
Scalable Ontology Implementation Based on knOWLer

Iulian Ciorăscu
(University of Neuchâtel, Switzerland

iulian.ciorascu@unine.ch)

Claudia Ciorăscu
(University of Neuchâtel, Switzerland

claudia.ciorascu@unine.ch)

Kilian Stoffel
(University of Neuchâtel, Switzerland

kilian.stoffel@unine.ch)

Abstract: In this paper we describe the knOWLer System - an ontology-based in-
formation system. The knOWLer project focuses on the aspects of making ontologies
available to real world applications. Therefore, a lot of effort was made to create a
stable and scalable system that is able to manage millions of ontological statements.
In the paper, we will detail the basic architecture of the system and illustrate the per-
formance of the system based on some benchmark queries encountered in a wide range
of applications. The results are compared with those obtained from another state of
the art systems namely Jena. We were able to show that knOWLer was much faster
for the given ontologies and queries.

1 Introduction

Over the last decade, ontology-based information systems gained increasingly
in importance. At the beginning, lot of effort went into the analysis of differ-
ent languages to express ontologies. With the evolving standards for ontologies
especially in the Semantic Web effort, led by the W3C, the issue about lan-
guage became less important. Thus, it was possible to focus on the process of
developing ontology-based systems.

This paper presents such a system called knOWLer. knOWLer was first in-
tended to be used in medical information framework especially focusing on tar-
iffication problems such as validating bills and analyzing the neutrality of cost
in health-care. Later, because of its flexibility, it was easily integrated in appli-
cations in financial domains for specifying, analyzing and optimizing different
investment strategies or in governmental systems for verifying conformity of a
given behavior with a predefined regulation. All these applications have one com-
mon property: they are based on very large reference systems that are expressed
in form of ontologies (described by an ontological language such as OWL [3])
linked to the large structured or unstructured databases that have to be analyzed
with respect to the predefined reference systems.

As most of the information in these applications underlies strict
data-protection rules we created an artificial domain in order to be able to make
the comparisons of the different systems. The domain was created by building an
ontology based on the WordNetTM lexical reference system 1. Several versions
of this ontology can be found on the Web. We found most of them incomplete
and therefore we built our own WordNet ontology, which can be found on the
knOWLer web site2. Furthermore we extended the ontology by unstructured
text documents from the Wall Street Journal Collection. All the details about
this domain are given later.

The remainder of the paper is structured as follows. The first section overviews
a subset of the relevant existing similar applications. The next sections focuses
on the technical aspects and capabilities of our system. After a description of
the OWL-ontology used for testing the system, a series of simple and complex
queries will be presented to analyze the performance of the system by comparison
with other systems.

2 Ontology-based Systems

Taxonomic hierarchies of classes, which have been used explicitly for centuries
in technical fields (systematic biology, library science, government departments,
etc.), made the first attempt in the direction of the knowledge description lan-
guages, by defining the common vocabulary in which shared information is rep-
resented. These structures permit the discovery of implicit information through
the use of defined taxonomies and inference rules [6].

Defined as an extension over HTML, SHOE [6] was the first attempt to
annotate the web documents with machine processable data content. Focusing on
the modeling and sharing knowledge databases over the web, specific languages
were created. Most of these languages are based on RDF (e.g. DAML+OIL,
OWL) and are currently undergoing a standardization process.

There are different tools for browsing or editing ontologies described in these
languages. Most of them give support for development and maintenance of
small ontologies with minimal ontological constructs. We can mention OntoEdit
(AIFB, University of Karlsruhe) that provides graphical support, JOE (Java
Ontology Editor - University of South Carolina) as a web browser or Chimaera
(Stanford University) for maintaining distributed ontologies on the web.

There are few editors such as OILEd [2], Kaon [10] or Protégé [11] that
extend the expressive power of the ontology languages (using OIL or DAML)
and provide also support for reasoning over the ontologies.
1 WordnetTM online lexical database is available at

http://www.cogsci.princeton.edu/˜wn/
2 http://www.unine.ch/info/KID

Some systems provide reasoning support using description logic systems such
as FACT [1] and Classic [4] and many others.

With the availability of useable tools, the number of ontologies increased
rapidly. The need for storing and managing large knowledge bases became im-
minent. In a first phase a large number of systems were developed with the main
purpose of storing and retrieving ontologies. A very popular system providing
persistent storage is Jena [9]. It provides an interface for manipulating knowledge
bases and can easily be integrated in other systems (Triple [14]) or wrapped by
other applications. Another similar system is Sesame [5] used usually for web
applications. As quering mechanisms several languages were proposed, most of
them being essentially extensions of SQL (SiLRI[14], RQL [8]).

Parka-DB [16] is a frame-based system developed for manipulating very large
knowledge bases. Starting from its ideas, we developed a system that has a good
trade-off between expressivity and scalability, allowing it to handle applications
having ontologies with a huge number of statements. This is a system well suited
for intranet-based applications that requires semantic reasoning over large data
collections.

To achieve the goal of expressivity, our system implements an extension of
the OWL Lite language (subset of OWL [12]). Built upon the foundations of
the DAML+OIL specification, OWL [3] is a web ontology language based on
the current semantic web standards being more expressive than XML, RDF and
RDF Schema.

In order to show how our system encompasses these limitations of the pre-
vious mentioned systems, we will present in the next section the architecture of
the knOWLer system.

3 The knOWLer System Architecture

The knOWLer system is an innovative ontology-based system for local or dis-
tributed information management. Starting from Parka’s ideas and principles,
knOWLer has a new design, removing some of the limitations of Parka-DB while
keeping the performance at the same level.

By choosing OWL as the representation language, knOWLer makes an im-
portant step towards modern ontology languages but is still providing support
for traditional frame-based systems. Developed by W3C, the OWL language
consists of three overlapped layers [15]. The simplest language among them,
OWL Lite, supports classification hierarchy and simple constraint features. It
provides a lower entry threshold to the language guarantying the computational
completeness and decidability. On top of it, OWL DL is more expressive, but
still preserves the type separation. The last and most general layer, OWL Full,
includes the complete OWL vocabulary and gives the freedom of interpretation
provided by RDF.

In the knOWLer system, we extended the OWL Lite layer by allowing the
usage of RDF statements, giving users the possibility to treat them as individ-
uals and to apply properties to them. The resulting language will be referred
as Extended OWL Lite in this paper. The reasoning capabilities provided by
knOWLer System follow the semantics defined by the OWL Lite language.

The architecture of our ontology-based information management system con-
sists in four distinct modules (Figure 1): knOWLer kernel, Storage Interface,
Import/Export Interface and User Interface. All modules are linked through the
kernel, which is the main component.

Figure 1: knOWLer’s Architecture

3.1 The knOWLer Kernel

The central component of the knOWLer system is its kernel. It provides the
functionality required for manipulating the structure and the semantics defined
by an ontology. It also has complete reasoning for Extended OWL Lite as well as
for the equivalent subset of DAML+OIL. The kernel also supports RDF/RDFS
but the reasoning will assume Extended OWL Lite restrictions. A detailed de-
scription of how this is achieved can be found as a working draft on the knOWLer
web site.

As part of the kernel, the reasoner is able to handle queries based on RDQL
syntax, transforming them into one or more requests to the Storage Interface.
But one of the most important features is that it uses a C-like syntax interpreted
language to handle even the most complex queries inside the server. The scripting
language integrates useful features like regular expressions, efficient and easy to
use data structures (arrays, sets, maps), functional support, Object Oriented
programming, etc. The access to the data is implemented using the knOWLer
API directly from the scripts. Using scripts as queries is a powerful mechanism

for distributed knowledge bases since all the computation can be done ’on-site’,
which can reduce drastically the network traffic and thus decrease the query
time. Libraries of functions using the script language can be created and become
an integral part of an ontology, which can lead to interesting results (i.e. using
procedures as properties, etc).

Furthermore a caching mechanism is provided. It ensures that frequently
used entities are kept in memory for fast access. There is no restriction regarding
the type of entities that can be cached. Classes, properties and individuals are
supported in the same way. The cache has a visible impact when importing
data, because it reduces the overhead produced by the increased number of
small queries.

3.2 The knOWLer Modules

The knOWLer kernel uses external modules for importing/ exporting ontologies,
storing data and communicating with user and/or client applications. Usually
there are multiple modules that implement the same interface with different
functionality.

The Import/Export (IE) Interface provides the full functionality for import-
ing/exporting DAML, OWL and RDF/RDFS ontologies. The input data is con-
verted to the internal representation and it is passed to the knOWLer kernel.
For the moment, only XML/RDF and Ntriples notations are recognized. Other
notations can be added by implementing the corresponding knOWLer Import /
Export Interface.

The Storage Interface provides the mechanism for storing the data used by
the kernel. It imposes a relational model that has to be supported by the Stor-
age Module. The Storage Module can be implemented using a memory-based or
persistent storage mechanism. The current implementation includes persistent
storage based on MySQL-embedded, MySQL-client and an own btree implemen-
tation of ISAM files.

OWL-specific syntactic checks are done on the fly. An example of such a test
is to forbid having more than one property inside an OWL restriction defini-
tion. A simple RDF parser cannot do these kinds of checks, OWL extensions
being necessary. After importing data finishes, more complex checks for OWL
compliance are executed.

The User Interface gives access to the importing / exporting and reasoning
functionalities of the system. Client applications can access the system through
its API, available in C++ and Java. Either way, they can choose to use di-
rectly the API calls or use the scripting language to perform queries. Although
knOWLer is intended to be used mainly as a server, a demo client with web
interface is available. Perl and Python support is planned for the near future.

4 Test Ontology

To show the capabilities of our system we generated a very large ontology from
public data. The usefulness of this ontology was inspired by real world appli-
cations and describes a possible indexing mechanism for information retrieval
systems. It comprises three different ontologies connected through the defini-
tions of classes and properties. Each ontology was build in the OWL language
in different namespaces.

The final ontology comprises a total of 44 definitions of classes and proper-
ties, instantiated by 14.5 million individuals and more than 65 million property
instances. The whole system is defined by more than 80 million statements in
the N-triple form. The first ontology represents the content of the WordNetTM

lexical database. It gives support for the other two ontologies that provide defi-
nitions for stem and document manipulations.

4.1 WordNet OWL Ontology

Obtained from the data supplied by WordNetTM 1.7.1 lexical database, the
first ontology counts almost 1 million statements in N-triple form. Defined in
the namespace wordnet#, the WordNet OWL-ontology consists of more than
30 definitions of classes and properties and more than 700,000 instances and
relations. The full version of WordNet ontology in OWL language, including the
definitions and instances, can be found on the knOWLer Project site.

There are two top classes defined in this ontology: wordnet#WordObject class
that represents lexical words and wordnet#LexicalConcept whose extent com-
prises all WordNet synsets. Each leaf class corresponds to a syntactic category
(wordnet#Noun, wordnet#Verb, etc.). They are derived directly or indirectly
from the wordnet#LexicalConcept class, being pairwise disjoint with each other.

All the properties defined in the WordNet OWL-ontology correspond to the
WordNetTM operators. The wordnet#wordForm object property groups one or
more wordnet#WordObject individuals under the same lexical concept. There
are two types of object properties: semantic relations defined by binary relations
between word meanings (that links two wordnet#LexicalConcepts in a meaning-
ful way) and lexical relations between word forms (properties that link word-
net#WordObjects instances). Some of them can have an inverse property (e.g.
wordnet#hypernymOf inverse of wordnet#hypernymOf), can be transitive (e.g.
wordnet#entailsTo) and/or can be symmetric (e.g. wordnet#similarTo).

As an example, the wordnet#hyponymOf relation is defined as a transitive
object property and inverse of wordnet#hypernymOf relation. Its domain and
range are restricted only to nouns and verbs, given the possibility to link any
noun or verb with other noun or verb with the wordnet#hyponymOf relation.

<owl:TransitiveProperty rdf:about=”&wordnet;hyponymOf”>

<rdfs:domain rdf:resource=”&wordnet;Nouns and Verbs”/>

<rdfs:range rdf:resource=”&wordnet;Nouns and Verbs”/>

<owl:inverseOf rdf:resource=”&wordnet;hypernymOf”/>

</owl:TransitiveProperty>

The wordnet#Noun class is a subclass of wordnet#Nouns and Verbs and also
a subclass of wordnet#Nouns and Adjectives, both of them being derived from
wordnet#LexicalConcept. Using owl:disjointWith property, we stated
clearly that it is disjoint with wordnet#Verb and wordnet#Adjective. To forbid
the wordnet#hyponymOf -type relation between individuals of different syntactic
categories, a new restriction over the domain and range of the
wordnet#hyponymOf property is defined locally for each class.

<owl:Class rdf:about=”&wordnet;Noun”>

<rdfs:subClassOf rdf:resource=”&wordnet;Nouns and Verbs”/>

<rdfs:subClassOf rdf:resource=”&wordnet;Nouns and Adjectives”/>

<owl:disjointWith rdf:resource=”&wordnet;Verb” />

<owl:disjointWith rdf:resource=”&wordnet;Adjective” />

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource=”&wordnet;hyponymOf” />

<owl:allValuesFrom rdf:resource=”&wordnet;Noun” />

</owl:Restriction>

</rdfs:subClassOf >

<rdfs:subClassOf >

<owl:Restriction>

<owl:onProperty rdf:resource=”&wordnet;attributeRel” />

<owl:allValuesFrom rdf:resource=”&wordnet;Adjective” />

</owl:Restriction>

</rdfs:subClassOf >

</owl:Class>

4.2 The Stems’ Ontology

The second OWL-ontology extends the WordNet ontology by defining the Ste-
mObject class and its properties. Inside the stem# namespace, this ontology
creates a link between a lexical word and its stem form of type stem#StemObject.

The stem forms are generated by removing the commoner morphological
and inflexional endings from words. We used the Porter stemming algorithm
([13], [7]) for normalizing the lexical words and to obtain the related stems.
Because different words can provide the same stem form, a stem#StemObject

individual groups multiple grammatical forms of the same word into a single
entity. This is realized through the stem#stemFromWord property which links
a stem#StemObject with a stem#WordObject.

<owl:ObjectProperty rdf:about=”&stem;stemFromWord” >

<rdfs:domain rdf:resource=”&stem;StemObject” />

<rdfs:range rdf:resource=”&wordnet;WordObject” />

</owl:ObjectProperty >

4.3 The Documents’ Ontology

The last ontology is obtained from a collection of articles from the Wall Street
Journal. Represented by the corpus# namespace, it maps human-readable doc-
uments to a large text-database. It brings more than 13 million instances of the
corpus#DocEntry class that link WordNet lexical words with documents from
the collection. The classes and properties defined by this ontology can be used as
an indexing structure for the documents. It is not the intention to propose this
as a solution for document indexing, but as an illustration of how the knOWLer
system can be used.

Considering that a stem#StemObject individual is associated with a group
of words, the corpus# ontology links every stem#StemObject instance with its
container document. A container document contains at least one word associ-
ated with the considered stem#StemObject individual. The statistical knowledge
associated to a corpus#DocEntry consists of information about document ref-
erence (induced by corpus#doclink object property) or the frequency and first
position in the related document by the definitions of corpus#freqv and cor-
pus#pos1 datatype properties:

<owl:ObjectProperty rdf:about=”&corpus;stemToDoc”>

<rdfs:domain rdf:resource=”&stem;StemObject” />

<rdfs:range rdf:resource=”&corpus;DocEntry” />

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about=”&corpus;freqv”>

<rdfs:domain rdf:resource=”&corpus;DocEntry” />

<rdfs:range rdf:resource=”&xsd;positiveInteger” />

</owl:DatatypeProperty >

...

Because most meaningful queries request information related to words and
their containing documents, based on the properties defined until now, we ex-
tended our ontology with the corpus#wordToDoc relation that defines a direct

link between words and documents. This is automatically obtained from the
corpus#stemFromWord, corpus#stemToDoc and corpus#doclink relations.

The mapping between stemmed forms and the word’s container documents is
realized through the instances of the corpus#DocEntry class. To each
wordnet#WordObject individual in the WordNet ontology corresponds a
stem#StemObject instance, possibly linked to a corpus#DocEntry individual.
Hence, to each word in the document collection corresponds a stem#StemObject
individual, possibly linked to a wordnet#WordObject individual from the Word-
Net ontology. In this way, we can use the WordNet as a reference for document
processing.

5 Experiments

Using the ontology described in the previous chapter we conducted a series of
tests to see how our system handles such big ontologies. The queries we present
here are representative for the queries we saw while the knOWLer system was
used in the different application domains.

As Jena is used as the underlying system in many other implementations of
analogous systems (e.g. TRIPLE) we decided to make comparative tests using
Jena in order to have a baseline comparison. We used Jena 1.6.1 using MySQL
in the following tests. We tried to load the previously described ontology into
Jena. However we stopped the process, as after several days the loading was still
not finished (knOWLer finished loading the 80 million statement ontology in
less than a day). Instead we decided to use only the WordNet ontology (700.000
statements) and reduce the comparison tests to queries that don’t use the Stem
and Document ontologies. Although this is not a perfect testbed, it is good
enough to give an idea of how the two systems behave.

All queries were provided to knOWLer system in the scripting query language
format, while for Jena we wrote Java programs to handle the queries. For all our
tests we used a 660 MHz Pentium III with 320 MB RAM and SCSI harddrive
running the SuSE Linux 8.0 operating system.

5.1 knOWLer Evaluation

The simplest queries that we executed have the form “find all documents that
contains one or more specified words”. Although these queries are just direct
data extraction with no semantic reasoning, they can be used to establish the
baseline performance of our system. However they can’t be used in comparison
with the other system, as we were not able to load the whole ontology into this
system. The predefined words used by these queries were chosen in such a way

Figure 2: Results for one word based queries

that the results highlight the relation between response time and results size. As
it can be seen in the Figure 2, the query is essentially solved in linear time.

In the second test we used queries looking for documents containing two
given words. As word cases for these queries we used any word from {physical,
president, million, in} list in combination with any word from {chariness, rose,
marketing, new}. Both lists of words are sorted in ascending order relative to the
result sizes obtained in the previous type of queries. In the Table 1 we exemplify
the time results obtained by the this type of query for each considered pair of
words. The corresponding sizes of the results are shown in Table 2. These results
are not a surprise, the complexity of this type of queries being O(n log n).

physical president million in

chariness 0 0 0 0
rose 0.02 0.19 0.21 0.24
marketing 0.01 0.56 0.5 0.56
new 0.02 0.88 0.77 1.99

Table 1: Time results for two word based queries

physical president million in

chariness 0 3 5 6
rose 112 2257 5657 7667
marketing 232 6757 11709 16952
new 268 13586 18422 30072

Table 2: Result sizes for two word based queries

A more complex query is “find all documents that contains a specified word or
one of its synonyms”. Using the class and relation definitions from our WordNet
ontology and the corpus#wordToDoc property defined previously, these type of
queries are translated into:

SELECT ?D

WHERE ("word", <corpus:wordToDoc>, ?D)

union

SELECT ?D

WHERE (?C, <wordnet:wordForm>, "word"),

(?C, <wordnet:similarTo>, ?C2),

(?C2, <wordnet:wordForm>, ?W2),

(?W2, <corpus:wordToDoc>, ?D)

One of the “word” instances used for this query was wordnet#beautiful. In
the WordNet ontology this word appears with three senses corresponding to
the three wordnet#LexicalConcept individuals. Each of them is linked to similar
concepts through the wordnet#similarTo relation. Finally there are 32 unique
synonyms related to the word wordnet#beautiful. The query run in this case took
only 0.18 seconds, the answer comprising more than 10 thousand documents.

Another type of query tested with our system has the form “find all docu-
ments that contain a word as well as at least one of its antonyms”.

This is a general request, requiring the system to look over all possible com-
binations in order to find the answer. It took six minutes, giving more than 500
thousand document-word-antonym tuples associated with around 33 thousand
distinct documents.

5.2 Comparative Tests

Although knOWLer was able to handle the following queries over the complete
ontology (of 80 millions statements), to be able to compare it with Jena we
had to reduce the ontology to the WordNet part (only 0.7 millions statements).

All these queries are making use of transitive closure computation on a specific
relation.

The original query we intended was: “find all documents that talk about any
kind of animal”. Because the WordNet ontology defines “is a kind of” relation
by wordnet#hyponymOf predicate, the previous query is equivalent with “find
all documents X, such that X contains Y and Y hyponymOf animal”. The prop-
erty wordnet#hyponymOf is a transitive relation, so we have to compute the
transitive closure on the wordnet#hyponymOf relation starting from the word-
net#animal individual. This can be formalized as follows:

SELECT ?D

WHERE (?C, <wordnet:wordForm>, <wordnet:animal>),

(?C, <wordnet:hyponymOf>*, ?C1),

(?C1, <wordnet:wordForm>, ?W1),

(?W1, <corpus:wordToDoc>, ?D)

where * denotes the transitive closure over the specified relation.
This type of query is difficult to be handled by some of the existing sys-

tems. The reasoner of knOWLer provides the answer of the complete query in
2.3 seconds, based mainly on sequential interrogations over the Storage Reposi-
tory, without using the cache mechanism described in section 3.1. We retrieved
almost 38 thousand documents as result of the query. The same query using
wordnet#plant as the starting point took 2.28 seconds and retrieved around 36
thousand documents.

In order to compare the two systems we simplified the query to “find all
kinds of animal”:

SELECT ?W1

WHERE (?C, <wordnet:wordForm>, <wordnet:animal>),

(?C, <wordnet:hyponymOf>*, ?C1),

(?C1, <wordnet:wordForm>, ?W1)

Using Jena API, we translated the query into a Jena program that runs
sequential RDQL requests. The query generated 3973 words in 26 seconds. The
same query run for <wordnet:plant> generated 4829 words in 33 seconds. In the
case of knOWLer, each query took around one second.

A more interesting request is to find the pairs of words that are in the same
time antonyms and directly or indirectly synonyms. Using our scripting query
language we had the possibility to optimize the query by sequentially creat-
ing synonym equivalence classes of concepts. For every class we searched for
antonyms that belong to that class. The query resulted in 22 distinct pairs of
words and finished in 98 seconds. The similar algorithm implemented in Java for
Jena gave the answer in more than 2000 seconds.

Query description knOWLer System Jena-based System
(sec) (sec)

”animal” 1 26
”plant” 1.1 33

synonyms / antonyms 98 2000

Table 3: Comparative results

The overall results are presented in Table 3, where we can see that knOWLer
is more than 20 times faster than Jena for the given setting.

6 Conclusions and Future Work

We presented in this paper an ontology management system called knOWLer.
The special characteristic of this system is its scalability. Scalability is made

possible by using persistency at both storage and reasoning levels, allowing
knOWLer to handle enterprise-sized information bases. Of course, its perfor-
mance is highly dependent on the scalability of the specific implementation of
the Storage Module. We have shown that its base implementation relying on a
RDBMS (MySQL) is much faster than other comparable systems. The speed of
the system can be further increased by replacing the generic RDBMS by our
own special purpose DBS.

The future developments will be directed towards different paths:

– portability and availability: making knOWLer available on other platforms
and Operating Systems like MacOS/X, Solaris, FreeBSD etc. Also imple-
menting client support from Perl, Pyton, etc, and the Storage Module for
other RDBMSes.

– implementing a multi-user secure environment, with transactional and ver-
sioning support.

– increasing scalability by implementing a distributed version of knOWLer
system.

References

1. S. Bechhofer, I. Horrocks, et al. A Proposal for a Description Logic Interface. In
P. Lambrix, A. Borgida, M. Lenzerini, R. Möller, and P. Patel-Schneider, editors,
Proceedings of the International Workshop on Description Logics (DL’99), pages
33–36, 1999.

2. S. Bechhofer, I. Horrocks, et al. OilEd: A Reason-able Ontology Editor for the
Semantic Web. Lecture Notes in Computer Science, 2174:396–408, 2001.

3. S. Bechhofer, F. van Harmelen, et al. OWL Web Ontology Language Ref-
erence, W3C Candidate Recommendation. World Wide Web Consortium,
http://www.w3.org/TR/2003/CR-owl-ref-20030818/, August 2003.

4. A. Borgida, R. J. Brachman, et al. CLASSIC: A Structural Data Model for Ob-
jects. In Proceedings of the 1989 ACM SIGMOD International Conference on
Management of Data, pages 59–67, 1989.

5. D. Fensel, F. van Harmelen, et al. On-to-knowledge: Ontology-based tools for
knowledge management. In Proceedings of the eBusiness and eWork 2000 (EMM-
SEC 2000) Conference, Madrid, Spain, 2000.

6. J. Heflin and J. Hendler. Dynamic Ontologies on the Web. In Proceedings of the
7th Conference on Artificial Intelligence (AAAI-00) and of the 12th Conference on
Innovative Applications of Artificial Intelligence (IAAI-00), pages 443–449, Menlo
Park, CA, July 30– 3 2000. AAAI Press.

7. K. S. Jones and P. Willet. Readings in Information Retrieval. Morgan Kaufmann,
San Francisco, 1997.

8. D. P. G. Karvounarakis and V. Christophides. Querying Semistructured (Meta)
Data and Schemas on the Web: The case of RDF & RDFS. Technical Report no.
269, ICS-FORTH, Heraklion, Crete, Greece, Feb. 2000.

9. B. McBride. Jena: Implementing the RDF Model and Syntax Specification. In
Semantic Web Workshop, 2001.

10. B. Motik, A. Maedche, and R. Volz. A Conceptual Modeling Approach for building
semantics-driven enterprise applications. In Proceedings of the First International
Conference on Ontologies, Databases and Application of Semantics (ODBASE-
2002), LNAI, California, USA, 2002. Springer.

11. N. F. Noy, M. Sintek, et al. Creating Semantic Web Contents with Protégé—2000.
IEEE Intelligent Systems, 16(2):60–71, 2001.

12. P. F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Lan-
guage Semantics and Abstract Syntax. W3C Candidate Recommendation.
World Wide Web Consortium, http://www.w3.org/TR/2003/CR-owl-semantics-
20030818/, August 2003.

13. M. F. Porter. An algorithm for suffix stripping. In Program, volume 14/3, pages
130–137, 1980.

14. M. Sintek and S. Decker. TRIPLE—A Query, Inference, and Transformation Lan-
guage for the Semantic Web. In International Semantic Web Conference (ISWC),
Sardinia, June 2002.

15. M. K. Smith, C. Welty, and D. L. McGuinness. OWL Web Ontology Language
Guide. W3C Candidate Recommendation, http://www.w3.org/TR/2003/CR-owl-
guide-20030818/, August 2003.

16. K. Stoffel, M. Taylor, and J. Hendler. Efficient Management of Very Large Ontolo-
gies. In Proceedings of the 14th National Conference on Artificial Intelligence and
9th Innovative Applications of Artificial Intelligence Conference (AAAI-97/IAAI-
97), pages 442–447, Menlo Park, July 27–31 1997. AAAI Press.

