
Recent Results of the NLRE (Natural Language based Requirements
Engineering) Project

Günther Fliedl, Christian Kop, Heinrich C. Mayr, Alexander Salbrechter, Georg Weber,
Christian Winkler

University of Klagenfurt, Austria

Abstract

NLRE is a project that handles natural language requirements specifications to derive
conceptual schemata. For this purpose an interlingua was introduced. Parts of the natural
language specification are firstly extracted and collected in the interlingua schema.
Afterwards all concepts of the interlingua schema are mapped to a conceptual schema.
The current paper gives a rough overview of the project status and the tool support.

1. Introduction

Detecting and deriving those notions in a natural language discours which are crucial for
modeling Conceptual Schemata is the computer scientist’s most challenging task.

The NLRE Project was launched to minimize the gap between end-user requirements
formulated mainly in spoken natural language and the more formal requirements
specification (Conceptual Model) of the designer.

Direct mapping from natural language to conceptual modeling is highly complicated.
Furthermore, design decisions as to what is an attribute vs. what is a class or what is a
state and what is an event are dependent primarily on technical aspects rather than on
given requirements. This is why we propose an intermediate step, called KCPM
(Klagenfurt Conceptual Predesign Model), which offers a minimal set of modeling
notions particularly suitable for classifying requirements.

As an integrated part of the overall project working task, aimed at supporting a step by
step automatic mapping from natural language to a conceptual model with the help of
KCPM, the current project focusses on dynamic aspects of modeling, in particular on:

- the complexity of natural language as opposed to formal languages
- modeling options regarding dynamic aspects in conceptual modeling

As for dynamic modeling, the complexity of natural language (redundancy, ellipses,
anaphoric/cataphoric elements etc.) is extremely challenging. Customers sometimes
express pre- and post conditions along with actions packed into one single sentence. In
other cases, one single requirement is referred to by means of several sentences. Thus, a

tool for natural language analysis has to cope not only with the complexity of one
sentence: it is expected to detect relationships between different sentences belonging
together.

UML offers 5 different diagram types for dynamic modeling. Even if all dynamic
notions are processeded to one simple intermediate KCPM schema, the question still
remaining is to which conceptual dynamic model it should be eventually mapped. This is
why the second working task within the NIBA project is concerned with tools and
heuristics supporting the mapping to the respective model.

2. KCPM

The interlingua consists of a small set of modeling notions namely thing type,
connection type, cooperation type, operation type, pre- and post condition and constraint.
Thing types represent important domain concepts. A thing type is a generalization of a
class and value type. That means we do not distinguish between classes and value types
but leave the distinction to the mapping process. Thus “customer” as well as “customer
name” is modeled as a thing type. Typical things (instances of thing types) are natural or
juristic persons, material or immaterial objects, abstract notions. In textual requirements
specifications they are usually referred to by noun phrases. Relationships between thing
types are modeled by connection types. Dynamic aspects are modeled with operation
types and cooperation types.
Operation types are used to model functional services, that can be called via messages
(service calls). As such they may be seen as a generalization of the notions use case,
activity, action, method, service etc. Each operation type is characterized by references
to so-called thing types, which model the actors (executors and callers of the resp.
operation type) and service parameters. UoD dynamics emerge from actors (thing types)
performing operations under certain circumstances (pre-conditions) and thus creating
new circumstances (post-conditions). This is captured by the KCPM concept of co-
operation type, a term we adopted from object orientated business process modeling
[KKM95]. A particular cooperation in that sense is an elementary step of a business
process to which one or more actors contribute by (concurrently) executing operations
(services).
Requirement specifications which cannot modeled by one of the modeling notions are
modeled as constraints.

3. Natural Language Analysis

To cope with the complexity of natural language we have developed a POS tagger with
shallow parsing features. The tagger also provides a smart verb classification which is
the basis to distinguish between the main concepts of KCPM dynamic modeling
(namely: cooperation type, operation type and condition). Furthermore it allows word
stemming, lemmatizing, and morphosyntactic analysis. The tagged output is represented
in XML. Figure 1 shows a typical output of the tagger.

Figure 1: Tagger Output

The output can be used in the following way to collect KCPM entries. We have to look
at the main verb and it’s verb class. Verb classes like eV (ergative verbs) are used to
model a condition. Verbs of the class tVag2 (agentive verbs) are used to model operation
types. A detailed description of how operation types, conditions and cooperation types
can be determined from verb classes is described in [Fl03].

4. Tool Support for KCPM modeling and mapping to UML

Concerning behavioral modeling, there is a tool for storing and managing KCPM
schemata (insertion, update and deletion of operation types, cooperation types,
conditions etc.) in a graphical representation (see Fig. 2) For analysis purposes theses
tools allow to turn on or off the visibility of particular schema parts in order to reduce
complexity and thus increasing transparency for validation. Furthermore, a tree view
supports the presentation of several levels of abstraction.

A mapping feature is an integrated component of this tool. It transforms the KCPM
schema to a XMI Schema for UML activity diagrams according to mapping heuristics
given in [KM02]. The XMI Schema can then be visualized using the UML Tool
“Poseidon for UML”1.

1 Poseidon for UML is a Trademark of Gentleware.

Figure 2: Screenshot of the KCPM tool for graphical modeling

5. Conclusion

Beside the tagging tool (fig. 1) and the tool for graphical modeling of KCPM notions
(fig. 2), there are still other tools which are under development. Another “mapper” for
transforming KCPM schemata to state diagrams will be developed in a next step. We
will also provide the user with a web application allowing him to navigate through the
requirements specifications, requirements documents and the KCPM schemata
exploiting the advantages of a hypertext.

References

[Fl03] Fliedl, G.; Kop, Ch.; Mayr, H.C.: From Scenarios to KCPM Dynamic Schemas:

Aspects of Automatic Mapping. In: Düsterhöft, A. Thalheim, B. (eds.): Natural
Language Processing and Information Systems – NLDB’2003, GI Lecture Notes in
Informatics, Vol. 29, pp 91 – 105.

 [KKM95] R. Kaschek, C. Kohl, H.C. Mayr: Cooperations - An Abstraction Concept Suitable for

Business Process Reengineering, in Györkös, J. et.al. (eds.) Re-Technologies for
Information Systems, Proc. ReTIS'95, R. Oldenburg Verlag, Wien, 1995.

[KM02] Kop, Ch.; Mayr, H.C.: Mapping functional requirements: form natural language to

conceptual schemata. In: Proceeding of the 6th IASTED International Conference
Software Engineering and Applications, Cambridge USA, November 4-6, 2002, pp.82
– 87.

