all states of the object, whereas these data
objects are not categorized in collections nor the concrete storage locations are
specified. Step one and three describe the part-of relations of data objects. In
contrast, is-a relations are not part of the approach. Finally, the data object
definitions are mandatory and therefore, they need to be completely specified at
all times.

In Corepro, relations between the data objects and the appropriate processes
are defined by stating the process or process fragment to be executed to achieve
a state transition. Therefore, a direct coupling of activities and state transitions
does exist. As aforementioned, the execution is driven by control flow and data,
whereby the states of the data objects and their transitions play the main role.
Execution semantics neither follow a formal nor an informal token flow semantics.

Corepro also allows process adaptation during run-time. Therefore, the mod-
ifications made to data structures are automatically translated into the data
driven process structures. These modifications include but are not limited to
changes like adding or deleting data objects, changing relations of data objects,
or adding external state transitions. For not yet activated elements of the process,
the authors provide simple rules for the adaptation. For modifications of already
started instances, specific correctness criteria are formulated and need to be
fulfilled for allowing the intended adaptation.

Example. The example presented in Fig. 6 consists of two parts: The part-of
relations between the super data object Order and its sub data objects and the
data object life cycles for each element of the part-of relation. For complexity
reasons, we only show a part of the whole model. The notation for part-of
relations is similar to UML class diagrams. Each Order consists of exactly one
Customer, of one to n Line Items, and of further not presented sub data objects.
Analogously, the Customer also exists of sub data objects. The data object life
cycles are given as State charts [11]. Each is placed next to the data object it
describes.

After definition of these single State charts and the composed data objects,
linkings between the states of each data object need to be determined. In this



Order

Customer Line Item ...

Name ...Address

1

1 1

1..n

1 1

1..21

i

created

create

verified

unverified changed

verify

verify change

change

verify

verify

i

entered
enter

change

empty

delete enter

add
i

added verified

unverified changed

verify

verify change

change

verify

verify

i

added
add

change

removed

remove add

Fig. 6. Extract of business process Handle order modeled using Corepro

example, the Customer can reach the state created only, if the Name and Address
are entered or added respectively as visualized exemplarily by the dotted arrows.
Further sub data objects may provide more dependencies than just the two
mentioned. These dependencies highly drive the process execution and therefore,
influence the process control equally as the process structures.

3.4 Business Artifacts

Compared to traditional process modeling languages, in Business Artifacts, the
focus changed from actions taken (control flow) to data objects on which actions
are performed. Initially introduced by Nigam and Caswell in [21], the approach
has been discussed in a series of papers, for instance [3,13], and thoroughly
formalized by Bhattacharya et al. in [2]. The formalization identifies Business
Artifacts, schemata, services, and business rules as main concepts of the approach.

The main idea of Business Artifacts is to achieve a closer coupling between data
and processes. Generally, Business Artifacts are information entities capturing
business process goals including the path and information to achieve them and
to enable judgment of the goal accomplishment. Examples for Business Artifacts
are the waiter’s guest check in a restaurant presented in [21] or the tracking form
of a postal organization. The tracking form, for instance, contains the goal to
deliver the shipment to the recipient, the intermediate steps to be handled, the
information needed to manage the delivery, and the final signature to indicate a
successful delivery.

Business Artifacts modeling relies on three constructs: Stages, guards, and
milestones. A rectangle with rounded corners represents the stage which maps
to a collection of activities to be performed to achieve a milestone. The stages
can be hierarchically structured. A rotated square represents the guard which



maps to an event or a condition. A guard enables a stage. A circle represents
the milestone which maps to an event or a condition as well. A milestone is
considered to be a business relevant goal and completes a stage once it is achieved.
Decisions are not supported with modeling construct. But these are captured by
the guards and milestones which guide process execution.

The relations of the formalized aspects are as follows: Services correspond to
activities. A service acts on Business Artifacts manipulating the content of the
informational model and changing the artifacts’ life cycle states. Business rules
determine the use cases and conditions which need to appear for allowing a service
to access a Business Artifact. Following, control flow is implicitly represented by
these modeling constructs.

Notice that in the new revision process of the Business Artifacts approach,
Business Artifacts are renamed to business entities with life cycles. But we will
still use the term Business Artifacts in the upcoming discussion.

Data Capabilities and Limitations. Within a process, one Business Artifact
is the key object that steers process execution. Therefore, it holds the afore-
mentioned executional information for the whole process. This also includes
references to further Business Artifacts, the key object involves in process execu-
tion. These referenced Business Artifacts only hold the information necessary for
their purpose instead of all process information.

According to the formalization in [2], a Business Artifact is a connection of
two models: The informational model and the life cycle model. The informational
model describes the artifact properties relevant to the process, e.g., a database
schema. The life cycle model defines the states and allowed state transitions,
e.g., via State charts or Petri nets. The life cycle states correspond to high-level
states on the path towards the business process goal, i.e. the intermediate steps
mentioned above. Further data capabilities are not supported. Linkage between
process and data aspects is achieved via the services.

Process execution does not follow a predefined order, but bases only on the
availability of Business Artifacts in the specified state containing defined content.
Token flow semantics of any kind cannot be associated with Business Artifacts.
Data-based decisions are supported as basically all decisions are taken based on
data within this approach.

Example. The key object within the Handle order process is Order. Fig. 7
represents the first three steps and includes the linkage to a second artifact,
the Customer. If the external order received event is observed, the stage Create
order is performed leading to the event order created. After observing that
event, the Authorize customer stage is activated. This stage consists of three
substages which might, but do not necessarily need to be performed. First,
Identify customer is performed and based on the achieved milestone, the stage
is either completed or the stages Create customer and Verify customer are
executed in this order. Afterwards, the stage Authorize customer is definitely
completed with either milestone. In case the customer could not be verified,



Cancel order
customer

not
verified

order
canceled

Authorize customer

order
created

customer
verified

customer
not

verified

Identify customer

order
created

customer
verified

Create customer

new 
customer

customer
created

new 
customer

Verify customer
customer
created

customer
verified

customer
not

verified

Create order

order
received

order
created

Authorize order

order
created

&&
customer
verified

order
approved

order
rejected

Verify order
order

created
order

approved

order
rejected

Change order

order
undecided

order
changed

order
undecided

order
changed

Fig. 7. Extract of business process Handle order modeled using Business Artifacts

the stage Cancel order performs the completion of the process. Otherwise, the
stage Authorize order performs the order verification and if needed an order
refinement (stage Change order). After each refinement, the verification will
be performed again. Theoretically, this iteration can be performed unlimitedly.
Based on the verification result, the appropriate next step of the Handle order
process is triggered.

4 Discussion of Evaluated Approaches

This section compares the discussed process modeling languages. We not only
summarize the modeling languages’ features, but cluster also the languages
identifying their common properties.

4.1 Modeling Language Clustering

The evaluated process modeling languages can be clustered according to different
criteria. We introduce three clustering schemata. First, we distinguish between
industrial and academic approaches according to their place of origin. Second,
we cluster the approaches with respect to their execution semantics. And lastly,
we consider the degree of data support as clustering criteria.

Clustering According to Origin Industrial approaches are widely used in
commercial contexts, whereas the academic approaches are designed at universities
or research facilities of companies but lack a high degree of practical usage.
Among the evaluated approaches, we consider BPEL, BPMN, EPC s, UML
activity diagrams, and Workflow nets to be industrial approaches. The others
are academic ones.



Clustering According to Execution Semantics We distinguish three ap-
proach clusters according to the execution semantics: control flow driven, data
driven, and a mixture of both named control and data flow driven cluster (com-
pare with criteria 19 to 21 in Section 2). As State charts and EPCs have no
execution semantics specified, they belong to none of the three clusters. Table 1
visualizes the results.

Control flow Control flow and data Data

Workflow nets BPEL Business Artifacts
YAWL Document-driven WF

UML AD Case handling
BPMN
Corepro
ADEPT

Table 1. Clustering of business process modeling languages based on execution
semantics

Clustering According to Data Support This classification organizes process
modeling languages according to their general data support capabilities. We
cluster all approaches based on their capabilities at design- as well as run-time.
Modeling languages without specified execution semantics are only considered for
clustering at design-time. Fig. 8 sketches the dependencies between these clusters.
The control flow driven and the data driven clusters indicate both extremes and
they meet in the middle for the equally control flow and data driven cluster.

Control flow 
driven

Control flow and
data driven

Data driven

Data aware
control flow driven

Control aware
data driven

Fig. 8. From control flow to data driven processes

Table 2 outlines the applied clustering criteria. Thereby, run-time clustering
considers all four sections of the table, whereas design-time clustering only
considers criteria from table sections one to three. All criteria marked with a “+”
need to be supported for the specific cluster, whereas all criteria marked with
a “–” must not be supported for belonging to that specific cluster. The marking
“o/–” indicates that a criterion may be implicitly but is not explicitly supported.
Markings “x” indicate an either or support between the criteria marked that way.



Lastly, all empty entries denote that the support can be of any strength as it
does not influence clustering.

Criteria C
lu
st
er

C
o
n
tr
o
l
fl
ow

d
ri
v
en

D
a
ta

aw
a
re

co
n
tr
o
l
fl
ow

d
ri
v
en

C
o
n
tr
o
l
a
n
d

d
a
ta

d
ri
v
en

C
o
n
tr
o
l
aw

a
re

d
a
ta

d
ri
v
en

D
a
ta

d
ri
v
en

1 Activity Modeling + + + +
2 Event Modeling + + + + o/–
3 Gateway Modeling + + +
4 Control Flow Modeling + + + o/– o/–

5 Data Modeling – + + + +
6 Data Object Modeling + + +
7 Data Object State Modeling + + +
13 Mandatory Data Objects in Design Phase? – – + + +

14 Modeling of Typed Relations – + +
15 Associations b/t. State Transitions and Activities – + +

18 Data-based Decisions – + + + +
19 Execution via Control Flow Only +
20 Execution Always via Data x +
21 Execution via Control Flow and Data + + x
23 Process Control via Data Object States +

Table 2. Overview of clustering criteria

The control flow driven languages are characterized by a complete support
of process modeling capabilities; process control is driven by control flow only.
Due to the data unawareness, data, data-based decisions, and relations between
data and traditional process modeling constructs are not supported by these
languages.

For the data aware control flow driven languages, we relax the requirements
with respect to capturing of activities and routing decisions, i.e. gateways, com-
bined with a explicit control flow representation. Additionally, data linked to
activities is a model part. Decisions may rely on data and the process control is
affected by control flow and data.

The cluster comprising approaches driven by control flow and data is char-
acterized by a support of all traditional process modeling constructs and basic
data constructs comprising 1) data objects as a mandatory process model part,
2) data object states, and 3) associations between activities and state transitions
of data objects. The process control is driven by control flow and data. Decisions
based on data is obligatory.



Control aware data driven approaches support the mandatory existence of
data objects, associations between activities and state transitions, states being
assigned to data objects, and data-based decisions. Process control is driven
either by data, or by a mixture of data and control flow. Control flow related
aspects needed to be comprised in an approach being part of this cluster are
activity and event modeling capabilities. However, control flow modeling is not
explicit in contrast to the aforementioned clusters.

Finally, the data driven cluster concentrates on mandatory data object mod-
eling. These data objects get states representing the evolution and decisions
taken with respect to data. The process control is driven by data object states,
rather than data object existence. Regarding the traditional process modeling
constructs, event and control flow modeling is not explicitly supported.

Based thereon, Table 3 presents the clustering of all evaluated modeling
languages. A “+” refers to an assignment of the approach to the specific cluster,
whereas a “–” indicates that the approach is not part of that cluster. Two symbols
parted by a slash (“/”) correspond to different cluster assignments at design-
and run-time due to missing execution semantics for EPCs and State charts. An
“o” indicates that we assign an approach to a cluster, yet it does not fulfill all
the cluster criteria. For instance, ADEPT is assigned to Data aware control flow
driven cluster despite the missing support of event modeling and the link between
data state transitions and activities. In general, one can realize the reasons for
“o” comparing Table 2 and Table 3.

Cluster A
p
p
ro
a
ch

W
o
rk
fl
ow

n
et
s

B
P
E
L

Y
A
W

L

eE
P
C

U
M
L
A
D

B
P
M
N

C
o
re
p
ro

B
u
si
n
es
s
A
rt
if
a
ct
s

D
o
cu

m
en

t-
d
ri
v
en

W
F

A
D
E
P
T

C
a
se

h
a
n
d
li
n
g

S
ta
te

ch
a
rt
s

Control flow driven + – – – – – – – – – – –
Data aware control flow driven – + + +/– + + – – – o – –
Control flow and data driven – – – – – – + – – – – –
Control aware data driven – – – – – – – + – – – –
Data driven – – – – – – – – + – o o/–

Table 3. Clustering of business process modeling languages based on data support
at design-time/ run-time

The majority of the approaches is aware of data and incorporates it for process
execution and process control as visualized in Table 3. The industrial approaches
are driven by control flow, while data is considered as a conditional factor for



enabling activities. Data driven approaches, aware as well as unaware of control
flow, currently play rather an academic role.

Evaluated Aspect M
o
d
el
in
g
L
a
n
g
u
a
g
e

W
o
rk
fl
ow

n
et
s
[3
0
]

B
P
E
L
[2
2
]

Y
A
W

L
[3
3
]

eE
P
C

[1
2
]

U
M
L
A
D

[2
3
]

B
P
M
N

[2
4
]

C
o
re
p
ro

[1
8
,1
9
]

B
u
si
n
es
s
A
rt
if
a
ct
s
[2
1
,2
]

D
o
cu

m
en

t-
d
ri
v
en

W
F

[3
5
]

A
D
E
P
T

[2
6
]

C
a
se

h
a
n
d
li
n
g
[3
4
]

S
ta
te

ch
a
rt
s
[1
1
,2
3
]

1 Activity Modeling + + + + + + + + + + + +
2 Event Modeling + + + + + + + + – – – o
3 Gateway Modeling + + + + + + + o + + – o
4 Control Flow Modeling + + + + + + + o o + + –

5 Data Modeling – + + + + + + + + + + +
6 Data Object Modeling – – – + + + + + + – + +
7 Data Object State Modeling – – – o + + + + + – – +
8 Data Object Life Cycle Modeling – – – o o o + + – – – +
9 Modeling of Data Object Collections – – – – – + – – – – – –
10 Persistence Mechanism Modeling – – – – + + – – – – – –
11 Data Object “part-of” Relation Modeling – – – – – – + – + – – –
12 Data Object “is-a” Relation Modeling – – – – – – – – – – – –
13 Mandatory Data Objects in Design Phase? – – – – – – + + + + + +

14 Modeling of Typed Relations – + + + + + + – + + + +
15 Associations b/t. State Transitions and Activities – – – – + + + + – – – +

16 Formal Token Flow Semantics + – + – – – – – – – – –
17 Informal Token Flow Semantics – – – – + + – – + + – –
18 Data-based Decisions – + + o + + + + + + – +
19 Execution via Control Flow Only + – – – – – – – – – – –
20 Execution Always via Data – – – – – – – + + – + –
21 Execution via Control Flow and Data – + + – + + + – – + – –
22 Process Control via Data Existence – + + – + + – – + + + –
23 Process Control via Data Object States – – – – – – + + – – – –

Table 4. Comparison of the evaluated business process modeling languages

4.2 Feature Discussion

Table 4 summarizes the results of our evaluation. It witnesses that the evaluated
approaches are very diverse. However, we observe that the data awareness of
modeling languages increases. Among the evaluated approaches, Workflow nets



are the only completely data unaware approach. With their focus on utilizing
Petri nets for process modeling, data aspects have never been in scope.

In Table 4, a “+” symbol indicates a feature support, a “–” represents a lack
of feature, and an “o” represents an implicitly supported feature. Implicitly refers
to situations where, for instance, the necessary information can be derived from
the process model, but the feature is not part of the specification.

Control flow aware as well as control flow unaware data driven approaches
lack support for traditional modeling constructs as their support of the first group
of criteria is below average for each representative. The support of data aspects
is two fold. Basically, non of these approaches achieves the highest support, but
except Case handling, they are above average and close to the top score. However,
data support is rather primitive. Data support in terms of objects is obligatory,
but data object relations and data object collections are barely supported.

The data aware control flow driven approaches are complete in terms of
traditional process modeling, but vary significantly in terms of data support.
All have in common that data is utilized within the business process - either as
variable or as object. The approaches, which capture objects, also support states
as mapping to business milestones and goals. Generally, these approaches have
the same issues as the data driven pendants: Complex data aspects, especially
relations, are rarely supported. Following, shallow data support is widespread
in process modeling approaches. But data modeling including amongst others
hierarchies, specifications, and aggregations is mostly not supported. A complete
support is reached by none of the evaluated modeling languages. Therefore, we
identify a need for data-related features. Altogether, Corepro is the only approach
coupling the worlds of traditional process and data modeling closely as both
aspects are explicitly considered for process specification and process control.

BPMN, Corepro, and UML activity diagrams are the most feature complete
approaches according to the introduced framework, see Section 2. These three
approaches support simple data modeling completely. But with respect to the
complex criteria also these approaches only achieve a limited support, i.e. one to
two complex out of four complex data modeling criteria. Following, even for these
most complete approaches, the aforementioned need for features with respect to
data modeling capabilities is observed.

However, not all features identified in the evaluation framework from Section 2
need to be supported by one modeling language for two main reasons: First,
complexity increases with a higher degree of criteria coverage. And second, most
modeling languages are created to cope with a specific problem domain and
therefore, the scope is limited. With respect to complexity, in [14,15], the authors
discuss optimal and maximum numbers of modeling constructs. They identified
20 as an optimal number of modeling constructs. But full data modeling support
within a process modeling language increases the complexity from the point
of view of visualized elements for a business scenario. This holds especially for
connectors and associations representing all data dependencies. A solution for
the complexity issues might be the introduction of data-oriented views on process
models or the specification of standardized interfaces between process and data



models. With respect to the scope of modeling languages, data aspects only need
to be supported to a degree the scope comprises.

For instance, we recognized a stronger focus on data in approaches like Case
handling and ADEPT which are made for business processes requiring a large
degree of flexibility. A use case application is amongst others the field of dynamic
activity reordering or parallelizing for higher throughput during run-time. Because
of their strong focus, these approaches do not necessarily comprise a large set of
covered criteria from our evaluation framework.

Approaches utilized to represent business processes meant to be implemented
provide a strong data criteria coverage due to the need of considering data
dependencies during process execution. Lastly, independent from specific model-
ing approaches, data consistency can be ensured easier by fully modeling and
specifying the dependencies.

However, data capabilities are not the only factor in choosing an approach to
use within a project or an organization. Based on the field of application and the
scope of process modeling in a particular case, the decision should be taken. For
instance, the activity driven approaches, data aware or unaware, may the pick of
choice regarding documentation of business processes. Data driven approaches
are more applicable in areas which require flexible process redesign, probably
even during process execution, or fields of knowledge intensive processes.

5 Related Work

In this section, we will introduce different works dealing with data capabilities.
We structure the section by distinguishing two basic aspects. On the one hand,
we discuss further recent evaluations of process modeling approaches with respect
to data. On the other hand, we discuss approaches dealing with or tangenting
data in the fields of business process management or workflow modeling. These
discussed approaches i) act as preparation step for developing process models
with one of the evaluated approaches, ii) utilize evaluated approaches for process
modeling, or iii) are out of scope for our evaluation.

Further Recent Evaluations. Another evaluation in the field of business process
management with respect to data is part of [17]. Müller focuses on the continuous
interplay of control flow and data within modeling, execution, adaptation, and
exception handling by assessing vendor tools as well as theoretical approaches.
Therefore, he arranges the approaches and tools in a four by four matrix indicating
the degree of process and data support on each axis. In contrast, we mainly focus
on the data aspects and assess them more detailed.

[6] evaluates different process modeling approaches with respect to their
capability to support case management. Case management focuses on process
execution aspects. Therefore, it basically makes use of data relations and aspects,
so-called case data, to verify and propose next execution steps especially based
on data dependencies and predefined rules. Moreover, the authors classify the
evaluated approaches based on the main modeling artifact into activity, data,



and communication driven approaches. Compared to our evaluation, the authors
considered a very limited scope and established a coarse-grained classification.
Additional evaluations are unknown to us for the best of our knowledge.

Further Approaches. The approach of product-based workflows by Reijers et al.
[27] addresses the problem of designing a workflow optimally with respect to
time or cost requirements. Thereby, a product is the business goal of a specific
workflow and corresponds to the appropriate data object as final output. To
achieve this goal, certain sub-products need to be created, which in turn may
have further sub-products. Additionally, only subsets of sub-products may be
needed to create the parent-product. This leads to a tree structure representing
the dependencies the authors call production rules. For each production rule,
the probability of use as well as costs and time consumption are annotated. An
example omitting these annotations for clarity reasons is presented in Figure 9.
Product A can be created following three different production rules: i) A is
created based on product B only, ii) A is created based on product D only, or
iii) A is created based on a combination of products B, C, and D.

A

B C D

E F G

Fig. 9. Visualization of production rules in product-based workflows

Altogether, product-based workflows is an approach which can be considered
as a pre-step to the definition of the control flow of a process. Based on data
dependencies and a well defined goal, the optimal execution path is calculated
considering side aspects like time and cost specifications. The optimal path then
is represented as a Workflow net highly influenced by data aspects.

Proclets are leight-weight processes which communicate via structured mes-
sages [31]. Each of these processes focus on the behavior of one specific case
instead of overloading single processes with information from several cases. Pro-
clets are basically a communication framework being able to utilize different
types of modeling languages, for instance the ones we discussed in Section 4.
Adapting this idea, each process, i.e. proclet, may represent a data object and
the activities needed to be performed on this data object. Synchronization, i.e.
fulfilling existing data dependencies, is achieved by utilizing the structured mes-
sages for communication. Though, proclets still utilize business process modeling
languages evaluated in this paper to represent the work performed on each data
object. Therefore, main aspects of the data support are driven by the utilized
modeling language.

Data provenance [8] deals with scientific workflows instead of business pro-
cesses as the approaches do we evaluate in this paper. The main difference is



the data traffic. Scientific workflows deal with data updates in the millisecond
range rather than on a daily or even monthly rate as business processes typically
do. Additionally, the focus of scientific workflows lies on querying the stream
of data to get real time answers instead of describing intended process flows.
One main challenge there is to provide meaningful answers to the queries, i.e.
understandable for the scientist performing the queries. In [4], an end-user-centric
provenance model has been introduced which bases on three operations on data
only: read, write, and state reset. The authors cluster the data operations into
sessions and as long as no state reset appears, read and write operations belong
to the same collection. Based on this information, the workflow traces can be
queried and consequently, the origin and evolution of data can be identified.
Altogether, data provenance approaches are highly data centric but not meant
to represent business processes. Nevertheless, the querying capabilities are in-
teresting in the field of business process monitoring. Enriching business process
modeling languages with such capabilities may lead to more detailed real-time
information during business process execution.

Petri nets [25] as one representative of place-transition-nets are usually un-
aware of data. But using a mapping introduced in [1], a subset of BPMN is
mapped to petri nets focusing on the data flow implicitly modeled within BPMN.
Thereby, the evolution of a single data object within the business process is
visualized. The places represent the states of the data object and the transitions
represent the activities performed on that data object. As this utilization of
place-transition-nets is only a further interpretation and not explicitly covered by
the defined semantics of such approaches, we omit evaluating this idea alongside
the other business process modeling approaches.

In 2004, the Workflow Patterns initiative evaluated a range of at that time
current workflow systems [28]. Based on this evaluation, they derived a set of
39 patterns describing the common usage of data aspects within these systems.
This comprises data visibility, internal and external interaction, transfer, and
routing. Data visibility deals with questions with respect to who is allowed to
read data, i.e. setting the scope of a data object. Data interaction and transfer
deal with the access on data objects either with shared objects (interaction)
or separate but passed objects (transfer). Data transfer may generally occur in
external communications. Finally, routing deals with process control based on
data values and dependencies. Later, different evaluations have been obtained to
check the degree of coverage with respect to these patterns for business process
modeling notations. These include evaluations of BPMN 1.x [36], UML activity
diagrams [29], BPEL [32], and Oracle BPEL [20].

6 Conclusion

In this paper, we discussed the evaluation of a set of twelve process modeling
languages ranging from industry standards like BPMN, BPEL, UML activity
diagrams and industry driven approaches like EPCs to scientific approaches like
Business Artifacts, ADEPT, and Corepro with respect to their capabilities to



deal with data. Due to space limitations, we evaluated four representatives in
detail. But for the general discussion, we comprised the findings with respect to
all modeling languages. The underlying framework for our evaluation consists
of 23 criteria in four groups: Process modeling capabilities (control flow), data
modeling capabilities, connection of control flow and data modeling, and execution
semantics.

The results of the evaluation show that no process modeling notation supports
all criteria specified in the framework. Settled standards like Workflow nets and
Petri nets do not support data at all, except the modeling constructs are redefined
to represent, for instance, data object states. The highest coverage is achieved by
Corepro, UML activity diagrams, and BPMN. However, data support remains
on a shallow level in general: Only basic criteria like the representation of data
objects are widely supported, complex ones like interrelations between data
objects are mostly omitted. Also the three modeling languages with the highest
coverage only support a subset of the complex criteria.

Following, we identified a general need for features with respect to full support
modeling languages. However, the reason for shallow coverage is mostly intended
with respect to the scope of the modeling language. A full support approach
increases the complexity as, for instance, the number of modeling elements
increases. But wide acceptance requires a high understandability and an easy
use so that many modeling languages are restricted to specific use cases.

Based on our evaluation, we propose a clustering of the modeling languages
based on the awareness of process and data capabilities. Therefore, we distinguish
the groups of control flow driven, data aware control flow driven, control flow
and data driven, control aware data driven, and data driven process modeling
languages.

References

1. A. Awad, G. Decker, and N. Lohmann. Diagnosing and Repairing Data Anomalies in
Process Models. In Business Process Management Workshops, pages 5–16. Springer,
2010.

2. K. Bhattacharya, C. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal Analysis
of Artifact-Centric Business Process Models. In Business Process Management,
pages 288–304. Springer, 2007.

3. K. Bhattacharya, R. Hull, and J. Su. A Data-Centric Design Methodology for
Business Processes. Handbook of Research on Business Process Management, 2009.

4. S. Bowers, T. McPhillips, B. Ludäscher, S. Cohen, and S. Davidson. A Model for
User-Oriented Data Provenance in Pipelined Scientific Workflows. Provenance and
Annotation of Data, pages 133–147, 2006.

5. BPMI. Business Process Modeling Notation (BPMN), Version 1.0, May 2004.
http://www.bpmi.org/downloads/BPMN-V1.0.pdf accessed July 18, 2011.

6. H. de Man. Case Management: A Review of Modeling Approaches. Technical
report, BPTrends, 2009.

7. DJ Elzinga, T. Horak, Chung-Yee Lee, and C. Bruner. Business process manage-
ment: survey and methodology. IEEE Transactions on Engineering Management,
42(2):119–128, 1995.



8. C. Goble. Position Statement: Musings on Provenance, Workflow and (Seman-
tic Web) Annotations for Bioinformatics. In Workshop on Data Derivation and
Provenance, 2002.

9. D. Habich, S. Richly, and M. Grasselt. Data-Grey-Boxweb Services in Data-Centric
Environments. In IEEE International Conference on Web Services, pages 976–983,
2007.

10. D. Habich, S. Richly, S. Preissler, M. Grasselt, W. Lehner, and A. Maier. BPEL-DT
- Data-Aware Extension of BPEL to Support Data-Intensive Service Applications.
In Emerging Web Services Technology, pages 111–128, 2007.

11. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Science of
Computer Programming, 8(3):231–274, 1987.

12. G. Keller, M. Nüttgens, and A. Scheer. Semantische Prozessmodellierung auf der
Grundlage “Ereignisgesteuerter Prozessketten (EPK)”. Technical Report Heft 89,
Institut für Wirtschaftsinformatik, University of Saarland, 1992.

13. S. Kumaran, R. Liu, and F. Wu. On the Duality of Information-Centric and
Activity-Centric Models of Business Processes. In Advanced Information Systems
Engineering, pages 32–47. Springer, 2008.

14. J. Mendling. Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness, volume 6 of LNBIP. Springer,
2008.

15. J. Mendling, Hajo A. Reijers, and W.M.P. van der Aalst. Seven Process Modeling
Guidelines (7PMG). Information & Software Technology, 52(2):127–136, 2010.

16. A. Meyer, S. Smirnov, and M. Weske. Data in Business Processes. Technical report,
Hasso Plattner Institute at the University of Potsdam, 2011.

17. D. Müller. Management datengetriebener Prozessstrukturen. PhD thesis, University
of Ulm, 2009.

18. D. Müller, M. Reichert, and J. Herbst. Flexibility of Data-driven Process Structures.
In Business Process Management Workshops, pages 181–192. Springer, 2006.

19. D. Müller, M. Reichert, and J. Herbst. A New Paradigm for the Enactment and
Dynamic Adaptation of Data-driven Process Structures. In Advanced Information
Systems Engineering, pages 48–63. Springer, 2008.

20. N.A. Mulyar. Pattern-based Evaluation of Oracle-BPEL (v. 10.1. 2). Technical
report, Eindhoven University of Technology, 2005.

21. A. Nigam and N.S. Caswell. Business artifacts: An approach to operational specifi-
cation. IBM Systems Journal, 42(3):428–445, 2003.

22. OASIS. Web Services Business Process Execution Language, Version 2.0, April 2007.
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html accessed July 18,
2011.

23. OMG. Unified Modeling Language (UML), Version 2.2, February 2009. http:

//www.omg.org/spec/UML/2.2/ accessed July 18, 2011.
24. OMG. Business Process Model and Notation (BPMN), Version 2.0, January 2011.

http://www.omg.org/spec/BPMN/2.0/ accessed July 18, 2011.
25. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle

Mathematik, University of Bonn, 1962.
26. M. Reichert and P. Dadam. Adeptflex-supporting dynamic changes of workflows

without losing control. Intelligent Information Systems, 10(2):93–129, 1998.
27. H.A. Reijers, S. Limam, and W.M.P. van der Aalst. Product-Based Workflow

Design. Management Information Systems, 20(1):229–262, 2003.
28. N. Russell, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst.

Workflow Data Patterns. Technical report, Queensland University of Technology,
2004.



29. N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and P. Wohed. On the
Suitability of UML 2.0 Activity Diagrams for Business Process Modelling. In
Conceptual Modelling, pages 95–104. Australian Computer Society, Inc., 2006.

30. W.M.P. Van der Aalst. The Application of Petri Nets to Workflow Management.
Circuits Systems and Computers, 8:21–66, 1998.

31. W.M.P. van der Aalst, P. Barthelmess, C. Ellis, and J. Wainer. Workflow Modeling
using Proclets. In Cooperative Information Systems, pages 198–209. Springer, 2000.

32. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, N. Russell, H.M.W. Verbeek,
and P. Wohed. Life after BPEL? In Web Services and Formal Methods, pages
35–50. Springer, 2005.

33. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

34. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering, 53(2):129–
162, 2005.

35. J. Wang and A. Kumar. A Framework for Document-Driven Workflow Systems. In
Business Process Management, pages 285–301. Springer, 2005.

36. P. Wohed, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and N. Russell.
On the Suitability of BPMN for Business Process Modelling. In Business Process
Management, pages 161–176. Springer, 2006.


