
TooCoM : a Tool to Operationalize an Ontology with the
Conceptual Graphs Model

Frédéric Fürst, Michel Leclère, Francky Trichet

Institut de Recherche en Informatique de Nantes
2 rue de la Houssinière - BP 92208

44322 Nantes France
{furst,leclere,trichet}@irin.univ-nantes.fr

Abstract. This article deals with the operational use of a domain ontology inte-
grated into a Knowledge-Based System (KBS). It presents TooCoM, a tool dedi-
cated to (1) the definition of ontologies with the Entity-Relationship paradigm
and (2) the operationalization of ontologies in the context of the Conceptual
Graphs model. TooCoM provides functionalities for specifying an operational
scenario of use of the ontology which is under construction, for transcribing this
ontology into the corresponding operational form and for using this operational
form in an embedded inference engine.

Keywords: Ontology, Conceptual Graphs, Knowledge-Based Systems, Opera-
tionalization.

1 INTRODUCTION

Most of works which aims at developing tools for building an ontology focuses on the
edition of the conceptual vocabulary, i.e. the terminological level. For instance, Protégé
allows the knowledge engineer to build a hierarchy of concepts and to specify pre-
defined properties of the concepts through the Frame model [11]. OntoEdit (renamed
Kaon) is also based on the Frame paradigm. As Protégé, it focuses on the structuration
of a set of concepts and on the specification of predefined properties of these concepts
[20].

None of the tools listed within the OntoWeb project [6] aims at editing, in an in-
tuitive and graphical way, the axioms of a domain. However, in our opinion, axioms
are the main operational ressource of an ontology since they constrain the use of the
conceptual vocabulary. Consequently, they are the only means to specify the semantics
of a domain. For instance, in Protégé, the knowledge engineer must known the Protégé
Axiom Language to specify the constraints and/or the rules of the domain. In OntoEdit,
the specification of a non-predefined axiom must be done by using a logical formula.

TooCoM is a tool which adresses this problem. It allows the knowledge engineer
(1) to specify the conceptual vocabulary of the domain by using the Entity-Relationship
paradigm, (2) to specify the axioms of the domain in a graphical way and (3) to easily
make these axioms operational in order to perform reasoning in the context of the Con-



ceptual Graphs model1. For this last point, TooCoM can be considered as an innovative
tool in the sense that it allows the knowledge engineer to follow reasoning processes in
a graphical way. This aspect is very important because, in our opinion, this facilitates
the appropriation and the control of the semantics which is associated to the ontology
under construction. In other words, providing functionalities dedicated to a graphical
appropriation of the implications of all the axioms (rules and constraints) of a domain
makes the understanding (and therefore the refinement) of the semantics of a domain
more easy.

As WebODE implements the METHONTOLOGY methodology to build an ontol-
ogy [1], TooCoM implements original guidelines to specify axioms at the conceptual
level and to specify the operational use of the ontology which determinates the opera-
tional form of the axioms.

From a technical point of view, TooCoM is based on CoGITaNT, a framework which
offers capabilities to represent and manipulate Conceptual Graphs [10]. TooCoM has
been tested in the context of the GINA project (Interactive and Natural Geometry) re-
lated to CAD (Computer-Aided Design) [13]. In this experiment, our tool has been used
to build and to automatically operationalize an ontology of geometry [9].

The rest of this paper is structured as follows. Section 2 presents how building an
ontology with TooCoM, in particular how specifying the conceptual vocabulary and the
axioms. Section 3 first introduces the process we advocate to operationalize an ontology
and then shows the application of this process in the context of the Conceptual Graphs
model and its implementation in TooCoM. Finally, section 4 introduces a discussion
about the innovative aspects of TooCoM in comparison with existing tools.

2 DEFINING AN ONTOLOGY WITH THE ENTITY-
RELATIONSHIP PARADIGM

Defining an ontology with the Entity-Relationship (E/R) paradigm mainly consists in
(1) specifying of the conceptual vocabulary of the domain which is considered and (2)
specifying the semantics of the conceptual vocabulary through axioms.

2.1 The specification of the conceptual vocabulary

As implied by the Gruber’s definition, (« an ontology is a formal, explicit specifica-
tion of a shared conceptualization » [12]), the building of an ontology is based on a
conceptualization, which is a conceptual description of the knowledge covered by the
ontology. This description consists of a conceptual vocabulary which, in the context of
the E/R paradigm, contains a set of concept types and a set of relation types which can
both be structured by using subsomption links.

TooCoM allows the knowledge engineer to define such hierarchies, both for concept
types and for relation types. Figure 1 shows an extract of the hierarchy of concept types

1 Operationalizing knowledge consists in representing it with an operational language, according
to an operational goal. An operational language is a formal language (i.e. a language having
a syntax and formal semantics) which provides inference mechanisms allowing one to reason
from its representations. An operational goal is specified by a scenario of use (cf. section 3.1).



Fig. 1. A hierarchy of concept types in TooCoM. An arrow represents a subsomption link between
a concept type and his parent concept type (« a Triangle is-a Polygon »).

which has been defined for the GINA project (i.e. an ontology of geometry defined ac-
cording to Hilbert’s book « Grunlagen der Geometrie »). Figure 2 shows the hierarchy
of relation types.

2.2 The specification of the axioms

Axioms represent the intension of concept types and relation types and, generally speak-
ing, knowledge which is not strictly terminological [19]. Axioms are specific to ontolo-
gies and, in our opinion, allow us to distinguish an ontology from a thesaurus. Thesaurus
are only based on terminological representations and can be compared to light weight
ontologies, whereas heavy weight ontologies contain the whole semantics of a domain
[18]. Axioms specify the way the terminological primitives must be manipulated. Two
types of axioms can be distinguished :

– the axioms that represent common and well-defined properties of concept types or
relation types ;

– the axioms that represent properties specific to the domain .



Fig. 2. A hierarchy of relation types in TooCoM. The property box of the belongsSP relation type
is open. Such a box shows the signature, the parents, the children and the algebraic properties of a
relation type. For instance the belongsSP relationship can only be stated between a Plane_Curve
and a Plane, it has the belongs relation type as parent and no child and bears any algebraic
property.

The common properties, that we call axiom schemata, can correspond to:

– algebraic properties such as symmetry, reflexivity, transitivity;
– the is-a link between two concept types or two relation types (subsomption prop-

erty);
– the signature or the cardinalities of a relation type;
– the exclusivity or the incompatibility between two concept types or two relation

types (the incompatibility between two primitives P1 and P2 is formalized by
¬(P1 ∧ P2), the exclusivity is formalized by ¬P1 ⇒ P2).

Classical axiom schemata can be specified by simply indicated the property of the
relation types in the tool box (cf. figure 2), i.e. without creating a new axiom by using
the Axioms panel. If an additional property of relation type (symmetry, transitivity or
reflexivity) is specified, the corresponding axiom is automatically created and added to
the ontology.

However, an axiom does not necessarily correspond to a schema. For instance, fig-
ure 3 shows the axiom 1.2 of Hilbert’s axiomatics. This axiom, which expresses a prop-



erty of identity between a Straight_line and a couple of Points does not correspond to a
classical axiom schema and must be build in the axiom panel.

Fig. 3. Representation of an axiom in TooCoM. The yellow (bright) concepts and relationships
represent the hypothesis part of the axiom and the gray (dark) concepts and relationships represent
the conclusion part. Semantics of this axiom is as follows: given two different points and two
different straight lines, if one of these points belongs to the two lines, and if the other belongs to
one the lines, it does not belong to the second line.

In TooCoM, the subsomption links and the signatures of the relation types are the
only properties that are embedded into the modeling paradigm underlying our tool, and
they do not have to be expressed by axioms. All other properties of the conceptual prim-
itives have to be specified as axioms via the definition of predefined axiom schemata
in hierarchies of concept or relation types, or via the whole creation of an axiom in the
Axioms panel.

An axiom is composed of an hypothesis part and a conclusion part, respectively
represented by a conceptual graph2. A conceptual graph is a bipartite graph composed
of concept vertices (representing objects of the domain) and relationship vertices (de-
scribing relationships between objects). Each vertex of a conceptual graph is labeled. A

2 The Conceptual Graphs model, first introduced by Sowa [17], is a knowledge representation
model which belongs to the semantic networks. An extension of this model, the SG family [2],
presented in section 3.2, extends the model with reasoning primitives, rules and constraints.



concept vertex is labeled with the concept type from which the represented object is an
instance. To identify the represented object, one can possibly add an individual marker.
In that case, the vertex is called an individual concept. In other case, one adds to the
concept type a star which denotes the generic marker (i.e. the identity of this concept
is not defined). Such a vertex is called a generic concept. A relation vertex is simply
labeled by a relation type specifying the nature of the link between the neighbouring
concepts.

But this representation of axioms does not specify their operational semantics, in the
sense that it does not specify the way the axioms will be used in an operational appli-
cation. Because this operational semantics depends on the operational goal of the KBS,
it can not be included in an ontology, which must be independent from any operational
goal. Thus specifying this semantics conducts to an operational ontology, through an
operationalization process.

3 OPERATIONALIZING AN ONTOLOGY WITH TooCoM

An ontology is only a conceptual representation of a domain, independently of any op-
erational applications. To use an ontology in a KBS, it is necessary to transcribe the
conceptual representation into a form in accordance with the way the KBS will be used.
This form must be an operational form, in the sense that the knowledge representation
model must offer operational mechanisms, such as inference mechanisms, in order to
allow the manipulations to which the KBS is dedicated. For instance, to perform auto-
matic reasoning, the operational formalism must allow the representation of derivation
rules and the effective application of these rules on a set of facts. Thus, the use of an
ontology in a KBS requires an operationalization process, that consists in transcribing
the ontology in an operational formalism, in accordance with the operational use of the
KBS.

3.1 The scenarii of use and the operationalization of axioms

The operationalization of an ontology is only conceivable for a well defined operational
use, characterized by a precise scenario of use [5]. A scenario of use is the description
of the purposes for which knowledge will be manipulated in the system. Defining a
scenario of use mainly consists in describing the way the axioms will be used in the
system, because the operational representation of terminological knowledge does not
depend on the different contexts of application. Indeed the representation of a concept
or a relation type is the same in the case of a system dedicated to knowledge validation
or in the case of a system built to produce new facts from a knowledge base. Only the
operational representations of the axioms are specific to the goal of the application.

We consider that an axiom can be used to validate knowledge in relation to the
ontology or to produce new facts from a base. For instance, the axiom 1.6 of Hilbert
« If two points A and B of a straight line d belong to a plane α, then all the points of
d belong to α » can be used either to deduct the membership of points to a plane, or
to indicate that a situation is not in accordance with the semantics of geometry, such as



« there are two points that belong to both a straight line and a plane and a point of the
straight line which does not belong to the plane ».

Moreover, an axiom can be used when the user of the system asks for it, or it can
be applied automatically by the system everywhere it is possible. The first application
is called explicit, the second implicit. For instance, the axiom 1.3.1 of Hilbert « On a
straight line, there are at least two points » can be implicitly used if the user is not
supposed to apply this axiom before considering points on a straight line or, on the
contrary, can be explicitly used if he is supposed to resort to the axiom for considering
such points, for instance for educational purposes.

So, operationalizing an ontology requires, for each axiom, the choice of a context
of use which specifies the purpose for which the axiom will be used and how it will be
applied in the system. The different contexts of use we have identified are:

– The inferential and explicit context of use: the user applies the axiom by himself
on a fact base to produce new facts;

– The inferential and implicit context of use: the axiom is applied by the system on
a fact base to produce new facts;

– The validation and explicit context of use: the user applies the axiom by himself
to check that a fact base is in accordance with the semantics of a domain;

– The validation and implicit context of use: the axiom is applied by the system to
verify that a fact base is in accordance with the semantics of a domain.

A scenario of use consists in a set of contexts of use choosen for each axiom of
the ontology. Generally speaking, the operational form of an ontology includes infer-
ential mechanisms and validation mechanisms. These mechanisms are required for the
automatic (or semi-automatic) manipulation of knowledge. For instance, a scenario ded-
icated to a computer-aided teaching application allows the user to apply knowledge to
deduce new facts or to check his work. Such a scenario comprises automatic inferences
and validation processes, in accordance with the level of the user.

Figure 4 presents the general inference cycle through which the axioms are applied
in a KBS. First the user can add facts to the fact base, then he can apply an axiom
choosen between the inferential and explicit ones. Then the system applies all the infer-
ential implicit axioms in order to sature the fact base with implicit knowledge. Finally, a
validation step, which can be partially leaded by the user, permits to detect « semantical
inconsistencies » in the fact base.

Two particular scenarii can be distinguished: the pure validation scenario, where the
operational ontology is used to check a fact base according to the semantics of a domain
(all axioms are operationalized in a validation context of use), and the inferential and
implicit scenario, where the operational ontology is used to automatically produce new
knowledge (all axioms are operationalized in an implicit context of use). To define the
scenario of use of an ontology, the context of use of each axiom must be specified. This
context constrains the operational form of the axiom. But, of course, the choice of the
operational knowledge representation language also constrains this form.



The user releases the

application of an axiom

(possibly none) with an

inferential and explicit


context of use


Automatic or semi-

automatic validation with


the axioms used in a

checking context of use


Saturation by automatic

application of the axioms


with an inferential and

implicit context of use


Beginning of the cycle


1


2
 3


The user add facts

(possibly none) to the fact


base

4


Fig. 4. The inference cycle dedicated to the use of an operational ontology.

3.2 The operationalization of the axioms with the Conceptual Graphs model in
TooCoM

TooCoM is based on an extension of the Conceptual Graphs model (CGs). The CGs
model is an operational knowledge representation language which provides conceptual
primitive representations through concepts and relationships between these concepts
[17]. The subsomption property and the signature of relationships are integrated in the
model. The other axioms, that express the way the primitives must be manipulated, can
be represented with three types of reasoning primitives, that have been added as an
extension of the model, the SG family [2]:

– The positive constraints, with an hypothesis part and a conclusion part, of which
the semantics is: if the hypothesis part is present, then the conclusion part must be
present (otherwise the constraint is broken);

– The negative constraints, with an hypothesis part and a conclusion part, of which
the semantics is: if the hypothesis part is present, then the conclusion part must be
absent (otherwise the constraint is broken);

– The rules, with an hypothesis part and a conclusion part, of which the semantics is:
if the hypothesis part is present, then the conclusion part can be produced.

A rule can be implicitly used by the system (i.e. applied everywhere the hypothesis
of the rule is present) or explicitly applied by the user (on a given fact in the knowledge
base). A negative or positive constraint can be automatically used by the system (i.e.
checked everywhere in the knowledge base) or explicitly applied by the user.

In order to allow the automatic operationalization of ontologies in TooCoM, we
have defined operationalization mechanisms for each form of axiom. For instance, an
axiom can have the following form:

∀x1, ..., xn H ⇒ ∃y1, ..., ym r1(..) ∧ .. ∧ rp(..) (1)

where ri are relationships between the xi and/or yj variables and H a conjonction of
predicats which express concepts or relations.



The different operational forms of such an axiom, depending on the context of use,
are:

– Inferential and implicit context of use: the axiom is operationalized by an implicit
rule which corresponds to the the logical formula ∀x1, ..., xn H ⇒ ∃y1, ..., ym

r1(..) ∧ .. ∧ rp(..) ;
– Inferential and explicit context of use: the axiom is operationalized by an explicit

rule which corresponds to the logical formula ∀x1, ..., xn H ⇒ ∃y1, ..., ym r1(..)∧
..∧ rp(..) and p negative constraints which correspond to the statement ∀x1, ..., xn

H (
∧

ri(..))i=1..p,i 6=j , it can not exist r′j(..), j = 1..p, where r′j is exclusive with
rj in the ontology3. If any relationship exclusive with rj exists in the ontology, the
corresponding constraint is replaced by q negative constraints which correspond to
the statement ∀x1, ..., xn H (

∧
ri(..))i=1..p,i6=j , it can not exist r′jk

(..), k = 1..q,
where r′jk

are all incompatibles with rj ;
– Validation and implicit (respectively explicit) context of use: the axiom is opera-

tionalized by p negative and implicit (respectively explicit) constraints
∀x1, ..., xn H (

∧
ri(..))i=1..p,i6=j ⇒ r′j(..), j = 1..p, where r′j is exclusive with

rj in the ontology. If any relationship exclusive with rj exists in the ontology, the
corresponding constraint is replaced by q negative constraints which correspond to
the statement ∀x1, ..., xn H (

∧
ri(..))i=1..p,i6=j , it can not exist r′jk

(..), k = 1..q,
where r′jk

are all incompatibles with rj .

In TooCoM, the user can build an operational ontology by specifying the context of
use of each axiom of the ontology. According to this context, each axiom is automat-
ically transcribed into an appropriate form (i.e. a rule, a constraint, a rule and a set of
constraints or a set of constraints). Then, the operational ontology, which includes the
conceptual primitives and the axioms in an operational form, can be exploited by the
TooCoM inference engine which implements the reasoning cycle presented in figure 4.

3.3 The use of an operational ontology in TooCoM

TooCoM provides an inference engine based on the manipulation of conceptual graphs.
This inference engine uses the CoGITaNT framework which allows to compare graphs
and to apply CG rules through a graph projection operator [10]. By using this inference
engine, the knowledge engineer can test the ontology under construction by applying
the operational ontology to different situations. For instance he can state a fact rep-
resented by a graph and runs the engine over this fact. During the explicit inferential
phase, he can choose the axiom he wants to apply and where he wants to apply it. The
result of the reasoning process is displayed in real-time in the interface and the user can
check if the resulting fact is correct in relation to the result which is intended. Again,
as shown in figures 5 and 6, we argue in favor of a graphical semantics. These figures
present the running panel of the inference engine.

If the user has a set of competency questions, he can check it with the inference en-
gine. Moreover, the system can indicate exactly what axiom creates an inconsistency or

3 The incompatibility between two primitives P1 and P2 is formalized by ¬(P1 ∧ P2), the
exclusivity is formalized by ¬P1 ⇒ P2.



Fig. 5. A step of an inference cycle. The user has build a graph with three points A, B and C where
A is different from B and B different from C (the graph appears in bright color). He selects the
axiom 1.1 (given two different points, it exists a straight line to which belong these two points)
which can be applied on the points A and B, or B and C (the conclusion part of the axiom appears
in dark color). The system suggests to the user different projections on which the axiom can be
applied. By using the keyboard arrows, the user can examine the different projections and apply
the explicit axiom where he wants. In this example, the user applies the axiom on the points A
and B (cf. figure 6 for the next step).

what axiom is lacking to answer the question. For instance, in the domain of geometry,
we have use TooCoM to produce an operational form of the ontology appropriated to
the automatic theorem proof checking [9]. In this case, all the Hilbert’s axioms have
been operationalized through an explicit and inferential context of use and the other ax-
ioms (e.g. the exclusivity between relation types) have been operationalized through an
implicit and inferential context of use. By testing the proof of some theorems, we have
discover some missings, which correspond to implicit knowledge not stated by Hilbert
in his book, but really used in the proofs [9].

The building of different kinds of KBS is possible as far as the system can use the
general reasoning cycle. In the context of geometry, we can adapt the scenario of use
to automatically generate a module of an Intelligent Tutoring System which will use
some axioms to validate the student’s assertions and others to complete these asser-
tions, whereas the student will use the explicit axioms to prove a theorem or to build a
geometric figure.



Fig. 6. After applying the axiom 1.1, the system automatically applies the implicit rules, and
deduces the difference between the points from the symmetry property of the diff (difference)
relation type. The user can then apply another axiom, for instance the axiom 1.1.

4 RELATED WORK

The first aspect that differentiates TooCoM from its related tools is that it is based
on the Entity-Relation paradigm to structure an ontology, whereas most of other tools
dedicated to the building of ontology, like OILEd [3], Protégé [11] or OntoEdit [20],
are based on the Frame paradigm. Indeed, TooCoM is based on the Conceptual Graphs
model which provides both a conceptual paradigm used to structure the terminological
level of the ontology and reasoning mechanisms based on graph homomorphism in
keeping with the first order logic.

Then, most of existing tools provides a textual mode to specify conceptual vocabu-
lary and axioms. For instance, in OntoEdit, the specification of a non-predefined type of
axiom requires the use of the F-Logic syntax [20]. But some of them allows the knowl-
edge engineer to build ontologies in a graphical way: WebOnto provides a graphical
interface for the edition of the conceptual vocabulary but not for the edition of axioms
[7]. The graph based paradigm used in TooCoM is more intuitive than a textual one and
it allows the knowledge engineer to specify both the terminological knowledge and all
kind of axioms in a graphical interface, without knowing a textual axiom language.

We think that a graphic visualization of the inferences carried out is a significant
factor which, on the one hand, facilitates the appropriation of a formal system and, on



the other hand, allows the expert to validate the adopted model on its own (without
reinterpretation of the implemented reasonings by a logician)4. The use of a graphical
langage to build an ontology, which is a knowledge model, is coherent with the use of
graphical languages, as UML, to build modelization in the programming domain.

The second, and most important, innovative aspect of TooCoM, is to allow the rep-
resentation and the operationalization of all kinds of axioms. As fast as the use of ontol-
ogy is growing, it becomes necessary to represent more and more complex properties
of the concepts. For instance, the specification of OWL [16] includes new properties, as
intersection of concept classes or algebraic properties, that do not appear in the RDFS
specification. In our opinion, a complete ontology representation language must allow
to represent any axiom, and not only predefined axioms. This allows the knowledge
engineer to define properties that are not included in the language. For instance, in the
domain of geometry, a lot of properties expressed through mathematical axioms can not
be related to well defined properties, like algebraic properties.

An other advantage of the operational representation of axioms is the possibility
to use ontologies for reasoning. This aspect becomes more and more important for the
applications of the Semantic Web [8]: the Web services will use ontologies to reason
and this requires the representation of axioms and not only the representation of ter-
minological primitives organized in hierarchies. For instance, the RuleML language
[4] is dedicated to the representation of rules and constraints in order to allow deduc-
tion, rewriting, and further inferential-transformational tasks. But the operational rep-
resentation of axioms is conditioned by their operational uses. So, building operational
representation of axioms requires an operationalization process through which these
representations are produced according to contexts of use.

The representation of all kinds of axioms and their use in an inference engine
through an original operationalization process allows to perform the original goal of
Protégé, that is the interactive building of a KBS [11]. Moreover, in TooCoM, it is pos-
sible to automatically make the ontology operational and to manipulate it at a concep-
tual level. The context of use of each axiom can be specified and the KBS appropriated
to the application which is intended can be automatically generated. As in many tools,
this mechanism permits a constraint checking of the ontology. But it also allows the
knowledge engineer to easily check the completeness of the ontology, by submitting
competency questions to the inference engine.

At this moment, the ontologies can be stored in the BCGCT format [15], which is
peculiar to the CoGITaNT framework, or in the CGXML format. These formats allow
to represent the terminological primitives of a domain, the subsomption links between
these primitives, the instances of concepts types, and axioms in rule form. We plan
to add a module in order to allow the storage and the loading of ontologies in other
common ontology languages like RDFS or OWL, as far as the expressivity of these
langages allows us to represent all axioms.

4 The validation can then be considered as a simple study of graphical explanations of the rea-
sonings that have been performed by the system.



5 CONCLUSION

TooCoM allows a knowledge engineer to build ontologies within the Entity-Relation-
ship paradigm, and to specify both the terminological knowledge of a domain and the
semantics of this domain through axioms. The main characteristics of TooCoM is the
possibility to define all kinds of axioms and to generate different operational ontologies
from the specification of scenarii of use. So, thanks to a graphical semantics, TooCoM
facilitates the appropriation of a global understanding of the semantics of the domain
mainly defined by the axioms.

The operationalization mechanism provided by TooCoM permits, via the definition
of an operational scenario, to produce operational ontologies. These operational ontolo-
gies can be used to validate the ontology itself, by submiting competency questions to
the inference engine. This corresponds to a knowledge level prototyping approach [14].
For instance, the experiment we have done in the domain of geometry has lead us to
modify our ontology after that the proof of a theorem failed.

The operationalization guideline implemented in TooCoM must be extended to
other formalisms than the CGs model. In particular, the use of a combination of OWL, to
represent the terminological knowledge, and RuleML, to represent axioms, is planned.
It will permits to build operational ontologies that can be used on the Web.

References

1. J. Arpirez, O. Corcho, M. Fernandez-Lopez, and A. Gomez-Perez. Weboe: a workbench for
ontological engineering. In Proceedings of the first International Conference on Knowledge
Capture (K-CAP’2001), Victoria, Canada, 2001.

2. J.F. Baget and M.L. Mugnier. The sg family: Extensions of simple conceptual graphs. In
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI’2001), pages
205–210, 2001.

3. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. Oiled: a reason-able ontology editor for
the semantic web. In Proceedings of KI2001, Joint German/Austria Conference on Artificial
Intelligence, volume 2174, pages 396–408. Springer Verlag LNAI, 2001.

4. H. Boley, S. Tabet, and G. Wagner. Design rationale of ruleml : a markup language for
semantic web rules. In Proceedings of the Semantic Web Working Symposium (SWWS’2001),
2001.

5. J. Bouaud, B. Bachimont, J. Charlet, and P. Zweigenbaum. Methodological principles for
structuring an ontology. In ACM Press, editor, Proceedings of IJCAI’95 Workshop: Basic
Ontological Issues in Knowledge sharing, 1995.

6. OntoWeb consortium (coordinated by Asuncion Gomez Perez). A survey on ontology tools.
technical report IST-2000-29243, IST, 2002.

7. J. Domingue. Tadzebao and webonto: Discussing, browsing and editing ontologies on the
web. In Proceedings of the Eleventh Knowledge Acquisition Workshop (KAW’98), 1998.

8. D. Fensel and C. Bussler. Semantic web enabled web services. In Proceedings of Inter-
national Semantic Web Conference (ISWC’2002), volume 2342, pages 1–2. Springer-Verlag
LNCS, 2002.

9. F. Fürst, M. Leclère, and F. Trichet. Contribution of the ontology engineering to mathe-
matical knowledge management. Annals of Mathematics and Artificial Intelligence, Kluwer
Academic Publishers, (38):65–89, 2003.



10. D. Genest and E. Salvat. A platform allowing typed nested graphs : how cogito became cog-
itant. In Proceedings of the International Conference on Conceptual Structures (ICCS’98),
volume 1453, pages 154–161. Springer-Verlag LNAI, 1998.

11. J.H. Gennari, M.A. Musen, R.W. Fergerson, W.E. Grosso, M. Crubezy, H. Eriksson, N.F.
Noy, and S.W. Tu. The evolution of protégé: an environment for knowledge-based systems
development. International Journal of Human-Computer Studies, 58:89–123, 2003.

12. T.R. Gruber. A translation approach to portable ontology specifications. Knowledge Acqui-
sition, 5(2):199–220, 1993.

13. O. Lhomme, P. Kuzo, and P. Macé. Desargues, a constraint-based system for 3d projective
geometry. Geometric Constraint Solving and Applications, ISBN:3-540-64416-4, 1998.

14. A. Newell. The knowledge level. Artificial Intelligence, 18:87–127, 1982.
15. CoGITaNT Home Page. http://cogitant.sourceforge.net/docs/index.html.
16. Ontology Web Language Home Page. http://www.w3.org/tr/2002/wd-owl-guide-20021104/.
17. J. Sowa. Conceptual Structures : information processing in mind and machine. Addison-

Wesley, 1984.
18. S. Staab. An extensible approach for modeling ontologies in rdf(s).

In presentation at the ECDL2000 Workshop on the Semantic Web,
http://www.ics.forth.gr/isl/SemWeb/PPT/Staab.ppt, 2000.

19. S. Staab and A. Maedche. Axioms are objects too: Ontology engineering beyong the mod-
eling of concepts and relations. Research report 399, Institute AIFB, Karlsruhe, 2000.

20. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. Ontoedit: colllaborative
ontology development for the semantic web. In Proceedings of the International Semantic
Web Conference, volume 2342, pages 221–235. Springer-Verlag LNCS, 2002.


