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Abstract— Uncertainty propagation in a level 2 high level 
information fusion (HLIF) process is affected by a number of 
considerations.  These include the varying complexities of the 
various types of level 2 HLIF.  Five different types are identified, 
ranging from simple entity attribute refinement using situation 
status data to the development of a complete situation assessment 
assembled from applicable situational fragment data.  Additional 
considerations include uncertainty handling in the input data, 
uncertainty representation, the effects of the reasoning technique 
used in the fusion process, and output considerations.  Input data 
considerations include the data’s relevance to the situation, its 
credibility, and its force or weight.  Uncertainty representation 
concerns follow the uncertainty ontology developed by the W3C 
Incubator Group on Uncertainty Reasoning.  For uncertainty 
effects of the fusion process, a basic fusion process model is 
presented, showing the impacts of uncertainty in four areas.  
Finally, for output uncertainty, the significance of a closed-world 
versus open-world assumption is discussed. 
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I.  INTRODUCTION 
The past 20 years have seen an explosion of systems and 

techniques for collecting, storing and managing large and 
diverse sets of data of interest to a number of communities.  
These data are collected by a wide variety of mechanisms, each 
of which has varying considerations that influence the 
uncertainty in the data.  In order to provide useful information 
for a particular question or problem, the relevant data 
(“evidence”) must be identified, extracted and then fused to 
provide insight or answers to the question or problem.  The 
information fusion community has developed a widely 
accepted functional layered model of information fusion.  
These layers can be divided into low level and high-level 
fusion.  At all levels, the data going into a fusion process is 
recognized as having uncertainty, which affects in various 
ways the degree of certainty in the output of the process.   Low-
level fusion has been widely explored, primarily through the 
radar tracking community, and issues of uncertainty 
determination and propagation are well understood [1].   

High-level fusion, on the other hand, requires reasoning 
about complex situations, with a diversity of entities and 
various relationships within and between those entities.  This 
reasoning is often expressed symbolically, using logic-based 
approaches [2].  There has been significant work in using 
ontological approaches in developing fusion techniques and 

some of these approaches have taken uncertainty 
considerations into account (e.g. [3] [4] [5] [6]).  Various 
techniques exist to model and propagate uncertainty in a fusion 
process, with varying strengths and difficulties.  This suggests 
that their relative performance in a fusion system should vary 
significantly depending on the types and nature of the 
uncertainties within both the input data and the context of the 
problem set modeled with the fusion system. Unfortunately, 
there is no consensus within the fusion community on how to 
evaluate the relative effectiveness of each technique.  Work in 
this area will be hampered until the evaluation question is at 
least better defined, if not resolved.     

The International Society for Information Fusion (ISIF) 
chartered the Evaluation of Technologies for Uncertainty 
Reasoning Working Group (ETURWG) to provide a forum to 
collectively address this common need in the ISIF community, 
coordinate with researchers in the area, and evaluate techniques 
for assessing, managing, and reducing uncertainty [7]. In its 
first year, ETURWG defined its scope and developed the 
uncertainty representation and reasoning evaluation framework 
(URREF) ontology. The URREF ontology aims to provide 
guidance for defining the actual concepts and criteria that 
together comprise the comprehensive uncertainty evaluation 
framework [8].  It is evident that part of the issue in evaluating 
different uncertainty representation systems is to properly 
understand how a high-level fusion process works and how 
uncertainty is propagated through the process. 

This paper aims to help establish the various considerations 
about how uncertainty affects a HLIF process.  It will begin by 
defining what is meant by a HLIF process, and then focus on 
one class of HLIF, the level 2 HLIF.  From there, it will define 
a taxonomy of Level 2 HLIF, where increasing complexity of 
level 2 HLIF types have additional uncertainty considerations.  
Then it explores uncertainty propagation issues associated with 
uncertainty in the input data, the uncertainty effects of both the 
fusion reasoning process and the representation scheme, and 
the output uncertainty.  It concludes with a top-level discussion 
of an overall mathematical approach applicable to these 
considerations.  

II. DEFINITION OF HIGH-LEVEL FUSION 
A widely accepted definition of High-Level Information 

Fusion (HLIF) is that it refers to the fusion processes classified 
as level 2 and above within the revised Joint Directors of 
Laboratories data fusion model.  This model establishes five 
functional levels, as defined in [9] and repeated in Table 1 
below. 



Table 1:  JDL Fusion Levels [9] 

Level Title: Definition 

0 Signal / Feature Assessment:   Estimate signal or feature 
state.  May be patterns that are inferred from observations or 
measurements, and may be static or dynamic, and may have 
locatable or causal origins 

1 Entity Assessment:  Estimation of entity parametric and 
attributive states (i.e. of  individual entities) 

2 Situation Assessment: Estimate structures of parts of reality 
(i.e. of sets of relationships among entities and implications 
for states of related entities.) 

3 Impact Assessment: Estimate utility/cost  of signal, entity or 
situation states, including predicted utility / cost given a 
system’s alternative courses of action 

4 Process Assessment: A system’s self-estimate of its 
performance as compared to desired states and measures of 
effectiveness. 

 
A key item is that these assessments are not just a combination 
of information, but they are also analytic judgments.  For 
example, a level 2 fusion process is more than a unified display 
of information (e.g. a common operational picture); rather, it 
requires explicit statements about how certain specific elements 
of reality are structured, in order to address specific questions 
that a user of that process wants answered.   Level 2 fusion 
essentially answers the question “what is going on?”  Level 3 
fusion addresses “what happens if …?”, where “if” is followed 
by a possible action or activity (level 3 is often predictive).  
Level 4 involves steering the fusion system, including adjusting 
data collection based on an assessment of already-collected 
data. There has been some discussion regarding the boundary 
between level 1 and level 2.  Das, for instance, considers 
identification and object classification as beyond level 1, 
suggesting that this type of fusion should be a level 1+ [10].  
Steinberg, on the other hand, considers this to be clearly level 1 
[9]. Sowa’s ontological categories provide insight into this 
question, and can be used to illuminate some factors on 
uncertainty propagations considerations. In the present work, 
these ontological categories were used as a basis for defining a 
taxonomy of level 2 fusion.  

III. TAXONOMY OF LEVEL 2 HLIF 
Sowa defined twelve ontological categories, and together 

they comprise a very attractive framework for analyzing fusion 
processes at level 2.  He suggests that one way of categorizing 
entities in the world is to consider them from three orthogonal 
aspects [11].  The first is whether they are physically existing 
or abstract.  Abstract entities are those that have information 
content only, without a physical structure.  This includes the 
idea of geometric forms or canonical structures (e.g. idea of a 
circle), or entities like computer program source code.   

The second aspect defining the ontological categorization is 
whether the entity is a continuant (i.e., having time-stable 
recognizable characteristics) or an occurrent (i.e., significantly 
changing over time).  This means that an entity can either be an 
object (a continuant) or a process (an occurrent – also called an 
event). The third and final aspect of his ontological 
categorization is the degree of interrelatedness with other 

objects and processes. At the independent level, an entity is 
considered by itself, without reference to other entities.  At the 
relative level, an entity is considered in single relation to 
another entity.  Finally, the idea of mediating takes into account 
two items:  the number and complexity of the various 
interrelationships among the entities, and the unifying idea – its 
purpose or reason – that allows one to define a situation or a 
structure that encompasses the relevant entities [11].   

The combination of these three aspects results in the 12 
ontological categories shown in Table 2.  Table 3 provides a 
more detailed definition of each ontological category and 
provides some examples.   

A key point in looking at this ontological categorization is 
that one must understand the context and viewpoint from which 
a given entity is categorized, and that changes to either of these 
two might result in different categorizations for the same entity. 
To illustrate this point, an airplane can be considered as either 
an independent object flying in the air, or a complex mediating 
structure with thousands of component objects and processes 
that work together for the purpose of achieving aerial flight.  
The viewpoint one takes depends on the context one is 
interested in.  In the airplane example, it depends on whether 
one is tracking a particular aircraft using a variety of sensors, or 
attempting to determine the various capabilities of a new 
aircraft type. 

Table 2:  Sowa’s Categories [11] 
 Physical Abstract 

Continuant Occurrent Continuant Occurrent 
Independent Object Process Schema Script 
Relative Juncture Participation Description History 
Mediating Structure Situation Reason Purpose 
 

It is tempting to suggest that Sowa’s three relationship 
levels correspond to the JDL levels 1 / 2 / 3 (i.e., Independent, 
Relative, and Mediating, respectively). However, this has at 
least three major problems.  First, Sowa’s relative level is 
focused on a single relationship between two entities, while 
JDL level 2 can (but does not have to) consider multiple 
relationships in and between multiple entities.  Second, JDL 
level 2 situation assessment includes making assessments about 
the purpose or reason for the situation.  This reason or purpose 
is the key characteristic that distinguishes one situation from 
another.  A raucous sports team victory celebration, a protest 
and a riot share many entities and relationships, but 
understanding the reason/purpose behind it can make a 
significant difference to a chief of police. Third, there are level 
1 inferences that depend on the existence of fixed relationships 
between entities. 

To illustrate the latter point above, consider the case of an 
intercepted radar signal that has been classified as having come 
from a specific type of radar system.  Now let us suppose that 
the radar type is tightly associated with a larger system, such as 
the AN/APG-63 radar on older versions of the US F-15 aircraft 
[12].  If one has detected the APG-63 radar, one also has very 
high confidence that one has detected an F-15 aircraft. This F-
15 object identification occurs because there is a fixed 
relationship between the two objects (it’s not a 100% 
relationship, as the APG-63 is also installed on fourteen United 



States Customs and Border Protection aircraft [13]). This 
situation is a clear example of a fixed relationship between 
entities (i.e., AN/APG-63 used in F-15 fighters) that supports a 
level 1 object identification, thus making it applicable to 
directly associate JDL level 1 to Sowa’s Independent 
relationship. 

Table 3:  Definitions [11] 
 Definition Examples 

Object Any physical continuant 
considered in isolation 

Any specific existing 
item (e.g. car serial 
number 123, etc.) 

Process The changes that occur to 
an object over time, with a 
focus on the changes  

Explosion, most action 
verbs 

Schema The form of an continuant  Circle, language 
concepts for classes of 
objects (e.g. cat, 
airplane) 

Script The time or time-like 
sequence of an occurrent  

Process instructions, 
software source code, 
radar track file 

Juncture Time-stable relationship 
between two objects 

Joint between two 
bones, connection 
between parts of a car 

Participation Time-varying relationship 
between two objects, or a 
process related to an object  

Artillery firing a shell, 
radio communication 
between two people 

Description An abstraction about the 
types of relationships that 
can exist between 
continuants 

The idea behind 
concepts like “join”, “ 
“separate”, “works 
for”, “mother of”, etc. 

History The recorded information 
about an occurrence as it 
relates to one or more 
continuants  

Video file of a traffic 
intersection 

Structure A complex continuant with 
multiple sub-continuants 
and many relationships.  
Focus is on the stability of 
the continuant 

Composition of an 
army, layout of a 
chemical plant 

Situation A complex occurrent with 
multiple continuants and 
many relationships.  Focus 
is on the time sequence of 
changes among the objects 
and processes 

A birthday party, road 
traffic in a 
metropolitan area 

Reason The intention behind a 
structure 

Differentiates a 
chemical weapon 
factory from a 
fertilizer factory 

Purpose The intention driving a 
situation 

Intention that 
differentiates going to 
war from conducting a 
military exercise 

 

Now consider the case where the radar is associated with a 
Surface-to-Air Missile (SAM) system, such as the Tin Shield 
acquisition radar and the SA-10 Grumble SAM system. The 
SA-10 system consists of multiple separate vehicles, not a 
single vehicle. The radar vehicle is physically separate from the 
other vehicles. It is possible for the Tin Shield radar to be used 
as a stand-alone search radar [14].  In this case, detection of the 
Tin Shield radar signal may indicate the presence of the SA-10, 
but it may not.  

A key differentiator between JDL levels 1 and 2 is the focus 
on an object versus on multiple objects in relationship to each 
other.  Yet, as illustrated by the two later examples, a JDL level 
1 assessment can use techniques that are grounded in Sowa’s 
relative level. In general, determining an object’s level 1 
attributes and states often depends on fusing different sensor 
outputs of processes that an object has undergone – thus 
making use of participation level information. 

Using Sowa’s categories, one can create the taxonomy of 
level 2 situations shown in Figure 1. This taxonomy ranges 
widely in complexity and analytic inferences required.  There 
are five cases presented in the Figure, each created by first 
determining whether one is dealing with a known situation, or 
whether the situation itself must be inferred. In general, the 
least complex case is for known situations where one is 
determining / refining the attribute of an entity. This case 
straddles the level 1 / 2 line.  It is object / process identification 
where the relationship between elements within the object of 
interest may vary. An example is the radar / vehicle case above.  
The defined situation is that a Tin Shield radar has been 
detected at a particular location. The question is whether an 
SA-10 battery (a higher level object) is at that location, or 
whether the radar is operating in a stand-alone mode (whether 
operationally, for system testing, or for system maintenance).  
The inferences generally are based on schema-based evidential 
reasoning (e.g. “there is a 95% chance that this radar will be 
associated with an SA-10 battery in its immediate vicinity”). 

 
Figure 1:  Types of Situation Assessments 

The second case is a step up in complexity, where the situation 
is well defined but the objective is to identify a specific object 
of interest within the situation. For example, one might have 
very credible evidence that a terrorist group will attempt to 
smuggle a radiological bomb into the United States via a 
freighter. In this case, the situation itself is known (one knows 
the purpose / intention), but the actors may be hidden.  
Inferring which freighter (an object identification) is a likely 
carrier of the bomb is the question of interest. Another 
example would be to determine who committed a robbery of a 
bank, when one has a video of the act itself (the situation is a 
robbery). In this case, the evidence is extracted from a variety 



of sources, which can be classified as being junctures, 
participations, histories or descriptions. 
 

The inferential process generally becomes more complex 
when the specific situation itself is not known, but must be 
inferred.  The taxonomy outlines three such cases, each with an 
increasing level of complexity. The first is when the specific 
situation is not known, but there is a set of well-defined 
situation choices to select from. This case is a situation version 
of a state transition. A classic example is the military 
indications and warning question, which can be raised when an 
increase in activity at military locations in a country is detected.  
The question then becomes “what is the purpose of the 
activity?” Four major choices exist: a major military exercise, 
suppression of domestic unrest, a coup d' etat, or preparing to 
go to war. Each is a relatively well-defined situation with 
known entities, attributes and relationships. The selection 
among them becomes a pattern-matching exercise. 

The next level of complexity occurs when not only is the 
situation itself unknown, the situation itself must be developed.  
Unlike the case above, the issue now is not choosing among a 
set of possible situations but to build the situation from the 
data. This case can be divided into two subcases. In the first 
subcase, one has a series of templates that can be used in 
developing aspects of the situation. For example, in developing 
an enemy order of battle for a standing nation-state’s military, 
one has a basic understanding of the objects and relationships 
that constitute a modern military force. A country may not have 
all of the elements, and the organizational structure will vary.  
Yet, it is very likely that the structure and deployment will 
follow patterns similar to those used by other countries.   

The second subcase is the most complex situation.  Here, 
one must develop a situation where the basic purpose itself 
must be determined.  For example, consider the case when a 
government agency is notified that something is significantly 
amiss, with enough information to spark interest, but not 
enough to understand what is happening. In that case, the 
evidence must be assembled without a common template to 
guide the fusion.  Rather, the evidence must be fused using 
fragmentary templates, that themselves must be integrated to 
provide the overall situation. Integrating the data to “connect 
the dots” that could have predicted the September 11, 2001 
commercial airliner strikes on the World Trade Center and the 
Pentagon falls into this category. Note also that this case also 
straddles the level 2 / level 3 fusion line, since determining the 
purpose in this case has a predictive element with possible 
courses of actions and outcomes. 

IV. UNCERTAINTY PROPAGATION IN HLIF 
In any fusion process, one follows a fundamental reasoning 

process, which logically uses a series of reasoning steps, often 
of an “if, then” form.  Beginning with a set of events, we form 
a chain of reasoning to come to one or more conclusions.  
Figure 2a models a simple case, while Figure 2b gives an 
example of that case. More complex structures can be easily 
created [15]. 

The ETURWG found that within this fundamental process 
there were at least four areas for uncertainty considerations: the 
uncertainty in the input data, the uncertainty associated with 

representation within the fusion system, the uncertainty effects 
of the reasoning process, and the resultant uncertainty in the 
outputs of the process [7, 8]. The subsections below address 
some of the ontological considerations associated with the first 
three factors. Issues associated with output uncertainty are 
treated in section V. 

A. Uncertainty in the Input Data 
All conclusions are ultimately grounded on evidence, 

drawn from a variety of data sources.  But often evidence is 
“inconclusive, ambiguous, incomplete, unreliable, and 
dissonant.”   Any conclusions drawn from a body of evidence 
is necessarily uncertain. Schum [15] found that one must 
establish the credentials of any evidence used in a reasoning 
process. These credentials are its relevance to the question / 
issue at hand, its credibility, and its weight or force [16]. This 
suggests that one should elaborate on the fundamental 
reasoning process from Figure  2 with the additional items 
shown in Figure 3.   

  
Figure 2: Fundamental Reasoning Process 

Data becomes evidence only when it is relevant.  Relevance 
assesses whether the evidence at hand is germane to the 
question(s) being considered. Irrelevant information makes no 
contribution to the conclusion drawn, and potentially confuses 
the fusion process by introducing extra noise.  Evidence can be 
either positively (supportive) or negatively (disconfirmatory) 
relevant to a particular hypothesis.  Any analytic effort is 
obliged to seek and evaluate all relevant data. 

Once data is shown to be relevant to a particular problem 
(i.e., it becomes evidence), Schum points out that there is an 
important but often overlooked distinction between an event 
(an object, process, juncture or participation in Sowa’s 
ontological categories) and the evidence about that event or 
state. That is, Joe’s statement “I saw Bob hit Bill with a club” 
does not mean that such event actually happened, and should 
be seen only as evidence about it. Credibility establishes how 
believable a piece of evidence is about the event it reports on.  
Schum identified three elements of credibility [17]; the 
ETURWG added self-report as a distinct element (see Table 4 
for elements and definitions) [7]. 
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Figure 3:  Evidential Factors 

 
Table 4: Elements of Evidential Credibility 

Veracity: Source is telling what it believes to be true (note that the  source 
may be deceived) 

Objectivity:   Source has received the evidence on which it based its 
reporting.  This includes consideration of system biases and false alarms 

Observational Sensitivity: Source has the ability to actually observe what 
it reports (e.g.  Observer actually has the visual acuity needed to see what 
was going on, or an electronic intercept was of such low quality the 
operator guessed part of the conversation) 

Self-Report: Source provides a measure of its certainty in its report (e.g. a 
human source hedges her report with “it’s possible that…” or a sensor 
reports that detection was done at a signal to noise ratio of 4) 

 
The force (or weight) of the event establishes how 

important the existence of that event is to the conclusion one is 
trying to establish. By itself, the event “Bob hit Bill with a 
club” would have a significant force in establishing a 
conclusion that Bill was seriously injured. It would have less 
force in establishing that Bill was committing a violent act and 
needed to be stopped at Bill, and even less force in concluding 
that Bob was angry at Bill.  Figure 3 shows that credibility can 
have an effect on the force of an event on the conclusion. For 
example, if the credibility of Joe’s testimony about Bob hitting 
Bill with a club is low, the certainty of a conclusion that Bob’s 
hitting was the cause of Bill’s injuries would be less than if Joe 
testimony’s credibility was high. Schum investigated a number 
of different ways in which considerations about data credibility 
could affect the overall conclusions. One of his most interesting 
findings is that, under certain circumstances, having credible 
data on the credibility of a data source can have a more 
significant force on the conclusion than the force of the event 
reported in the data [15]. 

B. Uncertainty in the Representation 
Uncertainty varies in its forms and manifestations. Therefore, 
the uncertainty representation scheme used has an effect on 
what can or cannot be expressed.  To see this, one first needs to 
have an understanding on the different types of uncertainty.  
The W3C Incubator Group exploring uncertainty reasoning 
issues for the World Wide Web developed an initial ontology 
of uncertainty concepts, shown in Figure  4 [18].    

	
  	
  

Figure 4: Uncertainty Ontology 

A Sentence is a logical expression in some language that 
evaluates to a truth-value (formula, axiom, assertion).  For our 
purposes, information will be presented in the form of 
sentences. The World is the context / situation about which the 
Sentence is said. The Agent represents the entity making the 
Sentence (human, computer etc.). Uncertainty is associated 
with each sentence, and has four categories. Three of those are 
described in Table 5, along with their significance for 
uncertainty propagation in a HLIF process.  

Table 5:  Definition of Uncertainty Categories 

Uncertainty Derivation 

Objective: Derived in a formal way, repeatable derivation process. 
Significance -  level of uncertainty can be reliably estimated 

Subjective: Judgment, possibly a guess. 
Significance -  Level of uncertainty may be unpredictable  

Uncertainty  Nature 

Aleatory: Uncertainty  inherent in the world  
Significance -  Additional data will not resolve uncertainty 

Epistemic: Uncertainty in an agent due to lack of knowledge  
Significance -   Uncertainty could be resolved by additional evidence 
gathering, which eliminates the lack of knowledge 

Uncertainty  Type 

Ambiguity: Referents of terms are not clearly specified  
Significance -  The same evidence may not distinguish between two or 
more possibilities 

Empirical : Sentence about a world  is either satisfied or not satisfied in 
each world, but it is not known in which worlds it is satisfied; this can be 
resolved by obtaining additional information (e.g., an experiment) 
Significance -  Uncertainty can be resolved with additional information 

Randomness (Type of empirical uncertainty):  sentence is an instance of 
a class for which there is a statistical law governing whether instances 
are satisfied 
Significance -  The empirical uncertainty has a predictable basis for 
making an estimate, using the appropriate statistical law  

Vagueness:  No precise correspondence between terms in the sentence 
and referents in the world  
Significance -  Uncertainty due to a lack of precision 

Incompleteness: information about the world is incomplete / missing  
Significance -  Uncertainty increases because assumptions / estimates of 
information must be used, rather than the actual information.  May not 
have a basis for making an estimate 

Inconsistency: no world can satisfy the statement.  
Significance -  Data is contradictory; must resolve source of 
contradiction (Can occur when deception is used) 



 
The last category in the ontology is Uncertainty Model, 

capturing the various approaches that can be used to model 
uncertainty in a reasoning process.  These include (but are not 
limited to):  

• Bayesian Probability Theory 
• Dempster-Shaffer Evidence Theory 
• Possibility Theory 
• Imprecise Probability approaches 
• Random Set Theory 
• Fuzzy Theory / Rough Sets 
• Interval Theory 
• Uncertainty Factors 

A critical item in uncertainty propagation is the proper fit 
between the types of uncertainty in the input data and in the 
model(s) used in the fusion reasoning process. Failure to 
account for all of the uncertainty types in the input data can 
result in an erroneous process output. A classic survey of 
uncertainty models, with a discussion on applicable uncertainty 
types, is given in [19], with a recent review of the state-of-the-
art in [20] 

C. Uncertainty in the HLIF Fusion Process 
To explore the ontological considerations of the uncertainty 

propagation in a HLIF fusion process, we need to have a basic 
fusion process model. We will concentrate on the level 2 fusion 
process only, and leave out significant detail on the processes 
at the other levels. Figure 5 shows this model. The first thing to 
observe is that the raw data can come in at any level, as 
evidenced by the incoming arrows at the right side of the 
figure. The model does not require that all data be signal or 
feature (Level 0) data, which is then aggregated into higher-
level conclusions. For instance, object identification data (level 
1) could come from an on-scene observer or from an image 
analyst reporting on an image. Communications intercepts or 
human reporting could provide evidence on relationships (level 
2) or future intentions (level 3). Note that if a level 3 fusion 
process is active, its outputs could affect the level 2 process in 
two places. It can either be a controlling variable in the fusion 
process itself, or it can affect the interpretation and extraction 
of evidence. However, a level 3 process will have an effect 
only if it has separate evidence that is not being used in the 
level 2 fusion process (otherwise one has circular reporting).   

There are four basic processes in this model. The first is the 
fusion process itself, which is usually some form of a model-
based process. These models most often take the form of 
Bayesian networks [10, 21, 22], although alternative 
approaches have been proposed using graphical belief models 
[23] and general purpose graphical modeling using a variety of 
uncertainty techniques [14].     

Another important aspect of this model that must be 
emphasized is that not all of the evidence that goes into the 
model-based process is (or is assumed to be) in an immediately 
usable form. Some data must have the appropriate evidence 
extracted from it. This is where the uncertainty considerations 
associated with representation within the fusion system come 
into play. For example, the raw level 2 data may be a series of 

people association data, which must be combined into a social 
network analysis to reveal the full extent of the relationships.  

 

 
Figure 5:  Level 2 Fusion Process Model 

Another example may be that one is interested in whether 
two ships met and transferred cargo in the open ocean.   
Suppose that you have a track file on each ship which has long 
revisit rates between collections. This does not provide an 
obvious indication that the ships met and stopped for a while.  
But the track files show that both ships were on tracks that did 
put them at a common location at a given period, and that the 
average speed dropped significantly during the time a meeting 
could have occurred (implying that the ships may have stopped 
for a while). Given this data, one could conclude with some 
level of certainty that they did meet and stopped to transfer 
something. This level of certainty is driven by at least two 
factors: the quality of the track file data (establishing how 
certain one is in concluding that the tracks allowed them to 
meet), and how likely is it that two ships showing these track 
characteristics actually would have met and stopped. 

A significant part of the evidence extraction process could 
be comparison to historical or reference data.  For example, a 
vehicle may be moving outside of a normal shipping lane / 
airway or off-road.  This requires a reference to a map base.  
For this reason, the process model includes a data store, for 
both reference information and for previous data. 

The last part of the model is a data alignment process.  
Data may come in with different reference bases, and need to 
be aligned to a common baseline in order to be used in the 
extraction and fusion processes.    

Finally, note that the level 2 process includes the possibility 
of a direct use of level 0 data. An area of active research is the 
multi-source integration of level 0 data that is not of sufficient 
quality, or that does not have enough quantity to allow a high 
quality single-source conclusion.   

V. MATHEMATICAL CONSTRUCT 

A. Model 
Several authors have developed mathematical constructs for 

use in assessing the uncertainty of a situation assessment [2, 
25].  Our model is a version of the one put forth by Karlsson 
[26], modified using the terminology put forth by Franconi 
[27].  Karlsson’s version focuses only on relationships, and 
does not explicitly include predicates and attributes.  While one 
can model predicates and attributes using relationships, it is 
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cleaner to separate the entity space from the attribute space.  In 
addition, the construct formed in this paper acknowledges level 
2 HLIF as explicitly including entity attributes as well as 
relationships between entities.  Including attributes as separate 
from entity relationships, rather than defining relationships to 
include attribute states makes this clearer.  Per [27], the 
language consists of: 

En, the 1-ary predicates 

Ak, the attributes (stated as 2-ary predicates) 

Rp, n-ary predicates for all relationships 

There is an interpretation function I = 〈D,  .I〉  where  domain 
D is a non-empty set = Ω ⋃ B, Ω is the set of all entities, B is 
the set of all attribute values and Ω ∩ B = ∅.  Then 

Ei
I ⊆  Ω 

Ai
I ⊆  Ω X B  

Ri
I⊆ Ω X Ω X… X Ω = Ωn 

xi are the specific instances and xi ∈   Ω 

We can make at least three uncertainty assessments. For 
any specific entity tuple (x1,…, xn), we have a level of 
uncertainty as to whether that tuple is a member of a specific 
relationship.  For a generic uncertainty measure uT, the basic 
equation for whether a tuple is correctly associated with a 
defined relationship is   

                uTj((x1,…, xn)j ∈ Rj | EB, S, I)  (1) 

where EB is the body of evidence used in making the 
assignment, and S, I are any already known situation or impact 
states.  A similar equation holds for attribute uncertainty. 

We can also have uncertainty as to whether a relationship 
that we see in the data is the relationship of interest.  Given a 
set of k possible relationship and a body of evidence EB for a 
particular relationship Rcurrent, we can assess the following 
uncertainty: 

                uRk((Rcurrent = Rk | EB, S, I)        (2)           

Again, a similar uncertainty equation holds for attribute 
uncertainty.  Situation assessment depends on the relationships 
in the situation.  A situation then can be defined as  

                 S ≝  (R1, …., Rk, A1,….An)           (3) 

Finally, we have an uncertainty measure us. Given a set of 
m possible situations and a body of evidence EB for a particular 
relationship Scurrent, we can assess the following uncertainty:   

                  us(Scurrent = Sm | EB, I)        (4) 

In addition to uncertainties in the evidence and in the 
reasoning process, equation (4) also allows us to account for 
uncertainties in the situation definition. Equation 3 implies that 
every situation can be precisely defined as a set of specific 
relationships and attributes. But what if a relationship or 
attribute is missing in a particular situation instance?  For 
example, a canonical birthday celebration in the United States 
includes a cake with a number of lit candles on it. If there are 

no candles on the cake, does this mean it is not a birthday 
celebration? 

B. Application to Situation Assessment Taxonomy 
We can use this model to better understand the varying 

complexities of the different situation assessment cases given 
in section 3.  For the simplest case, entity attribute refinement, 
we see that we have a very simple situation (“emitter 
operational in the environment”). From the existence of one 
object (the Tin Shield radar), we are inferring the existence of a 
second object (the SA-10 SAM system). This is a binary 
relation, based on a Sowa Juncture (x1, x2).  With this binary 
relation, we are operating with a single instance of equation (1).  
We only have the uncertainty measure for “Tin Shield” and 
“SA-10” to be in juncture. For the second case, entity selection, 
we again have a defined situation, but now are seeking a 
specific object within multiple choices of objects. We are 
operating at the level of equation (2) – we are seeking a 
specific relation that ship i is the ship of interest.  Based on the 
evidence, we will create multiple tuples for the different 
relationships that could lead us to the ship (using equation (1)) 
and then combine the results to get to equation (2). 

For the third case, structure / situation selection, we invoke 
equation (4) as the basic equation. We are choosing between 
multiple choices as to what the situation is. We use equation (1) 
to determine if various relationships exist, and based on those 
findings, determine which situation model is the correct one for 
this body of evidence.  For the fourth case, structure / situation 
refinement, we again use equations (1) and (4). But we also use 
equation (2) to determine what the exact set of relationships is.  
Case 4 differs from case 3 in that we are trying to determine 
what the relationships are that are appropriate for this situation 
(or structure).  

For the fifth case, structure / situation creation, we have all 
of the uncertainties addressed above, and we add an uncertainty 
not immediately obvious in the generic equations. Relook 
equation (4). One of the stated requirements is that we are 
selecting among a set of defined situations. This essentially is a 
closed world assumption. However, in case 5 we are building 
the situation, rather than determining which situation among a 
choice of situations is the applicable one. We still have a 
number of models to choose from, but they are more 
fragmentary than in previous cases. The previous cases 
represent more of a “pieces of the puzzle” approach, where one 
is assembling the puzzle according to one or more available 
pictures to help guide you. Case 5 represents the case where we 
one is assembling the puzzle without a picture or set of pictures 
to guide one.  Rather, you are assembling the puzzle guided by 
basic puzzle rules about matching shapes and picture colors.  
So, in case 5, we are also determining what the applicable Sks 
are.      

VI.  DISCUSSION 
Up to this point we have been able to attest the existence of 

a number of uncertainty propagation considerations when 
analyzing a level 2 HLIF. Most of these are not necessarily 
obvious at a first glance, which suggests the importance of a 
framework that supports the analytical process. The 
framework proposed in this paper is meant for supporting the 



analysis of processes occurring at JDL fusion level 2, and an 
important aspect of it is the ability to correlate such processes 
with the uncertainty considerations raised so far. Figure 6 
summarizes these considerations as they relate to the heart of 
the basic process model shown in Figure 5. 
  

 
Figure 6:  Level 2 HLIF Uncertainty Considerations 

The taxonomy of level 2 HLIF types discussed in section 2 
defines the complexity of the uncertainty considerations that 
must be accounted for. Five different types are identified, 
ranging from simple entity attribute refinement using situation 
status data to the development of a complete situation 
assessment assembled from applicable situational fragment 
data. The uncertainty in the input data / evidence must be 
assessed for relevance, credibility, and force / weight, per the 
ontology of evidence presented in Laskey et al. [17].  The 
representation uncertainties that drive the modeling 
methodologies can be classified per the uncertainty ontology 
developed by the W3C Incubator Group for Uncertainty 
Reasoning [18]. A variety of different models can be used to 
properly capture the aspects of uncertainty in the data [19, 20].  
Finally, the output uncertainty strongly depends on the a priori 
identification of possible situation choices, or upon having a 
fusion process that allows for an effective open world 
assumption. These uncertainty considerations are the beginning 
of understanding how to evaluate the effectiveness of various 
uncertainty management methods in high-level fusion. 
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