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Abstract supersety” of X. The collection of closed sets (i) is
denoted by
We describe a method for computing closed sets with
data-dependent constraints. Especially, we show how the Cd = {XCR:YCRYDX
method can be adapted to find frequent closed sets in a = supp (X, d) > supp (Y.d)}

given data set. The current preliminary implementation of ) )

the method is quite inefficient but more powerful pruning The collection of frequent C_Iosed sets consists of the sets

techniques could be used. Also, the method can be easilyhat are frequent and closed, i.e.,

applied to wide variety of constraints. Regardless of the po-

tential practical usefulness of the method, we hope that the

sketched approach can shed some additional light to fre-  Most of the closed set mining algorithms [3] 12] 13, 14,

quent closed set mining. 16,[19/20] are based on backtracking[10]. In this paper we
describe an alternative approach based on alternating be-
tween closed set generation by intersections and pruning

1 Introduction heuristics. The method can be adapted to many kinds of

constraints and needs only few passes over the data.

The paper is organized as follows. In Sect[dn 2 we
sketch the method, in Sectiph 3 we adapt the method for
finding closed sets with frequency constraints, in Se¢tjon 4
we describe some implementations details the method, and
in Sectior b we experimentally study the properties of the
method. Sectiofi]6 concludes the work and suggests some
improvements to the work.

FC (minsupp,d) = F (minsupp,d) N C (d) .

Much of the research in data mining has concentrated on
finding from some given (finite) sek all subsets that sat-
isfy some condition. (For the rest of the paper we assume,
w.l.0.g., thatR is a finite subset oN.)

The most prominent example of this task is probably
the task of finding all subset§ C R that are contained
at leastminsupp times in the sets of a given sequence
d = dy...d, of subsets!; C R, i.e., to find the collec-

tion 2 The Method
F (minsupp,d) = {X C R : supp (X, d) > minsupp} Letusassume thdt = U, (, _,,, d; as sometime® is
not known explicitly. Furthermore, we shall use shorthand
where d; ; for the subsequencg, ...d;, 1 < i < j < n. The
elements ofR are sometimes calleilemsand the setsl;
supp (X, d)={i: X Cd;,1 <i<n}|. transactions

As noted in the previous section, a $étC R is closed
in d if and only if supp (X, d) > supp (Y, d) for all proper
supersetd” of X. However, the closed sets can be defined
also as intersection of the transactions (seele.g. [11]):

The collectionF (minsupp, d) is known as the collection

of frequent sets. (We could have defined the collection of

frequent sets by by the frequency of sets which is a normal-

ized version of supportsfr (X, d) = supp (X, d) /n.)
Recently one particular subclass of frequent sets, fre-Definition 1 A setX C R is closed ind if and only if there

quent closed sets, has received quite much attention. Asets I C {1,...,n} such thatX = (,_; d;. (By convention,

X is closed ind if supp (X, d) > supp (Y, d) for all proper Nicp di = R.)

icl



A straightforward implementation of Definitigr 1

co-fgercn o}

leads to quite inefficient method for computing all closed
setd]]
BRUTE-FORCEd)

ﬂdizlg{17...,n}

el

yeery

supp (1)
3 for eachl C{1,...,n},I#0
4 do X « ﬂie[ d;

5 if supp (X) < |1

6 then supp (X)) «— |1

7 return (supp:C — N)

A more efficient solution can be found by the following
recursive definition of closed sets:

C(d1)
C(d1,i+1)

{R,d;}
C(dii) U{X Ndiy1: X €C(d1)}

Thus the closed sets can be computed by initializing
C=1R=Uicq. . ) di} (sinceR is always closed), ini-
tializing supp to R — 0, and calling the following algo-
rithm for eachd; (1 < i < n):

INTERSECT(supp : C — N, d;)
1 for eachX €C

2 doC —CU{Xnd;}

3 if supp (X Nd;) < supp(X)+1

4 then supp (X Nd;) « supp (X) +1
5 return (supp:C — N)

Using the above algorithm the sequero#goes not have
to be stored as each is needed just for updating the current
approximation ofR and intersecting the current collection
C of closed sets.

above approach can generate huge number of closed sets
that do not have to be generated.

A better approach to find the frequent closed sets is to
prune the closed sets that cannot satisfy the constraints —
such as the minimum support constraint — as soon as pos-
sible. If the sequence is scanned only once and nothing is
known about the sequenddan advance then no pruning of
infrequent closed sets can be done: the rest of the sequence
can always contain each closed set at leastsupp times.

If more than one pass can be afforded or something is
known about the datd in advance then the pruning of
closed sets that do not satisfy the constraints can be done
as follows:

INTERSECTOR)
supp < INIT-CONSTRAINTS(d)
for eachd; in d
do supp < INTERSECT(supp, d;)
UPDATE-CONSTRAINTS(supp, d;)
supp < PRUNE-BY-CONSTRAINTS(supp, d;)
return (supp : C — N)

[N

2
3
4
5
6

The function NTERSECTORIS based on three subrou-
tines: function NIT-CONSTRAINTS initializes the data
structures used in pruning and computes the initial col-
lection of closed sets, e.g. the the collection= {R},
function UPDATE-CONSTRAINTS updates the data struc-
tures by one transaction at a time, and functi®@uREe-BY-
CONSTRAINTSprunes those current closed sets that cannot
satisfy the constraints.

3 Adaptation to Frequency Constraints

The actual behaviors of the functionsNit-
CONSTRAINTS, UPDATE-CONSTRAINTSand FRUNE-BY-
CoNsTRAINTSdepend on the constraints used to determine
the closed sets that are interesting. We shall concentrate
on implementing the minimum and the maximum support

The closed sets can be very useful way to understandconstraints, i.e., finding the closed sétsc C (d) such that
data sets that consist of only few different transactions andminsupp < supp (X, d) < maxsupp.

they have been studied in the field of Formal Concept Anal-

The efficiency of pruning depends crucially on how

ysis [€]. However, many times all closed sets are not of much is known about the data. For example, if only the
interest but only frequent closed sets are needed. The simnumber of transactions in the sequence is known, then all
plest way to adapt the approach described above for findingpossible pruning is essentially determined by Observéaion 1
the frequent closed sets is to first compute all closed setsand Observation] 2.

C (d) and then remove the infrequent ones:

Observation 1 Forall 1 < i < n holds:
FC (minsupp,d) = {X € C (d) : supp (X,d) > minsupp} =r=n

. X, dy —i i = X,d )
by removing all closed sets that are not frequent. supp (X, d,i)+n—i < minsupp = supp (X, d) < minsupp
Unfortunately the collection of closed sets can be much

: Observation 2 For all 1 < i < n holds:
larger than the collection of frequent closed sets. Thus the =r=n

Uf supp (X) is not defined then its value is interpreted totbe supp (X, dy ;) > maxsupp = supp (X, d) > mazsupp



Checking the constraints induced by Observdfipn 1 andProposition 2 Let S be the collection of sets such that
Observatior R can be computed very efficiently. However, supp (Y, d; ;) andsupp (Y, d; ;) are known for ally” € S,
the pruning based on these observations might not be veryand let S’ consist of set” € S,Y C X, such that

effective: all closed sets i@ ,—minsupp CaN have fre-
quency at leastinsupp and all closed sets it mazsupp
can have frequency at mastaxsupp. Thus all closed sets
iN d1 min{n—minsupp,mazsupp} are generated before the ob-
servations can be used to prune anything.

supp (X, d1 ;) + supp (Y,diy1,,) < minsupp. Then all
frequent subsets of € C are the collectionS” of subsets
Z C XsuchthatZ g YforallY e S, noW c Z € §”
is contained inS”’.

To be able to do more extreme pruning we need more Proof. If Z C X is frequent then there is a setdif con-

information about the sequenéelf we are able to know the

taining Z, or Z is contained in some set ! but there is an-

number of transactions in the sequence, it might be possibleother sett” € C such thatsupp (Y, d1,;) > supp (X, d1 ;).
to count the supports of items. In that case Observafion 3u

can be exploited.

Observation 3 If there exists A € X such that
supp (X,dy ;) + supp ({A},ditv1,n) < minsupp then
supp (X, d) < minsupp.

Also, if we know the frequencies of some sets then we

can make the following observation:

Observation 4 If there existsY C X such that
supp (X, d1;) + supp (Y,diy1,,) < minsupp then
supp (X, d) < minsupp.

Proposition 3 Let S, &’ and S” be as in Proposi-
tion[d. ThenX e C can be replaced by the collection
& consisting of sets iS” such thatsupp (Y,d1 ;) +
supp (W, diy1.,) < minsupp for somelW C Z C Y with
Y eCandW € S.

Proof. If Z C X is frequent then it is subset of some set
inS” orthereisY € C,Z CY, such thatupp (Y, d1,;) +
supp (W, dix1,n) < minsupp foral W e S, W C Z.

If Z € 8" is not closed then it is infrequent since none
of its supersets is frequent. O

Note that these observations do not mean that we could The efficiency of pruning depends crucially also on the

remove the infrequent closed sets from the collection sinceordering of the transactions. In Sect[dn 5 we experimentally
an intersection of an infrequent closed set with some trans-evaluate some orderings with different data sets.

action might still be frequent in the sequenteHowever,

we can do some pruning based on the observations as showz

in Propositior} ]L.

Proposition 1 Let Z be the largest subset oX €
C such that for all A € Z hold supp(X,d1;) +
supp ({A},dit1,n) > minsupp. ThenX € C can be re-
moved fromC if thereisalWWw C Y € C,Z C W, such
that supp (Y, d1,;) > supp(X,di,;) and forallA ¢ W
hold supp (Y, d1 ;) + supp ({A}, diy1.n) > minsupp, and
replaced byZ otherwise.

Proof. All frequent subsets oX are contained irZ. If
there is a proper supers&t C Y € C of Z such that
supp (Y, dy ;) + supp ({4}, diy1,n) > minsupp then all
frequent subsets oX are contained i¥ and thusX can

be removed. Otherwisg is the largest subset d&f that can

be frequent and there is no superseZathat could be fre-
guent. IfZ is not closed, then its support is equal to some of
its proper supersets’ supports.4fis added ta then none

of proper supersets is frequent and thus @lssinfrequent.

(Il

The Organization of the Implementation

A preliminary adaptation of the algorithnNTERSEG
TOR of Sectior| 2 to minimum support and maximum sup-
port constraints is implemented as a progiatersec-

tor . The main components of the implementation are
classedtemarray , Itemarraylnput andltemar-
rayMap .

The clasdtemarray is a straightforward implemen-
tation consisting oint n  expressing the number of items
in the set andnt* items that is a length (at least) ar-
ray of items (that are assumed to be nonnegative integers)
in ascending order. One of the reasons why this very simple
representation of a setis used is thamarray s are used
also in the data sources, and although some more sophisti-
cated data structures would enable to do some operations
more efficiently, we believe thatemarray reflects bet-
ter what an arbitrary source of transactions could give.

The classltemarraylnput implements an inter-
face to the data setl. The class handles the prun-
ing of infrequent items from the input and maintain-

This idea of replacing infrequent sets based on the sup-ing the numbers of remaining occurrences of each

ports items can be generalized to the case where we knowtem occurring in the data set.

supports for some collectiafi of sets.

The data sktis
accessed by a functiopair<ltemarray*,int>*



getltemarray() which returns a pointer to next too frequent based on the statistics maintained by the

pair<itemarray*,int> . The returned pointer is implementation of the interfadéemarraylnput

NULLIf the previous pair were the last one in the datadset (The classCardLex defines a total ordering of sets

The main difference to the reference implementation given (of integers) by their cardinality and lexicographically
at the home page of Workshop on Frequent Itemset Mining within of each group with same sizes.) The prun-
Implementatiorﬁis thatpair<ltemarray*,int>* is ing rules used in the current implementation of the
returned instead dfemarray* . This change were made methodprune(ltemarraylnput&) are Observa-

partly to reflect the attempt to have the closure property of tion[d, Observation]2, and Observatjgn 3.
inductive database5s][9] but also because in some cases the
data set is readily available in that format (or can be easily 5
transformed into that format). The interfakemarray-

Input is currently implemented in two classkemar-

The Experiments

rayFilelnput andltemarrayMemoryInput . Both

of the classes read the data detom a file consisting of name # of rows | total # of items

rows of integers with possible count in brackets. Multiple T1014D100K 100000 1010228

occurrences of same item in one row are taken into account T40110D100K 100000 3960507

only once. For example, the input file chess 3196 118252

connect 67557 2904951

124325 (54) internet 10104 300985

1111 kosarak 990002 8019015

: : . mushroom 8124 186852

is transformed into paer(l, 2,3,4,5),54) a_nd((l) , _1). pumsb 49046 3629404
'!'he cIassItemarrayFll_eInput o maintains in the pumsb* 49046 2475947

main memory only the item statistics (such as the num-

ber of remaining occurrences of each item) thus pos- Table 1. The data sets

sibly reading the data set several times. The class

ltemarrayMemoryinput reads the whole data set We tested the efficiency and behavior of the implemen-

into main memory. The latter one can be much faster sincetation by the data sets listed in Taple 1. All data sets except
it can also reorder the data set and replace all transactionsnternet ~ were provided by the Workshop on Frequent
d;;1 <1 < n, with same frequent items by one pair with  [temset Mining Implementations. The data seternet
appropriate count. The implementations of these classes args the Internet Usage data from UCI KDD Reposi@)ry
currently quite slow which might be seen as imitating the  |f the data sequence is read to main memory then it can

performance of real databases quite faithfully. be easily reordered. Also, even if this is not the case, there
The class ltemarrayMap  represents a mapping exist efficient external memory sorting algorithms that can
from ltemarray s to supports. ~ The class con- pe used to reorder the dafa18]. The ordering of the data
sists of a mappinghap<itemarray*int,CardLex> can affect the performance significantly.
itemarrays ~ that maps the sets to supports, and @ e experimented especially with two orderings: order-
set set<ltemarray*,CardLex> forbidden CoN-  ing in ascending cardinality and ordering in descending
sisting of the sets that are known to be infrequent or carginality. The results are shown in Figures 1-9. Each
too frequent. The seset<ltemarray*,CardLex> point (|C|,4) in the figures corresponds to the numk@r
forbidden  is needed mainly because of the maximum of closed sets in the sequentg; that could be frequent in
frequency constraint. The class consists two methods: the whole sequencé. Note that the reason why there is
(e e e [P0 S5S)o et
pair<ltemarray*,int>*) intersects  the
current collection sets represented by the map- sequencel.. . . .
ping map<ltemarray*int,CardLex> There. IS no clgar Wlnngr within the ascending and
itemarrays by the given set descending ord_enngs: with data sefd014D100K ,
pair<ltemarray*,int>* and updates the T40110D100K , internet  , kosarak , andmushroom

the ascending order is better whereas the descending order
seems to be better with data setess , connect , and
e The methodprune(|temarray|nput&) prunes pumsb. However, it is not clear whether this is due to the

the sets that are already known to be infrequent or chosen minimum support thresholds.

supports appropriately.

2http://fimi.cs.helsinki.fi/ Shttp://kdd.ics.uci.edu/
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One interpretation of the results is the following: small
setd; cannot increase the size 6fdramatically since all
new closed sets are subsetsdpfand d; has at mosg!d:l
closed subsets. However, the small sets do not decrease the
remaining number of occurrences of items very much either.
In the case of large seds the situation is the opposite: each
large setd; decreases the supporspp ({A},d;t1,,) Of
each itemA € d; but on the other hand it can generate
several new closed sets.

Also, we experimented with two data sétgernet
and mushroom to see how the behavior of the method
changes when changing the minimum support threshold
minsupp. The results are shown in Figure]10 and Fig-
ure[11.

The pruning seems to work satisfactory if the minimum
support thresholdninsupp is high enough. However, it is
not clear how much this is due to the pruning of infrequent
items in the classtemarraylnput and how much due
to the pruning done by the clakemarrayMap . Unfor-
tunately, the performance rapidly collapses as the minimum
support threshold decreases. It is possible that more aggres-
sive pruning could help when the minimum support thresh-
old minsupp is low.

6 Conclusions and Future Work

In this paper we have sketched an approach for finding
closed sets with some constraints from data with only few
passes over the data. Also, we described a preliminary im-
plementation of the method for finding frequent but not too
frequent closed sets from data. The current version of the
implementation is still quite inefficient but it can hopefully
shed some light to the interplay of data and closed sets.

As the current implementation of the approach is still
very preliminary, there is plenty of room for improvements,
e.g., the following ones:

e The ordering of input seems to play crucial role in the
efficiency of the method. Thus the favorable order-
ings should be detected and strategies for automati-
cally finding them should be studied.

e The pruning heuristics described in this paper are still
quite simplistic. Thus, more sophisticated pruning
techniques such as inclusion-exclusioh [5] should be
tested. Also, pruning co-operation between closed sets
generation and the data source management should be
tighten.

e The pruning done by the data source management
could be improved. For example, the data source man-
agement could recognize consecutive redundancy in
the the data source.
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e Theintersection approach can be used to find all closed
sets that are subsets of some given dets [11]. The
method can be used to compute closed sets from the
maximal sets in one pass over the data. As there ex-
ist very efficient methods for computing maximal sets
[1,12,14,7[8] 15], it is possible that the performance
of the combination could be quite competitive. Also,
supersets of maximal frequent sets can be found with
high probability from a small sample. Using these esti-

mates one could compute supersets of frequent closed
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e If it is not necessary to find the exact collection of
closed sets with exact supports, then a sampling could
be applied[[17]. Also, if the data is generated by e.g.
an i.i.d. source then one can sometimes obtain accurate
bounds for the supports from relatively short prefixes
d, ; of the sequencé.

e Other kinds of constraints than frequency thresholds
should be implemented and experimented with.

sets. This approach can be efficient if the supersetsReferences

found from the sample are close enough to the actual
maximal sets.

e After two passes over the data it is easy to do the third
pass, or even more. Thus one could apply the intersec-
tions with several different minimum support thresh-
olds to get refining collection of frequent closed sets in
the data: the already found frequent closed sets with
high frequencies could be used to prune less frequent

counters for frequent items.
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