
Intersecting Data to Closed Sets with Constraints

Taneli Mielikäinen
HIIT Basic Research Unit

Department of Computer Science
University of Helsinki, Finland

Taneli.Mielikainen@cs.Helsinki.FI

Abstract

We describe a method for computing closed sets with
data-dependent constraints. Especially, we show how the
method can be adapted to find frequent closed sets in a
given data set. The current preliminary implementation of
the method is quite inefficient but more powerful pruning
techniques could be used. Also, the method can be easily
applied to wide variety of constraints. Regardless of the po-
tential practical usefulness of the method, we hope that the
sketched approach can shed some additional light to fre-
quent closed set mining.

1 Introduction

Much of the research in data mining has concentrated on
finding from some given (finite) setR all subsets that sat-
isfy some condition. (For the rest of the paper we assume,
w.l.o.g., thatR is a finite subset ofN.)

The most prominent example of this task is probably
the task of finding all subsetsX ⊆ R that are contained
at leastminsupp times in the sets of a given sequence
d = d1 . . . dn of subsetsdi ⊆ R, i.e., to find the collec-
tion

F (minsupp, d) = {X ⊆ R : supp (X, d) ≥ minsupp}

where

supp (X, d) = |{i : X ⊆ di, 1 ≤ i ≤ n}| .

The collectionF (minsupp, d) is known as the collection
of frequent sets. (We could have defined the collection of
frequent sets by by the frequency of sets which is a normal-
ized version of supports:fr (X, d) = supp (X, d) /n.)

Recently one particular subclass of frequent sets, fre-
quent closed sets, has received quite much attention. A set
X is closed ind if supp (X, d) > supp (Y, d) for all proper

supersetsY of X. The collection of closed sets (ind) is
denoted by

C (d) = {X ⊆ R : Y ⊆ R, Y ⊃ X

⇒ supp (X, d) > supp (Y.d)}

The collection of frequent closed sets consists of the sets
that are frequent and closed, i.e.,

FC (minsupp, d) = F (minsupp, d) ∩ C (d) .

Most of the closed set mining algorithms [3, 12, 13, 14,
16, 19, 20] are based on backtracking [10]. In this paper we
describe an alternative approach based on alternating be-
tween closed set generation by intersections and pruning
heuristics. The method can be adapted to many kinds of
constraints and needs only few passes over the data.

The paper is organized as follows. In Section 2 we
sketch the method, in Section 3 we adapt the method for
finding closed sets with frequency constraints, in Section 4
we describe some implementations details the method, and
in Section 5 we experimentally study the properties of the
method. Section 6 concludes the work and suggests some
improvements to the work.

2 The Method

Let us assume thatR =
⋃

i∈{1,...,n} di as sometimesR is
not known explicitly. Furthermore, we shall use shorthand
di,j for the subsequencedi . . . dj , 1 ≤ i ≤ j ≤ n. The
elements ofR are sometimes calleditemsand the setsdi

transactions.
As noted in the previous section, a setX ⊆ R is closed

in d if and only if supp (X, d) > supp (Y, d) for all proper
supersetsY of X. However, the closed sets can be defined
also as intersection of the transactions (see e.g. [11]):

Definition 1 A setX ⊆ R is closed ind if and only if there
is I ⊆ {1, . . . , n} such thatX =

⋂
i∈I di. (By convention,⋂

i∈∅ di = R.)

A straightforward implementation of Definition 1

C (d) =

{⋂
i∈I

di : I ⊆ {1, . . . , n}

}

leads to quite inefficient method for computing all closed
sets:1

BRUTE-FORCE(d)
1 R←

⋃
i∈{1,...,n} di

2 supp (R)← 0
3 for each I ⊆ {1, . . . , n} , I 6= ∅
4 do X ←

⋂
i∈I di

5 if supp (X) < |I|
6 then supp (X)← |I|
7 return (supp : C → N)

A more efficient solution can be found by the following
recursive definition of closed sets:

C (d1) = {R, d1}
C (d1,i+1) = C (d1,i) ∪ {X ∩ di+1 : X ∈ C (d1,i)}

Thus the closed sets can be computed by initializing

C =
{

R =
⋃

i∈{1,...,n} di

}
(sinceR is always closed), ini-

tializing supp to R 7→ 0, and calling the following algo-
rithm for eachdi (1 ≤ i ≤ n):
INTERSECT(supp : C → N, di)
1 for eachX ∈ C
2 do C ← C ∪ {X ∩ di}
3 if supp (X ∩ di) < supp (X) + 1
4 then supp (X ∩ di)← supp (X) + 1
5 return (supp : C → N)

Using the above algorithm the sequenced does not have
to be stored as eachdi is needed just for updating the current
approximation ofR and intersecting the current collection
C of closed sets.

The closed sets can be very useful way to understand
data sets that consist of only few different transactions and
they have been studied in the field of Formal Concept Anal-
ysis [6]. However, many times all closed sets are not of
interest but only frequent closed sets are needed. The sim-
plest way to adapt the approach described above for finding
the frequent closed sets is to first compute all closed sets
C (d) and then remove the infrequent ones:

FC (minsupp, d) = {X ∈ C (d) : supp (X, d) ≥ minsupp}

by removing all closed sets that are not frequent.
Unfortunately the collection of closed sets can be much

larger than the collection of frequent closed sets. Thus the

1If supp (X) is not defined then its value is interpreted to be0.

above approach can generate huge number of closed sets
that do not have to be generated.

A better approach to find the frequent closed sets is to
prune the closed sets that cannot satisfy the constraints –
such as the minimum support constraint – as soon as pos-
sible. If the sequence is scanned only once and nothing is
known about the sequenced in advance then no pruning of
infrequent closed sets can be done: the rest of the sequence
can always contain each closed set at leastminsupp times.

If more than one pass can be afforded or something is
known about the datad in advance then the pruning of
closed sets that do not satisfy the constraints can be done
as follows:
INTERSECTOR(d)
1 supp← INIT-CONSTRAINTS(d)
2 for eachdi in d
3 do supp← INTERSECT(supp, di)
4 UPDATE-CONSTRAINTS(supp, di)
5 supp← PRUNE-BY-CONSTRAINTS(supp, di)
6 return (supp : C → N)

The function INTERSECTORis based on three subrou-
tines: function INIT-CONSTRAINTS initializes the data
structures used in pruning and computes the initial col-
lection of closed sets, e.g. the the collectionC = {R},
function UPDATE-CONSTRAINTS updates the data struc-
tures by one transaction at a time, and function PRUNE-BY-
CONSTRAINTSprunes those current closed sets that cannot
satisfy the constraints.

3 Adaptation to Frequency Constraints

The actual behaviors of the functions INIT-
CONSTRAINTS, UPDATE-CONSTRAINTSand PRUNE-BY-
CONSTRAINTSdepend on the constraints used to determine
the closed sets that are interesting. We shall concentrate
on implementing the minimum and the maximum support
constraints, i.e., finding the closed setsX ∈ C (d) such that
minsupp ≤ supp (X, d) ≤ maxsupp.

The efficiency of pruning depends crucially on how
much is known about the data. For example, if only the
number of transactions in the sequence is known, then all
possible pruning is essentially determined by Observation 1
and Observation 2.

Observation 1 For all 1 ≤ i ≤ n holds:

supp (X, d1,i)+n−i < minsupp⇒ supp (X, d) < minsupp

Observation 2 For all 1 ≤ i ≤ n holds:

supp (X, d1,i) > maxsupp⇒ supp (X, d) > maxsupp

Checking the constraints induced by Observation 1 and
Observation 2 can be computed very efficiently. However,
the pruning based on these observations might not be very
effective: all closed sets ind1,n−minsupp can have fre-
quency at leastminsupp and all closed sets ind1,maxsupp

can have frequency at mostmaxsupp. Thus all closed sets
in d1,min{n−minsupp,maxsupp} are generated before the ob-
servations can be used to prune anything.

To be able to do more extreme pruning we need more
information about the sequenced. If we are able to know the
number of transactions in the sequence, it might be possible
to count the supports of items. In that case Observation 3
can be exploited.

Observation 3 If there exists A ∈ X such that
supp (X, d1,i) + supp ({A} , di+1,n) < minsupp then
supp (X, d) < minsupp.

Also, if we know the frequencies of some sets then we
can make the following observation:

Observation 4 If there exists Y ⊆ X such that
supp (X, d1,i) + supp (Y, di+1,n) < minsupp then
supp (X, d) < minsupp.

Note that these observations do not mean that we could
remove the infrequent closed sets from the collection since
an intersection of an infrequent closed set with some trans-
action might still be frequent in the sequenced. However,
we can do some pruning based on the observations as shown
in Proposition 1.

Proposition 1 Let Z be the largest subset ofX ∈
C such that for all A ∈ Z hold supp (X, d1,i) +
supp ({A} , di+1,n) ≥ minsupp. ThenX ∈ C can be re-
moved fromC if there is aW ⊆ Y ∈ C, Z ⊂ W , such
that supp (Y, d1,i) ≥ supp (X, d1,i) and for all A ∈ W
holdsupp (Y, d1,i)+supp ({A} , di+1,n) ≥ minsupp, and
replaced byZ otherwise.

Proof. All frequent subsets ofX are contained inZ. If
there is a proper supersetW ⊆ Y ∈ C of Z such that
supp (Y, d1,i) + supp ({A} , di+1,n) ≥ minsupp then all
frequent subsets ofX are contained inW and thusX can
be removed. OtherwiseZ is the largest subset ofX that can
be frequent and there is no superset ofZ that could be fre-
quent. IfZ is not closed, then its support is equal to some of
its proper supersets’ supports. IfZ is added toC then none
of proper supersets is frequent and thus alsoZ is infrequent.
�

This idea of replacing infrequent sets based on the sup-
ports items can be generalized to the case where we know
supports for some collectionS of sets.

Proposition 2 Let S be the collection of sets such that
supp (Y, d1,i) andsupp (Y, d1,i) are known for allY ∈ S,
and let S ′ consist of setsY ∈ S, Y ⊆ X, such that
supp (X, d1,i) + supp (Y, di+1,n) < minsupp. Then all
frequent subsets ofX ∈ C are the collectionS ′′ of subsets
Z ⊆ X such thatZ 6⊆ Y for all Y ∈ S ′, noW ⊂ Z ∈ S ′′
is contained inS ′′.

Proof. If Z ⊆ X is frequent then there is a set inS ′′ con-
tainingZ, orZ is contained in some set inS ′ but there is an-
other setY ∈ C such thatsupp (Y, d1,i) > supp (X, d1,i).
�

Proposition 3 Let S, S ′ and S ′′ be as in Proposi-
tion 2. ThenX ∈ C can be replaced by the collection
S ′′′ consisting of sets inS ′′ such thatsupp (Y, d1,i) +
supp (W,di+1,n) < minsupp for someW ⊆ Z ⊆ Y with
Y ∈ C andW ∈ S.

Proof. If Z ⊆ X is frequent then it is subset of some set
in S ′′ or there isY ∈ C, Z ⊆ Y , such thatsupp (Y, d1,i) +
supp (W,di+1,n) < minsupp for all W ∈ S,W ⊆ Z.

If Z ∈ S ′′ is not closed then it is infrequent since none
of its supersets is frequent. �

The efficiency of pruning depends crucially also on the
ordering of the transactions. In Section 5 we experimentally
evaluate some orderings with different data sets.

4 The Organization of the Implementation

A preliminary adaptation of the algorithm INTERSEC-
TOR of Section 2 to minimum support and maximum sup-
port constraints is implemented as a programintersec-
tor . The main components of the implementation are
classesItemarray , ItemarrayInput andItemar-
rayMap .

The classItemarray is a straightforward implemen-
tation consisting ofint n expressing the number of items
in the set andint* items that is a length (at least)n ar-
ray of items (that are assumed to be nonnegative integers)
in ascending order. One of the reasons why this very simple
representation of a set is used is thatItemarray s are used
also in the data sources, and although some more sophisti-
cated data structures would enable to do some operations
more efficiently, we believe thatItemarray reflects bet-
ter what an arbitrary source of transactions could give.

The classItemarrayInput implements an inter-
face to the data setd. The class handles the prun-
ing of infrequent items from the input and maintain-
ing the numbers of remaining occurrences of each
item occurring in the data set. The data setd is
accessed by a functionpair<Itemarray*,int>*

getItemarray() which returns a pointer to next
pair<Itemarray*,int> . The returned pointer is
NULL if the previous pair were the last one in the data setd.
The main difference to the reference implementation given
at the home page of Workshop on Frequent Itemset Mining
Implementations2 is thatpair<Itemarray*,int>* is
returned instead ofItemarray* . This change were made
partly to reflect the attempt to have the closure property of
inductive databases [9] but also because in some cases the
data set is readily available in that format (or can be easily
transformed into that format). The interfaceItemarray-
Input is currently implemented in two classesItemar-
rayFileInput andItemarrayMemoryInput . Both
of the classes read the data setd from a file consisting of
rows of integers with possible count in brackets. Multiple
occurrences of same item in one row are taken into account
only once. For example, the input file

1 2 4 3 2 5 (54)
1 1 1 1

is transformed into pairs〈(1, 2, 3, 4, 5) , 54〉 and〈(1) , 1〉.
The classItemarrayFileInput maintains in the

main memory only the item statistics (such as the num-
ber of remaining occurrences of each item) thus pos-
sibly reading the data set several times. The class
ItemarrayMemoryInput reads the whole data setd
into main memory. The latter one can be much faster since
it can also reorder the data set and replace all transactions
di, 1 ≤ i ≤ n, with same frequent items by one pair with
appropriate count. The implementations of these classes are
currently quite slow which might be seen as imitating the
performance of real databases quite faithfully.

The class ItemarrayMap represents a mapping
from Itemarray s to supports. The class con-
sists of a mappingmap<Itemarray*,int,CardLex>
itemarrays that maps the sets to supports, and a
set set<Itemarray*,CardLex> forbidden con-
sisting of the sets that are known to be infrequent or
too frequent. The setset<Itemarray*,CardLex>
forbidden is needed mainly because of the maximum
frequency constraint. The class consists two methods:

• The method intersect(const
pair<Itemarray*,int>*) intersects the
current collection sets represented by the map-
ping map<Itemarray*,int,CardLex>
itemarrays by the given set
pair<Itemarray*,int>* and updates the
supports appropriately.

• The methodprune(ItemarrayInput&) prunes
the sets that are already known to be infrequent or

2http://fimi.cs.helsinki.fi/

too frequent based on the statistics maintained by the
implementation of the interfaceItemarrayInput .
(The classCardLex defines a total ordering of sets
(of integers) by their cardinality and lexicographically
within of each group with same sizes.) The prun-
ing rules used in the current implementation of the
methodprune(ItemarrayInput&) are Observa-
tion 1, Observation 2, and Observation 3.

5 The Experiments

name # of rows total # of items
T10I4D100K 100000 1010228
T40I10D100K 100000 3960507
chess 3196 118252
connect 67557 2904951
internet 10104 300985
kosarak 990002 8019015
mushroom 8124 186852
pumsb 49046 3629404
pumsb* 49046 2475947

Table 1. The data sets

We tested the efficiency and behavior of the implemen-
tation by the data sets listed in Table 1. All data sets except
internet were provided by the Workshop on Frequent
Itemset Mining Implementations. The data setinternet
is the Internet Usage data from UCI KDD Repository3.

If the data sequence is read to main memory then it can
be easily reordered. Also, even if this is not the case, there
exist efficient external memory sorting algorithms that can
be used to reorder the data [18]. The ordering of the data
can affect the performance significantly.

We experimented especially with two orderings: order-
ing in ascending cardinality and ordering in descending
cardinality. The results are shown in Figures 1–9. Each
point (|C| , i) in the figures corresponds to the number|C|
of closed sets in the sequenced1,i that could be frequent in
the whole sequenced. Note that the reason why there is
no point for each numberi (1 ≤ i ≤ n) of seen transac-
tions is that same set of items can occur several times in the
sequenced.

There is no clear winner within the ascending and
descending orderings: with data setsT10I4D100K ,
T40I10D100K , internet , kosarak , andmushroom
the ascending order is better whereas the descending order
seems to be better with data setschess , connect , and
pumsb. However, it is not clear whether this is due to the
chosen minimum support thresholds.

3http://kdd.ics.uci.edu/

http://fimi.cs.helsinki.fi/
http://kdd.ics.uci.edu/

0

200

400

600

800

1000

1200

0 20000 40000 60000 80000 100000

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 1. T10I4D100K , minsupp = 4600

0

5000

10000

15000

20000

25000

30000

0 20000 40000 60000 80000 100000

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 2. T40I10D100K , minsupp = 16000

0

200000

400000

600000

800000

1e+06

1.2e+06

0 500 1000 1500 2000 2500 3000 3500

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 3. chess , minsupp = 2300

0

50000

100000

150000

200000

250000

300000

350000

0 10000 20000 30000 40000 50000 60000 70000

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 4. connect , minsupp = 44000

0

5000

10000

15000

20000

25000

30000

0 2000 4000 6000 8000 10000 12000

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 5. internet , minsupp = 4200

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1e+06

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 6. kosarak , minsupp = 42000

0

5000

10000

15000

20000

25000

30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 7. mushroom, minsupp = 2000

0

20000

40000

60000

80000

100000

120000

140000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 8. pumsb, minsupp = 44000

0

100

200

300

400

500

600

700

800

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

increasing cardinality
decreasing cardinality

Figure 9. pumsb* , minsupp = 32000

One interpretation of the results is the following: small
setdi cannot increase the size ofC dramatically since all
new closed sets are subsets ofdi anddi has at most2|di|

closed subsets. However, the small sets do not decrease the
remaining number of occurrences of items very much either.
In the case of large setsdj the situation is the opposite: each
large setdj decreases the supportssupp ({A} , dj+1,n) of
each itemA ∈ dj but on the other hand it can generate
several new closed sets.

Also, we experimented with two data setsinternet
and mushroom to see how the behavior of the method
changes when changing the minimum support threshold
minsupp. The results are shown in Figure 10 and Fig-
ure 11.

The pruning seems to work satisfactory if the minimum
support thresholdminsupp is high enough. However, it is
not clear how much this is due to the pruning of infrequent
items in the classItemarrayInput and how much due
to the pruning done by the classItemarrayMap . Unfor-
tunately, the performance rapidly collapses as the minimum
support threshold decreases. It is possible that more aggres-
sive pruning could help when the minimum support thresh-
old minsupp is low.

6 Conclusions and Future Work

In this paper we have sketched an approach for finding
closed sets with some constraints from data with only few
passes over the data. Also, we described a preliminary im-
plementation of the method for finding frequent but not too
frequent closed sets from data. The current version of the
implementation is still quite inefficient but it can hopefully
shed some light to the interplay of data and closed sets.

As the current implementation of the approach is still
very preliminary, there is plenty of room for improvements,
e.g., the following ones:

• The ordering of input seems to play crucial role in the
efficiency of the method. Thus the favorable order-
ings should be detected and strategies for automati-
cally finding them should be studied.

• The pruning heuristics described in this paper are still
quite simplistic. Thus, more sophisticated pruning
techniques such as inclusion-exclusion [5] should be
tested. Also, pruning co-operation between closed sets
generation and the data source management should be
tighten.

• The pruning done by the data source management
could be improved. For example, the data source man-
agement could recognize consecutive redundancy in
the the data source.

0

50

100

150

200

250

3800 4000 4200 4400 4600 4800 5000

el
ap

se
d

tim
e

in
 s

ec
on

ds

minimum support threshold

0

10000

20000

30000

40000

50000

60000

70000

0 2000 4000 6000 8000 10000 12000

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000

Figure 10. internet , scalability

• The intersection approach can be used to find all closed
sets that are subsets of some given sets [11]. The
method can be used to compute closed sets from the
maximal sets in one pass over the data. As there ex-
ist very efficient methods for computing maximal sets
[1, 2, 4, 7, 8, 15], it is possible that the performance
of the combination could be quite competitive. Also,
supersets of maximal frequent sets can be found with
high probability from a small sample. Using these esti-
mates one could compute supersets of frequent closed
sets. This approach can be efficient if the supersets
found from the sample are close enough to the actual
maximal sets.

• After two passes over the data it is easy to do the third
pass, or even more. Thus one could apply the intersec-
tions with several different minimum support thresh-
olds to get refining collection of frequent closed sets in
the data: the already found frequent closed sets with
high frequencies could be used to prune less frequent
closed sets more efficiently than e.g. the occurrence
counters for frequent items.

0

10

20

30

40

50

60

70

1600 1800 2000 2200 2400 2600 2800 3000

el
ap

se
d

tim
e

in
 s

ec
on

ds

minimum support threshold

0

5000

10000

15000

20000

25000

30000

35000

40000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

nu
m

be
r o

f p
ot

en
tia

l f
re

qu
en

t c
lo

se
d

se
ts

number of seen transactions

1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000

Figure 11. mushroom, scalability

• If it is not necessary to find the exact collection of
closed sets with exact supports, then a sampling could
be applied [17]. Also, if the data is generated by e.g.
an i.i.d. source then one can sometimes obtain accurate
bounds for the supports from relatively short prefixes
d1,i of the sequenced.

• Other kinds of constraints than frequency thresholds
should be implemented and experimented with.

References

[1] R. J. Bayardo Jr. Efficiently mining long patterns from
databases. In A. T. Laura M. Haas, editor,SIGMOD 1998,
Proceedings ACM SIGMOD International Conference on
Management of Data, pages 85–93. ACM, 1998.

[2] E. Boros, V. Gurvich, L. Khachiyan, and K. Makino. On
the complexity of generating maximal frequent and minimal
infrequent sets. In H. Alt and A. Ferreira, editors,STACS
2002, volume 2285 ofLecture Notes in Computer Science,
pages 133–141. Springer-Verlag, 2002.

[3] J.-F. Boulicaut and A. Bykowski. Frequent closures as a
concise representation for binary data mining. In T. Terano,

H. Liu, and A. L. P. Chen, editors,Knowledge Discovery
and Data Mining, volume 1805 ofLecture Notes in Artificial
Intelligence, pages 62–73. Springer-Verlag, 2000.

[4] D. Burdick, M. Calimlim, and J. Gehrke. MAFIA : A max-
imal frequent itemset algorithm for transactional databases.
In Proceedings of the 17th International Conference of Data
Engineering (ICDE’01), pages 443–452, 2001.

[5] T. Calders and B. Goethals. Mining all non-derivable fre-
quent itemsets. In T. Elomaa, H. Mannila, and H. Toivonen,
editors,Principles of Data Mining and Knowledge Discov-
ery, volume 2431 ofLecture Notes in Artificial Intelligence,
pages 74–865. Springer-Verlag, 2002.

[6] B. Ganter and R. Wille.Formal Concept Analysis: Mathe-
matical Foundations. Springer-Verlag, 1999.

[7] K. Gouda and M. J. Zaki. Efficiently mining maximal fre-
quent itemsets. In N. Cercone, T. Y. Lin, and X. Wu, ed-
itors, Proceedings of the 2001 IEEE International Confer-
ence on Data Mining, pages 163–170. IEEE Computer So-
ciety, 2001.

[8] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivo-
nen, and R. S. Sharma. Discovering all most specific sen-
tences.ACM Transactions on Database Systems, 28(2):140–
174, 2003.

[9] T. Imielinski and H. Mannila. A database perspective
on knowledge discovery.Communications of The ACM,
39(11):58–64, 1996.

[10] D. L. Kreher and D. R. Stinson.Combinatorial Algorithms:
Generation, Enumeration and Search. CRC Press, 1999.

[11] T. Mielikäinen. Finding all occurring sets of interest. In
J.-F. Boulicaut and S. Ďzeroski, editors,2nd International
Workshop on Knowledge Discovery in Inductive Databases,
pages 97–106, 2003.

[12] F. Pan, G. Cong, A. K. H. Tung, J. Yang, and M. J. Zaki.
CARPENTER: Finding closed patterns in long biological
datasets. InProceedings of the Ninth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining. ACM, 2003.

[13] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discover-
ing frequent closed itemsets for association rules. In C. Beeri
and P. Buneman, editors,Database Theory - ICDT’99, vol-
ume 1540 ofLecture Notes in Computer Science, pages 398–
416. Springer-Verlag, 1999.

[14] J. Pei, J. Han, and T. Mao. CLOSET: An efficient algorithm
for mining frequent closed itemsets. In D. Gunopulos and
R. Rastogi, editors,ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, pages 21–
30, 2000.

[15] K. Satoh and T. Uno. Enumerating maximal frequent sets
using irredundant dualization. In G. Grieser, Y. Tanaka,
and A. Yamamoto, editors,Discovery Science, volume 2843
of Lecture Notes in Artificial Intelligence, pages 256–268.
Springer-Verlag, 2003.

[16] G. Stumme, R. Taouil, Y. Bastide, N. Pasquier, and
L. Lakhal. Computing iceberg concept lattices with TI-
TANIC. Data & Knowledge Engineering, 42:189–222, 2002.

[17] H. Toivonen. Sampling large databases for association rules.
In T. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, editors,VLDB’96, Proceedings of 22nd International
Conference on Very Large Data Bases, pages 134–145. Mor-
gan Kaufmann, 1996.

[18] J. S. Vitter. External memory algorithms and data struc-
tures: Dealing with massive data.ACM Computing Surveys,
33(2):209–271, 2001.

[19] J. Wang, J. Han, and J. Pei. CLOSET+: Searching for the
best strategies for mining frequent closed itemsets. InPro-
ceedings of the Ninth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2003.

[20] M. J. Zaki and C.-J. Hsiao. CHARM: An efficient algo-
rithms for closed itemset mining. In R. Grossman, J. Han,
V. Kumar, H. Mannila, and R. Motwani, editors,Proceed-
ings of the Second SIAM International Conference on Data
Mining. SIAM, 2002.

	Introduction
	The Method
	Adaptation to Frequency Constraints
	The Organization of the Implementation
	The Experiments
	Conclusions and Future Work

