
Visual Web Information Extraction with Lixto ∗

Robert Baumgartner Sergio Flesca Georg Gottlob
DBAI, TU Wien DEIS, Università della Calabria DBAI, TU Wien

Favoritenstr. 9 Via Pietro Bucci, 41C-42C Favoritenstr. 9

1040 Vienna 87030 Rende (CS) 1040 Vienna

Austria Italy Austria

baumgart@dbai.tuwien.ac.at flesca@deis.unical.it gottlob@dbai.tuwien.ac.at

ABSTRACT
We present new techniques for supervised wrapper genera-
tion and automated web information extraction, and a sys-
tem called Lixto implementing these techniques [6]. Our sys-
tem can generate wrappers which translate relevant pieces of
HTML pages into XML. Lixto, of which a working prototype
has been implemented, assists the user to semi-automatically
create wrapper programs by providing a fully visual and in-
teractive user interface. In this convenient user-interface
very expressive extraction programs can be created. Inter-
nally, this functionality is reflected by the new logic-based
declarative language Elog. Users never have to deal with
Elog and even familiarity with HTML is not required. Lixto
can be used to create an “XML-Companion” for an HTML
web page with changing content, containing the continually
updated XML translation of the relevant information.

1. INTRODUCTION AND MOTIVATION
Nowadays web content is mainly formatted in HTML.

This is not expected to change soon, even if more flexible
languages such as XML are attracting a lot of attention.
While both HTML and XML are languages for represent-
ing semistructured data, the first is mainly presentation-
oriented and is not really suited for database applications.
XML, on the other hand, separates data structure from lay-
out and provides a much more suitable data representation
(cf. e.g. [1, 17]). A set of XML documents can be regarded
as a database and can be directly processed by a database
application or queried via one of the new query languages
for XML, such as XML-GL [8], XML-QL [11] and XQuery
[9]. As the following example shows, the lack of accessibil-
ity of HTML data for querying has dramatic consequences
on the time and cost spent to retrieve relevant information
from web pages.

Imagine you would like to monitor interesting eBay offers
(www.ebay.com) of notebooks, where an interesting offer is,
for example, defined by an auction item which contains the
word “notebook”, has current value between gbp 1500 and
3000 and which has received at least three bids so far. The
eBay site does not offer the possibility to formulate such
complex queries. Similar sites do not even give restricted

∗ All new methods and algorithms presented in this paper
are covered by a pending patent. Future developments of
Lixto will be reported at www.lixto.com. This paper also
appeared in the proceedings of VLDB 2001.

ELOG
Program

Pattern
Instance

Base

(hierarchically
ordered)

Interactive
Pattern Builder

Extractor

(continual)

user

web
set of structural
similar pages

example set
(usually a single page)

Pattern
Instance

Base

(hierarchically
ordered)

lo
gi

c
co

nt
ro

l Controllerevents

Transformer

XML

work on XML

XML Generator /
Simple Query

System

Figure 1: Overview of the Lixto System

query possibilities and leave you with a large number of re-
sult records organised in a huge table split over many web
pages. You have to wade through all these records manu-
ally, because of no possibility to further restrict the result.
Another drawback is that you cannot directly collect infor-
mation of different auction sites (e.g. onetwosold and ebay
items together) into a single structured file, a difficult task
of web information integration due to very different presen-
tation on each site.

The solution is thus to use wrapper technology to extract
the relevant information from HTML documents and trans-
late it into XML which can be easily queried or further pro-
cessed. Based on a new method of identifying and extracting
relevant parts of HTML documents and translating them
to XML format, we designed and implemented the efficient
wrapper generation tool Lixto, which is particularly well-
suited for building HTML/XML wrappers and introduces
new ideas and programming language concepts for wrapper
generation. Once a wrapper is built, it can be applied auto-
matically to continually extract relevant information from a
permanently changing web page.

The Lixto method and system fulfills the requirements
specified in a very recent paper on e-commerce tools [26]:
“These tools must be targeted at typical, non-technical con-
tent managers. In order to be usable, the tools must be
graphical and interactive, so that content managers see data
as it is being mapped.” Lixto’s distinctive features are sum-
marised in the following. Lixto is easy to learn and use be-



cause a fully visual and interactive user interface is provided.
Neither manual fine-tuning nor knowledge of the internal
language is necessary. Lixto uses straightforward region
marking and selection procedures that allow even those users
not familiar with HTML to work with the wrapper genera-
tor. Lixto lets a wrapper designer work directly and solely
on browser-displayed example pages, unlike other tools (see
Section 6), that force the designer to work with other doc-
ument views such as, e.g., table-views of the document or
displayed HTML parse trees, or even HTML sources. Af-
ter selecting example targets in the browser display, Lixto
responds with highlighted targets in the same display (see
Section 3). With Lixto, very expressive visual wrapper gen-
eration is possible: It allows for extraction of target patterns
based on surrounding landmarks, on the contents itself, on
HTML attributes, on the order of appearance and on se-
mantic and syntactic concepts. Extraction is not limited to
tokens of some document object model, but also possible
from flat strings. Multiple and single targets are treated in
a uniform way. Lixto even allows for more advanced features
such as disjunctive pattern definitions, crawling to other
pages during extraction, recursive wrapping. Moreover, the
extracted data structures do not have to strictly obey the
input HTML structure. Preliminary results on representa-
tive web pages with using the current Lixto prototype show
a good performance (see Section 5).

The above mentioned features are internally reflected by
a declarative extraction language called Elog (see Section 4),
which uses a datalog-like logical syntax and semantics. Elog
is invisible to the user. It is ideally suited for representing
and successively incrementing the knowledge about patterns
described by users. This knowledge is generated in an in-
teractive process consisting of successive narrowing (logical
and) and broadening (logical or) steps. An Elog program
is a collection of datalog-like rules containing special extrac-
tion conditions in their bodies. Elog is flexible, intuitive and
easily extensible.

This paper is structured as follows. In the next section
the system architecture is described, in Section 3 we give an
overview of the the interactive pattern generation and visual
UI, whereas Section 4 is devoted to the theory of the Elog
extraction language. Section 5 presents empirical results
of using the Lixto wrapper generator, Section 6 discusses
related approaches and Section 7 highlights future research
directions.

2. ARCHITECTURE / IMPLEMENTATION
A working prototype of Lixto already has been imple-

mented with Java using Swing, OroMatcher [24] and JDOM
[20]. The Lixto Toolkit (Figure 1) consists of the following
modules:

The Interactive Pattern Builder provides the visual UI
that allows a user to specify the desired extraction patterns
and the basic algorithm for creating a corresponding Elog
wrapper as output.

The Extractor is the Elog program interpreter that per-
forms the actual extraction based on a given Elog program.
The extractor, provided with an HTML document and a pre-
viously constructed program, generates as its output a pat-
tern instance base, a data structure encoding the extracted
instances as hierarchically ordered trees and strings. One
program as input of the extractor can be used for contin-
ual extraction on changing pages, or to extract from several

current example target

selected
after element

current
example
source

Figure 2: The Lixto Browser

HTML pages of similar structure.
With the controller of the XML Generator, the user chooses

how to map extracted information to XML. Its transformer
module performs the actual translation from the extracted
pattern instance base to XML.

3. WRAPPER GENERATION

3.1 Creating Wrappers
A Lixto wrapper is created interactively by creating pat-

terns in a hierarchical order. For example, one can first de-
fine a pattern <item> and then define a subpattern <price>.
The subpattern relationship in this case expresses that each
extracted instance of <price> must occur within one in-
stance of <item>. Pattern names act as default XML ele-
ment names. Each pattern characterises one kind of infor-
mation. The set of extracted instances of a pattern, which
are either HTML elements, list of elements, or strings, de-
pends on the current page. Each pattern is defined by one
or more filters. A filter e.g. allows the system to identify a
set of similar nodes of the HTML parse tree, for instance a
set of items internally represented as <td>.

A filter is created as follows: First, the user highlights
with the mouse a representative instance of the desired tar-
get pattern directly on the example page. Internally, the
system associates to this instance a generalised tree path in
the HTML parse tree identifying similar instances and incor-
porates this as main goal of a Elog rule representing the filter
(see Section 4). Second, the user adds restrictive conditions
to the filter. These are reflected by the system as additional
goals in the rule body describing this filter. The possible
conditions, which will be explained in more detail, include:
(a) before/after conditions that express that the target
pattern instance must appear before or after some specific
element. (b) notbefore/notafter conditions that express
that some specific element must not be close to the target
pattern. (c) internal conditions that express that some
specific element must (not) appear inside the target pattern.
(d) range conditions which, in case of multiple matchings,
restrict the set of matched instances to a subinterval.

Adding a filter to a pattern extends the set of extracted
targets, whereas imposing a condition to a filter restricts the
set of targets. Alternately imposing conditions and adding
new filters can perfectly characterise the desired informa-
tion. The system creates Elog rules based on user-defined
filters. The user is never concerned with the internal lan-
guage Elog. The user interface is extremely simple and the
entire wrapper construction process can be learned by an
average user in very short time. The user is guided through



New Pattern
Generation

Input:
Parent pattern S
Output:
Child pattern T defined
as a set of rules d

Select a suitable in-
stance s of the parent

 pattern S containing an
instance of the desired

target pattern T.  (I)

Highlight an instance t
 of T within s. (I) Select
characteristic attributes
of t. (I/A) System cre-
ates main rule goal of
 the desired filter. (A)

User is shown currently
 matched instances of T
within all instances of S
and asked if satisfied
(= no unwanted target

 matched).(A)

Extend filter by adding
a constraint condition
(I/A). See Condition
Builder Figure for

details.

Let d be the set of filters
so far constructed for
pattern T. Add current

filter to d. System
 adds a corresponding

rule to program. (A)

Test whether d extracts
exactly the desired set
of instances of T. (I/A)

Add d to the program
and remember all
instances of T for

future pattern
generation steps. (A)

no

yes

yes

no

pattern

filter
condition

condition

condition

∧
∨

filter ∧

Figure 3: Generation of a new Pattern

a supervised pattern generation, and by simply marking rel-
evant information items on-screen and visually setting con-
straints, filters and patterns are created. In [5], we describe
an example program construction.

3.2 Pattern Creation Algorithm
The generation of a pattern is described in Fig. 3. The

user can hierarchically define and refine patterns. She en-
ters a pattern name, specifies the parent pattern S, selects
by mouse clicks one example instance s of the parent pat-
tern and marks (with the mouse) an element (e.g. one price)
inside this instance on the sample page.

At the beginning, i.e. when facing a new HTML docu-
ment (which is loaded into an internal browser; see Fig.
2) and having created a new program, the only pattern is
<document> with a unique instance, the current example
document. Fig. 3 distinguishes interactive (I) and automatic
(A) steps and gives the logical pattern structure in its top-
left corner. A pattern may consist of multiple filters. Each
filter contains a number of conditions. An extracted instance
must satisfy all conditions of at least one filter. Two consec-
utive mouse clicks on different parts of the current parent
instance are interpreted in the best possible way to mark an
HTML element of the document parse tree (cf. Fig. 7) or if
not possible a list of elements.

The system generates a basic filter without conditions,
but the user can already state some attribute requirements
(the system constructs a suitable element path definition,
see Section 4). Then it highlights all objects on the current
example page that match these initial filter criteria (not only
in the current pattern instance, but in all pattern instances).
Sometimes a user wants a single match within one source,
sometimes multiple matches – this makes no difference in
the algorithm – it just depends on the definition of filters
and conditions. E.g., if the user marks a table row, the
system recognises the entity <tr> and highlights all table
rows occurring at a comparable level in the document. At
the same time the system constructs a general Elog rule for
extracting table rows.

If the user is satisfied with the elements identified by the
system, she can confirm the pattern definition. Satisfac-
tion, in this context, means that only desired targets are
matched. Otherwise, if the concept is too general, then she
can add restricting conditions (which are reflected by Elog
condition predicates); cf. Fig. 4. For each such restriction,
the system adds the corresponding condition atom to the

Select type of condition.
(I)

Select an element
before/after the example
instance and within the
parent instance; user is
guided by wizards. (I)

Choose attributes of selected element
to be considered (e.g. content, font-type
etc.). A wizard automatically proposes
particularly relevant attributes. (I/A).

Set the
distance
tolerance

in percent to
 left/right. (I)

Select a range by indicating the first
and last relevant target instance to be

extracted (I)

Characterise
element that is
not allowed to
appear before/

after target. (I/A)

before

after

Condition Builder

internal

range notbf            notaf

adds one condit ion to a f i l ter

Select an element
inside the instance and

within the parent
instance; user is

guided by wizards. (I)

Figure 4: Adding Conditions

Elog rule defining the filter at hand. Each filter is intended
to extract a subset of the desired target set. If the current
pattern is less general than intended by the user, another fil-
ter can be added, internally reflected by an additional Elog
rule for the same pattern (several rules for the same pattern
are interpreted disjunctively, as usual in Datalog). Different
filters may be created based on labelling in different exam-
ple parent pattern instances. By iterating restricting and
generalising steps, it is usually possible to describe a desired
pattern perfectly. Once a pattern is defined, the user may
use this pattern as parent for a new pattern. A detailed
creation of a simple example wrapper is given in [5].

3.3 The Visual Interface
The current implementation includes visual tree pattern

construction and the use of string patterns. All filter con-
ditions discussed in this paper are supported. Moreover,
the visual interface is assisted by an XML visualisation tool
which at each instant shows the user the so far extracted
XML code. A concept atom generator to create predefined
concepts (such as “isCity”, “isDate”) based both on regular
expressions and on reading some database tables is currently
being added. Such concepts are especially useful to allow
users to create string patterns without knowledge of regular
expressions. Fig. 5 shows the main menu of Lixto (left-hand
side). There, a new program can be created or an existing
one loaded, new patterns can be added, the document for
labelling can be chosen, etc. The same figure shows on its
right hand side the source selection dialogue which enables
the user to select at which node to create a new pattern. Fig.
2 shows the internal Lixto browser when selecting an after
element. For each condition, an own interface is provided
which uses the user-labelled information.

3.4 Translation into XML
The output by the extractor is well-suited for translation

into XML. The interactive XML generator exploits the hi-
erarchical structure of the pattern instance base and uses
pattern names as default XML element names. The user
can interactively choose the HTML attributes that appear
in the XML output. Even more important is the possibility
to decide which patterns are written to XML, possibly using
auxiliary patterns. Fig. 9 displays the result of applying a
(not illustrated) wrapper program onto the web page of Fig.
6.



Create the new
pattern and select
highlighted instance as
example target of first filter

open an url
used for creating
patterns

create a new pattern (naming;
enables adding of filters)

test and save the current
patterns (all its filters)

current program name or
“new program” if program
is not yet saved (hidden)

current document which is
used for program creation

current
status

Currently constructed
hierarchy of patterns

Return to
menu

navigate through
pattern instances
to select example
parent instance

A leaf node
of the pattern
tree

Choose another
pattern instead

Select
parent
pattern

pattern and
filter deletion
option menu

currently
constructed
pattern

Highlighting
Option

Figure 5: Main Menu and New Pattern Generation Menu of current prototype

4. DATA EXTRACTION

4.1 A first glance at Elog
Elog is the system-internal datalog-like rule based lan-

guage specifically designed for hierarchical and modular data
extraction. A user of Lixto does not have to learn Elog and
never sees the Elog program. Elog rules are the implemen-
tations of the visually defined filters and define elements to
be extracted from web pages. Before we discuss the features
of the language in detail, have a look at Fig. 8, in particular
at the rule with head predicate record(S,X). Observe that
we use as in Prolog the same variables for each rule, and
denote with “ ” a variable in whose instantiations we are
not interested. This predicate identifies records on an eBay
page (each one is an own table). The first atom in the rule
body specifies that the context S of the extraction, i.e. the
so-called parent pattern, is an instance of <tableseq>. The
second atom in the rule body looks for subelements that
qualify as tables inside the unique <tableseq> instance and
instantiates X with them. Given that the same Elog pro-
gram can be applied to different web pages, the actual ele-
ments that an Elog program defines and extracts depend on
the current web page. For this reason, we refer to the head
predicates defined by an Elog program as patterns. More-
over, we denote a set of rules with the same head as pattern,
too. The syntax and semantics of Elog and its predicates is
explained below (only informally due to space constraints).

4.2 Document Model
Consider the example web page lixto.html of Fig. 6

and its parse tree as displayed in Fig. 7 based on the Java
Swing parser. The values in brackets are the start and
end-offsets (in characters) of the corresponding elements in
the actual document. Additionally, we number nodes in a
depth-first left-to-right fashion. Nodes of the HTML tree
refer to elements which are represented as sets. The set
contains pairs describing the association between attribute
names and corresponding attribute values. E.g., the <body>

element node of Fig. 7 is associated with {(name,body), (bg-
color,FFFFFF), (elementtext,Items for . . . . . . 137)} (whole
document text). Fig. 7 highlights two other such attribute

http://www.dbai.tuwien.ac.at/lixto.html

Figure 6: HTML Example Page

sets.
Observe that in our chosen document object model, sev-

eral leaf elements are <content> elements – this parser treats
tags such as <b> (bold-face) as attributes of an imaginary
<content> element. We introduced a special attribute called
“elementtext” for each element. This attribute reflects the
contents of the element, which is in case of an internal node
the left-to-right concatenation of the leaf elements below the
internal node. In the following, we distinguish tree regions
and subtrees of the HTML tree. A tree region is a region
rooted at an internal node of the HTML tree where only the
i-th up to the j-th child and their descendants are consid-
ered. Observe that a tree region is contiguous. A subtree
is the tree rooted at one node of the HTML tree, i.e. all
descendants are considered.

4.3 Extraction Mechanisms
Lixto offers two basic mechanisms of data extraction –

tree and string extraction. For tree extraction, we iden-
tify elements with their corresponding tree paths and possi-
bly some properties of the elements themselves. This does
not necessarily identify a single element. As an example,
?.table. ? .tr is a valid tree path. In the sample page page of
Fig. 6, three elements are matched. The star acts as wild-
card. The expression .? .x matches all paths to x which con-
tain x as last element only. A plain tree path is a sequence
of consecutive nodes in a subtree of an HTML tree. In an
incompletely specified tree path stars may be used instead
of element names. For simplicity, incompletely specified tree



(a, href = "mailto:steven@...")

 body
(6,277)

h4 p-implied p

table
(75,276)

pcontenthrcontent content

center
(23,276)

content

content tr tr tr

td

content content

p-implied

td td

2

43

5

6

1
(name, table)

(width,75%)

(border,1)
(elementtext,56 K Modem....)

(75,276)

td

content

(elementtext, Steven)

(href, "mailto:steven@...")

(name, content)

(257,263)

Figure 7: HTML Parse Tree of Example in Figure 6

paths are referred to as tree paths. The semantics of a tree
path applied to a tree region of an HTML page is defined as
the set of matched elements.

Attribute Conditions are constraints reducing the num-
ber of matched elements. They pose requirements on oc-
curring attributes and their values. An attribute condition
is a triple specifying a required name, a required value (a
string, or in case the third parameter is regvar, a regu-
lar expression possibly containing some variables indicated
by \var), and a special parameter exact, substr or regvar,
indicating that the attribute value is exactly the required
string, is a superstring of it, or matches the given regular
expression, respectively. Instead of giving a formal defini-
tion, we illustrate this with an example: (?.hr, [(size, [3 −
4]∗, regvar), (width,%, substr)]) identifies horizontal rules of
size 3 or 4 with a width specified in percent. Each output
variable, which is included in the second parameter must be
used as input for a concept of the same rule (cf. Section 4.4).

An element path definition epd consists of a tree path and
a set of attribute conditions. It is called simple if it consists
of one element name only. The semantics of applying an
element path definition to a tree region of an HTML tree is
given as the set of matched elements of the corresponding
tree path which moreover satisfy all of the attribute con-
ditions. Instead of element path definitions, equivalently,
XPath expressions can be used (with some extensions, such
as the possibility to express that an attribute value is a con-
cept). To simplify presentation, however, we stick to our
introduced notation.

The second extraction method relies on strings. In the
HTML parse tree, strings are represented by the text of
content leaves. However, we associate a string to every node
of the parse tree available as the value of the attribute ele-
menttext. For instance when extracting access codes of the
phone-numbers of lixto.html, string extraction has to be
used. A substring of the elementtext of an HTML tree is de-
noted as string source. One can express that a string source
must match a given regular expression. A string path defi-
nition spd is a regular expression possibly containing some
variables (variable Y indicated by \var[Y ]) which appear in
some concept predicate of the corresponding rule. Regular

expressions are powerful tools for text processing and match-
ing. Refer to [24] for a Java regular expression library. Ex-
traction generates minimal non-overlapping substrings. The
final two patterns of Fig. 8 give an example of string extrac-
tion. An attribute path definition apd helps to extract values
of attributes. It is simply a string (expressing the attribute
name).

4.4 Language Definition
Elog atoms correspond to special predicates with a well-

defined semantics. They operate on source objects (tree re-
gions and string sources), path definition objects and numer-
ical arguments and obey binding conventions. In a datalog-
like language, the function mapping a given source S to
a set of elements matching an epd is treated as relation
subelem(S, epd,X). subelem(s, epd, x) evaluates to true iff
s is a tree region, epd is an element path definition and x
is a tree region contained in s where the root of x matches
epd. Note that the tree path specified in a tree extraction
definition predicate is always relative to the parent-pattern
instance.

Extraction definition predicates specify a set of ex-
traction instances. One of these is subelem. As far as string
extraction is concerned, the predicate subtext(S, spd,X) is
used. There, S is either a tree region or a string source, and
X a string source. Two more extraction definition predicates
are built-in. (1) subsq(S, epd, fpd , lpd , X): If s and x are tree
regions, epd is an element path definition, and fpd and lpd
are simple element path definitions, subsq(s, epd, fpd , lpd , x)
evaluates to true iff the root of x satisfies epd, its first child
satisfies fpd and its last one lpd . (2) subatt(S, apd,X): If
s is a tree region, x a string source and att is an attribute
path definition of the root element of s, then subatt(s, apd, x)
evaluates to true iff x is the value of apd. subatt gives the
possibility to extract the values of attributes.

Context condition predicates specify that some other
subtree or text must (not) appear before or after the de-
sired extraction target. For example, on a page with several
tables, the final table could be identified by an external con-
dition stating that no table appears after the desired table.
Before predicates are explained here, after predicates work
analogously. (1) before(S,X, epd, b, e, Y, P ): If s and x are
tree regions, then before(s, x, epd, b, e, y, p) evaluates to true
iff y is a subtree whose root node is matched by epd and the
end offset of y precedes the start offset of x within relative
distance p where b ≤ p ≤ e. (2) notbefore(S,X, epd, d): If s
and x are tree regions, then notbefore(s, x, epd, d) evaluates
to true iff no element satisfying epd precedes x within rela-
tive distance d. The same predicates are defined for string
extraction: There, S is an arbitrary source, X is required to
be a string source, spd is used instead of epd and instead of
the root node simply the string itself is used. The percentual
distance values b and e define the tolerance interval where
the element is allowed to occur inside the current parent-
pattern instance. Additionally, a condition predicate may
contain new variables Y and P , which can be referred by
other conditions. To express that an element occurs any-
where within the parent instance and before the target (or a
condition output), the distance values are set to 0 and 100,
respectively.

Internal conditions predicates impose conditions on
the internal structure. Imagine, for instance, one wants to
extract all tables containing somewhere a word typeset in



tablesq(S, X) ← document(“www.ebay.com/”, S), subsq(S, (.body, []), (.table, []), (.table, []), X),
before(S, X, (.table, [(elementtext, item, substr]), 0, 0, , ), after(S, X, .hr, 0, 0, , )

record(S, X) ← tableseq( , S), subelem(S, .table, X)
itemnum(S, X) ← record( , S), subelem(S, ?.td, X), notbefore(S, X, .td, 100)
itemdes(S, X) ← record( , S), subelem(S, (?.td. ? .content, [(a, , substr)], X)

price(S, X) ← record( , S), subelem(S, (?.td, [(elementtext, \var[Y].∗, regvar)]), X), isCurrency(Y)
bids(S, X) ← record( , S), subelem(S, ?.td, X), before(S, X, .td, 0, 30, Y, ), price( , Y)

currency(S, X) ← price( , S), subtext(S, \var[Y], X), isCurrency(Y)
pricewc(S, X) ← price( , S), subtext(S, [0− 9]+\.[0− 9]+, X)

Figure 8: Elog Extraction Program for Information on eBay

italics. This can be obtained by adding a contains condi-
tion. contains(X, epd, Y ): contains(x, epd, y) evaluates to
true iff x is a tree region (string source) containing a sub-
tree (string source) y where the root element of y matches
epd (where y matches spd). The firstsubtree condition is
a kind of “startswith” condition that states that the first
subtree of a tree region should contain a particular element.
firstsubtree(X,Y ): firstsubtree(x, y) evaluates to true iff y
is the subtree rooted at the first child of the tree region x.
lastsubtree is defined analogously.

Concept condition predicates are semantic concepts
like isCountry(X) or isCurrency(X) (see Fig. 8) or syntac-
tic ones like isDate(X) (or isDate(X,Y ) where the output
Y returns a standard date format), stating that a string
X represents a date, a country, or a currency, respectively.
Some predicates are built-in to enrich the system, however
more concepts can be interactively added with assistance
of the Lixto concept editors. Syntactic predicates are cre-
ated as regular expressions, whereas semantic ones refer to
a database of ontologies (e.g. using ThoughtTreasure [21] or
Starlab Dogma [25]). Moreover, Comparison conditions
such as < (X,Y ) allow comparison of concepts such as two
standard format dates.

Pattern predicates indicate that a source belongs to a
particular pattern and refers to a particular parent pattern-
instance. They are used in the head, and in the rule body
for referring to a parent pattern and for further pattern ref-
erences. As an example, the <price> pattern can be con-
structed by using the element path definition . ? .td, and
imposing the constraint that immediately before, a target
of pattern <item> needs to occur:

before(S,X, . ? .td, 0, 1, Y, ), item( , Y ).

Range conditions restrict the matched targets depend-
ing on their order of appearance. To any rule, a range con-
dition such as “[3,7]” can be added, indicating that only the
third up to the seventh matched instance within each parent
instance are matched.

4.5 Elog Extraction Programs
A standard extraction rule looks as follows: New(S,X)←

Par( , S), Ex(S,X), Co(S,X, . . . )[a, b], where S is the par-
ent instance variable, X is the pattern instance variable,
Ex (S,X) is an extraction definition atom, and the optional
Co(S,X) are further imposed conditions. A tree (string) ex-
traction rule uses a tree (string) extraction definition atom
and possibly some tree (string) conditions and general con-
ditions. The numbers a and b are optional and serve as

range parameters. New and Par are pattern predicates re-
ferring to the parent pattern and defining the new pattern,
respectively. The above standard rule reflects the princi-
ple of aggregation. In an extended environment, we more-
over allow specialisation rules such as: greentable(S,X) ←
table(S,X), contains(X, (.td, [color, green, exact]), ). Addi-
tionally, an extended environment contains document filters,
using a getDocument(S,X) atom, where S is a string source
representing an URL, and X the web page the URL points
to. With such filters, one can crawl to further documents. If
document filters are used, each program has an initial filter
using the getDocument atom with user-specified input.

The semantics of a rule is given as the set of matched tar-
gets x: A substitution s, x for S and X evaluates New(s, x)
to true if all atoms of the body are true for this substitu-
tion. Only those targets are extracted for which the head
of the rule resolves to true. Moreover, if the extraction def-
inition predicate is a subsequence predicate, only minimal
rule outputs are matched (i.e. instances that do not contain
any other instances). Observe that range criteria are applied
after non-minimal targets have been sorted out.

A pattern is a set of extraction rules defining the same
head and referring to the same parent pattern. In the visual
pattern generation the user first enters a pattern name and
to which parent pattern the pattern belongs. All rules cre-
ated inside the pattern use this information. We distinguish
tree and string patterns. To the first, only tree extraction
rules can be asserted, to the second one only string extrac-
tion rules. The root pattern <document> is a special pattern
without filters. If using document filters to crawl to further
web pages, document patterns are used as third pattern type
(and an initial document filter is used). Parents of tree pat-
terns are either tree or document patterns, parent of string
patterns are tree or string patterns, and parent of document
patterns are string patterns. A pattern acts like a disjunc-
tion of rule bodies: To be an extracted instance of a pattern,
a target needs to be in the solution set of at least one rule.
The pattern output additionally obeys a minimality crite-
rion. In patterns, even in those consisting of a single rule,
overlapping targets may occur.

An extraction program P is a set of patterns. Elog pro-
gram evaluation differs from Datalog evaluation in the fol-
lowing three aspects: built-in predicates, various kinds of
minimisation, and use of range conditions. Moreover, the
atoms are not evaluated over an extensional database of
facts representing a web page, but directly over the parse
tree of the web page. Applying a program to an HTML



<?xml version="1.0" encoding="UTF-8"?>
<document>
<heading>Items for Sale</heading>
<description>3 items found for "Notebooks".

Showing Item 1 to 3.</description>
<entry>

<article>56 K Modem PCMCIA Card for
Notebooks</article>

<price>$ 20</price>
<person href="mailto:itsme@bestseller.org">

Angie</person>
<phone>(01)-314 159</phone>
<picture/>

</entry>
[...]

Figure 9: XML translation of lixto.html

page creates a set of hierarchically ordered tree regions and
string sources (called a pattern instance base) by applying
all patterns of the program in their hierarchical order to
this HTML document (and possibly to further HTML doc-
uments if document filters are used). Each pattern produces
a set of instances. Each pattern instance contains a reference
to its parent instance. As patterns are ordered in a strictly
hierarchical way, the program is hierarchically stratified. In
the final section we will relax the definition of patterns to
create recursive programs.

As example program consider a wrapper for eBay pages
(Fig. 8). On eBay pages, every offered item is stored in
its own table extracted by <record>; further patterns are
all defined within such a record. The pattern <price> uses
a concept attribute, namely isCurrency – which matches
strings like $, DM, Euro, etc. The <bids> pattern uses a
reference to the <price> pattern. The final two patterns
are string patterns.

5. TESTING THE LIXTO TOOL
We chose twelve example sites (Table 1), some of which

were already used for testing purposes by other wrapper
generators. Several users of whom not all are familiar with
details of HTML contributed to our test results. Initially, we
asked them to create a wrapper based on a single example
page. Table 2 summarises answers to the following ques-
tions: (1) Is it possible to wrap this page with Lixto? (2)
How “complex” is the constructed program for this site? (ra-
tio of required predicates to used output patterns) (3) What
is the percentage of correctly wrapped pattern instances of
a number of randomly chosen similarly structured testpages
with a wrapper written on one example page only. (4) How
many example pages are necessary (due to structural de-
viations) to get 100 percent of correctly matched pattern
instances? (5) Moreover, we specify the time needed for
constructing the initial wrapper based on one example page.
Additionally, the time for constructing one output pattern
is computed to gain a measure how much “thinking time”
was required for each output pattern. (6) In the last row
the depth of the pattern tree is specified.

Let us describe some more details: On eBay, the initial
wrapper worked well on almost all test pages like queries on
cars, football, etc. However, one filter rule of <date> required
that dates must contain a colon and a dash. This matched

one item description, too, which used both. Hence, the pat-
tern had to be refined based upon the knowledge of this
second page to match 100% of the patterns of all example
pages. For the CIA Factbook, the user chose a bad example
page with only one bordering country. Even after improv-
ing the wrapper to deal with comma-separated countries,
Albania had to be treated in a special way. The wrapper for
DBLP relies on a number of intermediate auxiliary patterns,
indicated by the high nesting depth of the document. For
the CNN pages of the US election results per state, a wrap-
per just extracting names of president candidates and the
received votes was written in a few minutes; due to a very
homogeneous structure, one example page was sufficient to
extract these data for all states. The Jobs Jobs Jobs site is
the only example where the number of needed sample pages
depends on the number of testpages due to a wide variety
of structures for job offers. For the Perl Module List we are
merely interested in writing a wrapper for a single web page.
This list uses mainly preformatted text, hence the program
heavily relies on string extraction. In the current implemen-
tation some auxiliary patterns are needed, and some clever
constructions to obtain a 100% match for the five chosen
patterns (module group, leaf patterns name, DSLI, descrip-
tion, info). We conclude that almost all web pages can be
visually wrapped with Lixto. Observe, that although we
chose a rather structured file for illustrating Lixto through-
out the paper, our approach also works on pages with less
structure such as e.g. the CIA Factbook. For none of the test
pages the user had to modify the Elog program manually.
Wrapper construction is usually very fast. The program
length measured in used predicates is never unreasonably
large compared to the output patterns (ranging from 1.78
to 4.4). The user never had to consider more than three
example pages to get a 100% match for all testpages.

6. RELATED WORK
First, we give an overview of approaches less related to

Lixto because they do not provide visual support. Stand-
alone wrapper programming languages include Florid [19]
(using a logic-programming formalism), Pillow [7] (an HTML
and XML programming library for logic programming sys-
tems), Jedi [14] (using attributed grammars), Tsimmis and
Araneus. In Tsimmis [12], the extraction process is based on
a procedural program which skips to the required informa-
tion, allows temporary storages, split and case statements,
and to follow links. However, the wrapper output has to
obey the document structure. In Araneus [3], a user can cre-
ate relational views from web pages by computationally fast
and advanced text extracting and restructuring formalisms,
in particular using procedural “Cut and Paste” exception
handling inside regular grammars. In general, all manual
wrapper generation languages are difficult to use by layper-
sons.

Machine learning approaches rely on learning from exam-
ples and counterexamples of a large number of web pages.
Stalker [22] specialises general SkipTo sequence patterns
based on labelled HTML pages. An approach to maximise
specific patterns is introduced by Davulcu et al. [10]. Other
examples include Softmealy [13] (using finite-state trans-
ducers) and MIA [27] (prolog-based wrappers using anti-
unification; neural networks to generalise and learn texts).
NoDoSe ([2]) extracts information from plain string sources
and provides a user interface for example labelling. It has



Name Website Used Example Page Testpages
Amazon http://www.amazon.com/ Lord of the Rings 10

CIA Factbook www.odci.gov/cia/publications/factbook/ United Kingdom 12
Cinemachine www.cinemachine.com/ The World is not enough 15

DBLP www.informatik.uni-trier.de/~ley/db/ Michael Ley 10
Election Res. / State www.cnn.com/ELECTION/2000/results/ Alabama 50

eBay www.ebay.com/ query on Notebooks 20
Excite Weather www.excite.com/weather/forecast London (UK) 12
Jobs-Jobs-Jobs www.jobsjobsjobs.com/ 23370 10

Perl Module List www.cpan.org/modules/00modlist.long.html single huge page ex.pg.
Travelnotes www.travelnotes.org/ query on Istanbul 10

Yahoo People Email people.yahoo.com/ query on Mayer 15
Yahoo Weather weather.yahoo.com/ Paris 15

Table 1: Some of the test-sites used for Lixto

Name wrapable? Complexity Correct for 100% Time/Pattern (mins) Depth
Amazon yes 16/9 = 1.78 95% 3 22/9 = 2.44 4

CIA Factbook yes 17/5 = 3.4 80% 3 18/5 = 3.6 3
Cinemachine yes 6/4 = 1.5 100% 1 16/4 = 4 2

DBLP yes 27/9 = 3 90% 2 54/9 = 6 8
Election Results / State yes 4/2 = 2 100% 1 6/2 = 3 2

eBay yes 19/8 = 2.38 99.9% 2 21/8 = 2.63 4
Excite Weather yes 22/7 = 3.14 100% 1 30/7 = 4.3 3
Jobs Jobs Jobs yes 21/12 = 1.75 90% 3 40/12 = 3.3 2

Perl Module List yes 22/5 = 4.4 (100 % ) (1) 60/5 = 14 6
Travelnotes yes 11/4 = 2.75 95% 2 20/4 = 5 2

Yahoo People Email yes 10/3 = 3.3 100% 1 24/3 = 8 3
Yahoo Weather yes 22/10 = 2.2 100% 1 12/10 = 1.2 3

Table 2: Evaluation of wrapper generation

restricted capabilities to deal with HTML. Kushmerick et al.
[16] create robust wrappers based on predefined extractors;
their visual support tool WIEN receives a set of training
pages, where the user can label relevant information and
the system tries to learn a wrapper. Their approach does
not use HTML parse trees. Kushmerick also contributed
to the wrapper verification problem [15], an issue worth to
explore w.r.t. Elog, too. In general, drawbacks of machine-
learning approaches are limited expressive power and the
large number of required example pages.

Supervised interactive wrapper generation tools include
W4F [23] and XWrap [18]. W4F uses an SQL-like query
language called HEL. Parts of the query can be generated
using a visual extraction wizard which is limited to return-
ing the full DOM tree path of an element. However, the full
query must be programmed by the user manually. Hence,
W4F requires expertise with both HEL and HTML. HEL
requires tricky use of index variables and fork constructs
to correctly describe a complex pattern structure. XWrap
uses a procedural rule system and provides limited expres-
sive power for pattern definition. The user cannot label
regions in documents as flexible as in Lixto. XWrap lacks
visual facilities for imposing external or internal conditions
to a pattern, but instead is rather template-based. The
division into two description levels and the automatic hier-
archical structure extractor severely limit the ways to define
extraction patterns (e.g. it is impossible to describe pattern
disjunctions). Hence, in general, other supervised wrapper

generation tools require manual postprocessing and do not
offer the browser-displayed document for labelling.

7. CURRENT/FUTURE WORK
It is currently already possible to write and execute Elog

programs that can crawl to other pages, i.e. follow links dur-
ing extraction, and can recursively wrap linked sequences of
web pages. For such applications, the pattern structure does
no longer form a tree because filters of one pattern definition
may refer to different parent patterns (in a similar fashion
as recursive data types). For example, recursive Elog pro-
grams may follow a “next” button and navigate to further
pages during extracting, while extracting instances of the
same patterns. See Fig. 10 for extending the eBay exam-
ple of Fig. 8 to follow a “next” button, and extract for
each page the same kind of information. In this example,
the pattern <document> has an initial filter which uses the
user-provided page ($1), and an additional filter, which uses
<nexturl> as parent pattern (whose instances are strings
representing URLs). Web crawling and recursion in Lixto
is described in more detail in [4]. Currently we are extend-
ing the interactive pattern builder to cover these aspects.
Furthermore, a server-based Lixto version is currently being
implemented – it uses simple web interfaces and works in the
user’s favourite browser. Future work focuses on automation
heuristics for optional use, including to work on multiple ex-
ample targets at once. Additionally, Lixto wrappers will be
embedded into a personalisable information channel system.



next(S, X) ← document( , S), subelem(S, (?.content, [(a, , substr), (elementtext, Next, exact)]), X)
nexturl(S, X) ← next( , S), subatt(S, href, X)
document(S, X) ← getDocument($1, X)
document(S, X) ← nexturl( , S), getDocument(S, X)

Figure 10: Recursive Extension of the Elog program of Figure 8

8. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

Web - From Relations to Semistructured Data and
XML. Morgan Kaufmann, 2000.

[2] B. Adelberg. NoDoSE - a tool for semi-automatically
extracting semi-structured data from text documents.
In Proc. SIGMOD, 1998.

[3] P. Atzeni and G. Mecca. Cut and paste. In Proc.
PODS, 1997.

[4] R. Baumgartner, S. Flesca, and G. Gottlob.
Declarative information extraction, web crawling and
recursive wrapping with Lixto. Proc. LPNMR, 2001.

[5] R. Baumgartner, S. Flesca, and G. Gottlob.
Supervised wrapper generation with Lixto. Proc.
VLDB Demo, 2001.

[6] R. Baumgartner, S. Flesca, and G. Gottlob. Visual
web information extraction with Lixto. In Proc.
VLDB, 2001.

[7] D. Cabeza and M. Hermenegildo. Distributed WWW
programming using (Ciao-)Prolog and the PiLLoW
library. TPLP, 1(3), 2001.

[8] S. Ceri, S. Comai, E. Damiani, P. Fraternali,
S. Paraboschi, and L. Tanca. XML-GL: a graphical
query language for querying and restructuring XML
documents. In Proc. WWW Conf., 1999.

[9] D. Chamberlin and al. (Eds.). XQuery: A query
language for XML. http://www.w3.org, 2001.

[10] H. Davulcu, G. Yang, M. Kifer, and I.V.
Ramakrishnan. Computat. aspects of resilient data
extract. from semistr. sources. In Proc. PODS, 2000.

[11] D. Florescu, A. Deutsch, A. Levy, D. Suciu, and
M. Fernández. A query language for XML. In Proc.
8th Intern. WWW Conference, 1999.

[12] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha,
and A. Crespo. Extracting semistructured information
from the web. In Proc. Workshop on Mang. of
Semistructured Data, 1997.

[13] C-N. Hsu and M.T. Dung. Generating finite-state
transducers for semistructured data extraction from
the web. Information Syst., 23/8, 1998.

[14] G. Huck, P. Fankhauser, K. Aberer, and E.J. Neuhold.
JEDI: Extracting and synthesizing information from
the web. In Proc. COOPIS, IEEE CS Press, 1998.

[15] N. Kushmerick. Wrapper verification. World Wide
Web Journal, 2000.

[16] N. Kushmerick, D. Weld, and R. Doorenbos. Wrapper
induction for information extraction. In Proc. IJCAI,
1997.

[17] A.Y. Levy and D.S. Weld. Intelligent internet systems.
Artificial Intelligence, 118(1-2), 2000.

[18] L. Liu, C. Pu, and W. Han. XWrap: An extensible

wrapper construction system for internet information.
In Proc. ICDE, 2000.

[19] W. May, R. Himmeröder, G. Lausen, and
B. Ludäscher. A unified framework for wrapping,
mediating and restructuring information from the
web. In WWWCM. Sprg. LNCS 1727, 1999.

[20] B. McLaughlin and J. Hunter. jdom.org Package.
http://www.jdom.org/.

[21] E. T. Mueller. Natural language processing with
ThoughtTreasure. Signiform, 1998.

[22] I. Muslea, S. Minton, and C. Knoblock. A hierarchical
approach to wrapper induction. In Proc. 3rd Intern.
Conf. on Autonomous Agents, 1999.

[23] A. Sahuguet and F. Azavant. Building light-weight
wrappers for legacy web data-sources using W4F. In
Proc. VLDB, 1999.

[24] D.F. Savarese. OROmatcher - Regular Expressions for
Java. http://www.savarese.org/oro/.

[25] Starlab. http://www.starlab.vub.ac.be/research/
dogma/ontologyserver.htm.

[26] M. Stonebraker and J. Hellerstein. Content integration
for e-business. In Proc. Sigmod, 2001.

[27] B. Thomas. Anti-unification based learning of
T-wrappers for information extraction. In Workshop
on Machine Learning for IE, 1999.


