
Semantic Integration and Inconsistency

Steve Easterbrook
Department of Computer Science, University of Toronto

40 St George Street, Toronto, Ontario, M5S 2E4, Canada
http://www.cs.toronto.edu/~sme

Abstract
The management of inconsistency between multiple

viewpoints has become a central problem in the
development of large software systems. In this paper we
argue that the same problem occurs in the development of
the semantic web, and indeed that this is the central
issue in semantic integration. A common approach is to
attempt to remove inconsistencies, if necessary by
discarding problematic information. We argue that this
approach will greatly limit the utility of the semantic
web. Instead, we argue the need for formal reasoning
systems that can tolerate inconsistent information. A key
observation is that the problem is essentially one of
model management. Rather than seeking to build a single
consistent model, the challenge is to reason about the
inconsistencies and dependencies between a set of inter-
related partial models, and to use paraconsistent logics
when reasoning with information from inconsistent
ontologies.

1. Viewpoint Integration in SE

For the past 15 years, we have been studying the
problem of viewpoint integration in Software
Engineering. Viewpoints are used in SE to support a
loosely-coupled distributed approach to software
development, in which different participants are able to
maintain their own (partial) models of the system and its
requirements, without being constrained by the need to be
consistent with other participants’ models [2]. By
exploring the relationships between viewpoints, and the
inconsistencies that arise when intended relationships do
not hold, the participants discover disagreements, and
understand one another’s perspectives better.

The key insight of the viewpoints work is to see
software development as a problem of model
management, with the attendant goal of seeking coherence
in information drawn from disparate sources. Software
developers create models in a variety of notations to
capture their current understanding of the problem and
these models are rarely static. Developers analyze their
models in various ways, and use the results of these
analyses to improve them. They create multiple versions
of their models to explore design options, and to respond
to changing requirements. Hence, most of the time,
design models are likely to be incomplete and

inconsistent. Managing inconsistency as these models
evolve is a major challenge.

In its narrowest sense, consistency is usually taken to
mean syntactic consistency. In a good modeling language,
syntactic consistency should correspond to the developer’s
intuitive notion of a “well-formed model”. Hence,
syntactic inconsistencies indicate simple mistakes, or
slips, made by the designer. In this view, detection and
resolution of inconsistency can be thought of as “model
hygiene”.

In our work, we have taken a much broader view of
consistency. In our view, an inconsistency occurs
whenever some relationship that should hold (of the
model) has been violated. This definition has an
intentional flavour: someone (e.g. the designer) intends
that certain relationships hold. Such relationships may be
internal to a model (e.g. the definition of an element
should be consistent with its use), or may refer to external
relationships (e.g. a model should be consistent with a
particular choice of semantics, with existing standards,
with good practice guidelines, or with another model,
etc). This definition of inconsistency spans the semantics
and pragmatics (i.e. the intended meanings and uses) of
model elements, as well their syntax.

This view has several interesting consequences.
Firstly, by this definition, most conceptual models are
inconsistent most of the time, and attempting to remove
all inconsistency is usually infeasible. Design involves
finding acceptable compromises, rather than seeking
perfection. Hence, in our work on consistency
management, we don’t view detection and removal of
inconsistency as the main goal; instead, we focus on tools
to explore the consistency relationships, and on reasoning
techniques that tolerate inconsistency [7].

Secondly, most of the interesting consistency
relationships arise implicitly as models are developed. If
we wish to provide automated tools for consistency
management, such consistency relationships have to be
captured and represented. Thirdly, because of the
intentional nature of these relationships, the set of
relevant consistency relationships for a given model will
change over time as the developer’s intent changes.

We have made significant progress in the past 15 years
in our study of these ideas.
ß We have developed a number of representation

schemes for capturing and managing the consistency
relationships in modeling languages. These include a

first order logic for checking XML documents [6], a
production rule approach for checking UML models
[5] and a structural mapping technique based on
graph morphisms for graphical notations [8]

ß We have developed a number of reasoning techniques
that tolerate inconsistency. In general, these make use
of paraconsistent logics, i.e. non-classical logics
whose entailment relations are not explosive under
contradiction. For example, we have explored the use
of a family of multi-valued logics identified by
Fitting [3], and demonstrated that we can build
practical reasoning engines for these logics [1].

ß We have developed a theoretical framework for
combining information from multiple, inconsistent
sources, without first resolving the inconsistencies
[8]. The composition technique we use in this
framework preserves information about relative
certainty and inconsistency of the source models.

2. Inconsistency in the Semantic Web

It now seems clear that if the semantic web is to be
realized, it will not be by agreeing on a single global
ontology, but rather a by weaving together a large
collection of partial ontologies that are distributed across
the internet [4]. We see the issues in semantic integration
to be essentially the same as those in viewpoint
management. In fact, the conceptual modeling tasks to
which we have applied viewpoints are essentially
ontology modeling tasks. For example, in requirements
analysis, the models we build are domain ontologies,
together with goal hierarchies and behaviour models that
are based on them.

We can therefore make the following
observations:
ß By its very nature, the semantic web will be based on

a heterogenous collection of viewpoints (partial
ontologies), each constructed by a particular
stakeholder for a particular purpose.

ß These ontological components will not be static –
they will evolve as the web services for which they
were created evolve.

ß For much of the time, these ontological components
will be inconsistent with one another, in terms of the
meanings attached to ontological elements, and the
ways in which those elements are used.

ß Semantic integration can only be achieved if
(intentional) consistency relationships between
ontological components can be captured and made
explicit.

ß Reasoning over the semantic web will only be
possible if we have automated tools for testing these
consistency relationships to identify inconsistencies.

ß Fixing the inconsistencies will usually not be
feasible, as this would require a globally distributed,
disparate set of stakeholders to agree on and subscribe
to a universal conceptual model.

ß Hence, practical reasoning on the semantic web must
be tolerant of inconsistency.

It should be clear by now that we believe the central
problem in the semantic web will be managing
inconsistency between ontologies. We believe our work
on consistency management in the viewpoints framework
suggests some promising ways forward. In particular, we
believe we have practical solutions to two of the greatest
challenges: representing the consistency relationships
between ontologies, and reasoning over composite
ontologies that contain inconsistencies. Several of the
techniques described above are applicable.

We are currently investigating the application of the
theoretical framework described in [8] to ontology
integration. Briefly, this framework was developed for
combining models in graph-based notations, where the
combinations must take into account relative certainty and
inconsistency of the source models. We explicitly tag
elements of the models with labels indicating relative
certainty and relative consistency. We call the resulting
models fuzzy viewpoints. We then use graph morphisms
to capture structural mappings between fuzzy viewpoints.
Finally, we compute compositions of fuzzy viewpoints
using the categorical construct of a pushout. The
theoretical results on which this framework is based
guarantee that we can always compute the composition,
that it preserves the structure of the source models, and
that no information is lost or gained in the composition.
We believe that this theory provides an excellent
foundation for ontology integration.

3. References

[1] M. Chechik, B. Devereux, S. M. Easterbrook & A.
Gurfinkel "Multi-Valued Symbolic Model-Checking".
To appear, IEEE Trans. on Software Engineering and
Methodology, 2003.

[2] S. M. Easterbrook & B. A. Nuseibeh “Managing
Inconsistencies in an Evolving Specification”. 2nd IEEE
Int. Symp. on Requirements Engineering (RE'95), York,
UK, p48-55. Apr 1995.

[3] M. Fitting “Kleene's three-valued logics and their
children”. Fundamenta Informaticae, 20, 113-131, 1994

[4] J. Hendler, “Agents and the Semantic Web”. IEEE
Intelligent Systems, 16(2) 30--37, 2001.

[5] W. Liu, S. M. Easterbrook & J. Mylopoulos, “Rule-Based
Detection of Inconsistency in UML Model”. Workshop
on Consistency Problems in UML-Based Software
Development, 5th Int. Conference on the Unified
Modeling Language, Dresden, Germany, Oct 1, 2002.

[6] C. Nentwich, W. Emmerich, A. Finkelstein and E. Ellmer,
“Flexible Consistency Checking” ACM Trans. on
Software Engineering and Methodology 12 (1) 28-63,
2003.

[7] B. A. Nuseibeh, S. M. Easterbrook & A. Russo, “Making
Inconsistency Respectable in Software Development”, J.
of Systems and Software, 58 (2) 171-180. 2001.

[8] M. Sabetzadeh & S. M. Easterbrook “Analysis of
Inconsistency in Graph-Based Viewpoints: A Category-
Theoretic Approach”. 18th IEEE Int. Conf. on Automated
Software Engineering, Montreal, Oct. 6-10, 2003.

