
Development of an API to Create Interactive
Storytelling Systems

Enrique Larios1, Jesús Savage1, José Larios1, Rocío Ruiz2

1 Laboratorio de Interfaces Inteligentes
National University of Mexico, School of Engineering, Valdez Vallejo Building, Ciudad

Universitaria, Mexico City, Mexico
bernulli@yahoo.com, savage@servidor.unam.mx,

joselarios@lycos.com
2 Instituto Tecnológico de Estudios Superiores Monterrey, Campus Ciudad de México,

Mexico City, México
caruiz@itesm.mx

Abstract. Interactive storytelling (IS) is an incipient field that has not been com-
pletely formalized yet. There is still a significant amount of research to be done.
Especially regarding topics such as how much freedom can be granted to the
user to modify the story and what are the effects this freedom will have in the
quality of the story. In this paper it is presented an object-oriented expandable
API that provides many of the low-level functionality requirements of an inter-
active storytelling system, so research regarding such topics can be done
without worrying about the implementation details. The API includes the capa-
bility to present a 3D graphic representation of the of the story world. It has a
basic agent class, which already provides NURB-curve-based navigation, bone-
based animation and text-to-speech capabilities.

1 Introduction

An Interactive Storytelling System (ISS) is a software system that stores all the infor-
mation regarding the virtual world where the story takes place. It includes the story’s
objects and characters; the ISS also simulates the evolution of the events that form the
story itself, with diverse mechanisms and with different degrees of freedom. It allows
the user to modify the story’s course of the events. This is a capability necessary for a
system in order to be called interactive. Another important distinction in an ISS is the
way the story they told is created. Some systems generate a completely new story
every time, while other systems may already have the basic line of development that
the story events will follow, and only do small changes on it depending on the user
input.

In the second type of systems, a content creator makes the general outline of events
before the system is used, and it is usually not very flexible to the user input. If it
gives a high amount of freedom to the user, it would had to anticipate and cover many
branches that the story could take, but if the user actions have little or no effect in the
final outcome of the story then the system could hardly be called interactive. On the

other hand, the systems that generate the story by themselves have to take into ac-
count the user actions and some kind of parameter set to indicate the mood, the tone
and the pace of the story. Often, the problem with this kind of approach is the lack of
dramatic and entertaining quality of the generated stories.

Additionally, the cost of development of an ISS is usually very high, because of the
developers’ lack of experience in this area, the short of proven design patterns and the
different disciplines that take part in this kind of project. These problems can cause
the scattering of efforts in several areas, like artificial intelligence, computer graphics,
animation, text-to-speech conversion and voice recognition. After building these basic
systems the developers have to deal with their integration with the story system that
they developed. The complexity of the system that has to be built in order to test new
theories is one of the main problems that affect IS development and research.

The purpose of this project is to provide an API for the developers of ISS that in-
cludes the basic functionality that would allow them to develop their systems easily.
The use of this API would render in further research of the real issues of IS. The API
was tested in the development of a virtual reality environment that represents the Ma-
yan archeological site of Calakmul, see figure 1.

Fig. 1. Calakmul virtual environment.

The purpose of this project is to allow the users of the system to visit, virtually, a
newly discovered Mayan archeological site in the state of Campeche, Mexico.
Through the integration and use of the Nebula game engine [1] in the API and the
help of a tourist guide controlled by the API agent class, the system lets the users to
know the archeological site that is located in an almost inaccessible area.

2 Types of Interactive Storytelling Models

Different Artificial Intelligence approaches have been applied to the implementation
of ISS, but all of them are restricted in one way or another by the interaction model
the ISS uses. Because depending on the way the user is allowed to interact with the
story and the way the story molds itself depending it, the AI methods applied may

vary greatly. In some models, the system has to respond by simply selecting a branch
of the story that was already built up, depending on very few significant user actions.
While in others, the agents that control the story’s characters have a specific AI im-
plementation that tries to make their reactions look real while generating a story that
can be modified by the user actions. It is also necessary to state that there are several
different models in between these two. This great variety of completely different sys-
tems is one of the main reasons for the lack of standard design patterns in this field,
and obviously, an obstacle for deep and thorough research on IS. In the next para-
graphs, we will present some of the more common interactive storytelling models.

2.1 Linear Story with Branching Points

This is the simplest and the less interactive of the IS models. In these systems, the
story develops in a linear fashion and only certain specific actions of the users affect
the plot of the story, branching it from a limited set of selections. These systems
sometimes have an upper layer of high interactivity, but the users actions in this layer
do not have a significant impact on the story itself. Actually, these systems can hardly
be called interactive, unless the level of branching covers every possible action the
user may perform on every possible object in the story world. Obviously, this is very
hard to do, because the number of branches would increase very fast to an almost in-
finite amount. Due to this problem, the number of important branches in any story
that runs in this type of systems is always less than six. This model is usually applied
in systems such as videogames and interactive software for kids.

2.2 Emergent Story from Intelligent Agents

In this type of model, the attention is placed on the way the characters behave based
on their emotions and profiles. Most of the use of AI solutions in these systems are
applied to the agents, giving sometimes an unpredictable result in the quality of the
story, like Aylett points out in her soccer game analogy in [2]. It is not enough that all
the characters that interact with the user have a realistic behavior in order to emerge
an interesting story. For example, even if it were possible to create an AI system
where the virtual characters acted completely natural, even if it were impossible to
distinguish them from a real person, even then, there would be no guarantee that the
generated story would be good. We simply have to look at real life; does every se-
quence of events that happen in real life have the dramatic or comic quality to really
call it a story? Even in improvisational drama an abstract plot is given to the actors. It
constrains and directs the actions of the character they represent. This means that de-
velopers of interactive systems using this model still have to face with the challenging
problem of generating a good story at the abstract level.

A particular problem that arises with emergent stories, and that is shared with im-
provisational drama, is that the boring parts of the story aren’t leaved out as authors
usually do in traditional narrative between scenes. It can be argued that digital emer-
gent stories have an advantage over improvisational drama, because they can flip onto
the next scene computing the boring parts that happened between scenes, as pointed

out in [2]. With this solution, however, other difficult problems may arise. Like the
need to create a system module in charge of selecting which element of the story that
is emerging are dramatic and interesting enough to be presented to the user, and
which are boring, mundane or irrelevant so they have to be computed off-screen.

2.3 Story-Driven Interaction

The sometimes uncertain quality of the story generated by intelligent agents has moti-
vated other researchers, like Szilas [3], to propose interaction models where the gen-
eration of quality stories is emphasized. The proposal for this kind of systems states
the need of a story engine where story would be generated taking into account the
user actions, but also narrative and dramatic principles in order to ensure the story’s
quality. This is, admittedly, no easy feat. There is still no definitive solution for this
problem, even though it seems like a step in the right direction. The problem with this
model is the difficulty to represent and mold many of the abstract qualities that a good
dramatic story needs. There is even no agreement on exactly what makes a good
story. The problems of this approach are aggravated because of the lack of a definitive
narrative theory; some of the theories that are commonly applied to interactive stories
are the story functions proposed by Propp [4] or Barthes’ structural analysis [5]. It is
also necessary to point out that a story-driven interactive system based on these theo-
ries is very difficult to implement because these theories were not intended for a com-
puter application, and also because they have a high level of abstraction.

As concluded by [6], most of the narrative theories conceive a story as something
that was authored rather than something dynamically created, an approach which
would be more suitable for the application of intelligent agents to the characters’ im-
plementation. Certainly, the dynamic approach would be easier because it would al-
low the use of more tested and researched agent’s solutions.

3 An API for Interactive Storytelling

Because the current state of interactive storytelling and the great variety of disciplines
needed to develop a complete ISS, we have developed an API that includes the most
common and difficult to implement functions of an ISS. This API would help to the
easier and faster development of ISS; it would also facilitate the research of new mod-
els and the confirmation of proposed theories in this field. Although it is possible to
present the stories in text, or narrated through a text-to-speech system, the computer
user is accustomed to a 3D interface where he can see the graphic representation of
the characters and the story environment. Due to this, an important part of any API for
IS should include a graphic engine to help the developer to entice the graphic-centered
computer user. Around this engine, and using its software architecture the API was
developed integrating the basic functionality that every ISS requires. Much of the ef-
fort in the building of this API was put in its expandability; the use of the object-
oriented approach was part of this scheme to insure that the developer of interactive
stories can use the API to build his own system.

3.1 Object-Oriented Design

As mentioned in the last section, the API should help the programmers to develop
completely modular and fully expandable projects. The object-oriented design is the
most natural and intuitive way to do it. The design pattern is as follows, there are two
main kinds of classes: the story entities, objects that control the internal state and be-
havior of every element that exists in the story, and the servers, that are just software
elements that implement a common function and share it with all the entities of the
story. To help the developers to follow this pattern, the API already includes a base
class that has the minimum functionality and the most common interfaces that every
story entity, either character or object, needs. All the classes are based on the root
class of the game engine (nRoot) and on the base class of the API (nIstEntiy), see fig-
ure 2.

Fig. 2. Object hierarchy of the basic classes of the API.

Another design pattern promoted by the API is the division between the object that
stores the status and the behavior of the object in the story world, and the one that
stores its graphic representation. In this way, the API is ready for an easy change of
game engine, foreseeing its obsolescence. Due to this division there is a class in the
API to store the story entities and one to store its graphic representation. The world
class is where all the story entities are stored and updated and the scene class is where
all the graphic representations of the objects are stored and rendered.

The design pattern followed by the server class is intended to combine a set of re-
lated functions in a sole class. An instance of this class makes accessible its function-
ality to every entity that may need them. Classes like the time server, the graphic
server and the voice server belong to this kind of classes, and are already imple-
mented in the API. The developers that follow this design pattern can create new
classes that control and generate the story, developing story servers like the ones men-
tioned in Section 2.3. Using all the included functionality and only developing a new
server class which generates the story that all the story entities would follow is an ex-
ample of the way we expect that our API would drive the development of new ISS.

3.2 Basic Physic Simulation System

As was already stated, in order to create a more inmersive experience, it is almost
necessary that the ISS do a graphic representation of the events that happen in the
story. A problem that arises when the events are presented this way is the need for
physic simulation, because it would not be enough that the movements of the charac-
ters were controlled by the user or by the agents. If there is no physic simulation or
collision detection, the user would be able to direct the character he is controlling
against a wall, only to find that the character goes through it.

For that reason, the API also includes a complete physics’ particle simulation sys-
tem that ensures the realistic physical behavior of the objects in the story world. The
API simulates gravity, inertia, friction and inelastic collisions. These are just a few
simple physics laws, but more than enough to enhance the realism of the graphic rep-
resentation of the virtual environment of the story.

3.3 High-Level Functionality for the Control of the Characters

Another class that the API includes is the actor class. This class is the one in charge of
the actions of the story characters. And as a requirement for the developers’ ease of
use, all of this class functionality can be accessed through high-level commands. The
purpose of the high-level access to the actor functionality is to allow inexperienced
programmers to develop ISS through scripts, encouraging an increase in the number
of artistic members in the ISS development groups. As Chris Crawford points out [7],
part of the lack of new models and ideas in interactive storytelling is product of the
lack of multidisciplinary groups that develop ISS.

The actor class is coupled with the 3D model class that supports the cycling and
blending of bone-based animations, see figure 3. In this way, the designer can apply
to several different models the same walk and run animation, while they blend it with
another animation that controls the model’s hands. The 3D model class is imple-
mented over the open source Cal3D library [8], and supports models and animations
exported from 3D Studio Max 4.2.

Fig. 3. The animation of the characters is bone-based in order to adapt one animation to several
different models.

Often, the lack of artists and content creators in the development teams of ISS is
caused by the difficulty they face to create the content. This difficulty is posed by the
use of not fully developed design tools and the utilization of low-level languages to
control the actions of the characters.

We expect that the high-level control offered by the API will help to the creation of
a rule based system that will control some of the characters high level actions, while
the details of those actions are controlled by the code of the API. For example, the
API already has a basic navigation system based on NURB-curves. This feature of the
API is meant to create a network of nodes representing the important points in a
scene, which are communicated through the paths created by the NURB-curves. In
this way, it is only necessary to develop an algorithm, like Dikjstra´s search, that se-
lects the best path to reach the place the agent needs to go.

3.4 Wide Variety of Camera Styles

When someone is telling a story in a graphical way, it is not enough to show the
events as they happen. In order to increment its dramatic quality, the camera plays a
key role. Depending on the position and movement of the camera, the scene changes
completely. The ideas and feelings that the author intends to transmit may be severely
distorted by the position of the camera. Even the most epic or dramatic scene can be
turned into a comedy with the right camera angle. For that reason the API also con-
tains a very complete camera class. It lets the developers show their scene in the most
appropriate way. The camera class has some automated functions that free the devel-
oper from having to control its movement every moment.

3.5 Text to Speech Conversion

Depending on the way the ISS is displayed, different forms of communication can be
employed to inform the user, but its effectiveness may vary greatly depending on sev-
eral factors. For example, if the ISS is displayed in a “cave”, where the user is com-
pletely immersed and the developers have the intention of making the user to feel he
is in some other place, then the use of text messages would be a bad choice. Because
text messages would interfere with the cave display, making it look less real. Consid-
ering this possible use, we decided to integrate into the API the Microsoft Speech
SDK that has text-to-speech capabilities, thus allowing the agents to say small phrases
that already were written by the developer. These phrases can be converted into
speech depending upon the developers’ scripting.

3.6 Interactive Storytelling Models Suitable for the API

The functionality and the architecture of the API make it more suitable for some of
the IS models mentioned early on. The API is completely suitable to implement the
functionality required by a system using the linear-branching story model. In the case
of the other two mentioned models of interaction, the API does not provide with all
the functionality that an ISS implementing them requires. Nevertheless, its architec-

ture provides a foundation that covers the low-level actions that a virtual character re-
quires. Allowing that all the required high-level functionality can be easily imple-
mented and incorporated. In emergent story telling, a more advanced and abstract
agent can be built on top of the existing functionality in order to obtain story emer-
gence. The API is also suitable for an ISS that implements the story-driven model, al-
though a whole story engine stills has to be built as a server on top of the API’s low-
level functionality.

3.7 Possible Roles for the Agents Created with this API

With the capabilities that the API grants to the agents, it enables them to behave like
reactive agents. Their responses can be completely scripted. It also allows creating
agents with a simple automaton that triggers scripts depending upon its state as their
behavior and emotion control. Right now, the functionality implemented in the API
enables the agents created with it to have a role as story participants, but not as crea-
tors or active modifiers of the story. For example, the API functionality was used to
implement a virtual-tourist guide that answers to many possible questions about the
archeological site of Calakmul.

4 Future Work: The Development of a Rule Based System

One of the most complex parts to develop of an ISS is the control of the characters.
The API presents a script based control mechanism for every object. This feature is
extended from game engine architecture to all the API classes. The scripting language
is Tcl, which is flexible and powerful enough for most of the needs of the ISS devel-
opers. Only if the system requires real independent intelligent agents, then the kind
control that Tcl scripting offers may not be suitable. To support those cases we are
planning to include in the API a rule based system, using CLIPS [9] that would help
enable the agents to plan and execute more complex sets of actions without the ex-
plicit programming from the developer. It would also help to create a better interpre-
tation of the user actions through its knowledge-representation capacities, enabling
the agents to react to complex situations and environments where context is impor-
tant.

As stated earlier, the use of intelligent agents, would not by itself, improve the
quality of the interactive story, but it would make the behavior of the characters more
believable. It would depend upon the developers for the creation of a system that tells
the user a real interesting story that changes accordingly to his actions.

Conclusion

The contribution of this project is to propose a basic framework and an API for the
development of ISS, giving the developers certain basic functions and recommending
a software architecture that would make its development easier. Moreover, this work

tries to promote the creation and use of common agreed concepts in the field of IS,
because only then, most of the effort will be directed to the research and solution of
the problems that affect this novel field.

There are still many unsolved issues that only focused and specialized research can
discover. It is also very likely that only multidisciplinary development groups will
find the right system for real interaction with quality stories. And although there are
other more refined systems, like Gamebots [10], that use a game engine for research
purposes, we believe that we have a distinctive characteristic in the application devel-
opment process. Because all the code we used was open sourced, with the exception
of the text to speech module from MS, developers can use it for any kind of applica-
tion without worrying about paying any license fee.

References

1. http://www.radonlabs.de/nebula.html
2. Aylett, R.: Narrative in Virtual Environments - Towards Emergent Narrative. Narrative Intel-

ligence Symposium, AAAI 1999 Fall Symposium Series (1999)
3. Szilas, N.: Interactive Drama on Computer: Beyond Linear Narrative. In AAAI Fall Sympo-

sium. AAAI Press, Menlo Park, CA (1999) 150-156
4. Propp, V. 1928: Morphology of the Folktale. University of Texas Press (1998)
5. Barthes, R. 1966: Communication 8, Introduction à l’analyse structurale des récits. Editions

du Seuil (1981)
6. Louchart, S., Aylett, R.: Narrative Theory and Emergent Interactive Narrative. The 2nd In-

ternational Workshop on Narrative and Interactive Learning Environments, Edinburgh,
Scotland (2002)

7. Crawford, C.: Artist and Engineers as Cats and Dogs: Implications for interactive storytel-
ling. Computer Graphics 26, (2002) 1

8. http://cal3d.sourceforge.net/
9. http://www.ghg.net/clips/CLIPS.html
10. http://gamebots.sourceforge.net/

