
Using Domain Ontologies to Discover Direct and Indirect
Matches for Schema Elements ∗

Li Xu
Department of Computer Science

University of Arizona South
lxu@email.arizona.edu

David W. Embley
Department of Computer Science

Brigham Young University
embley@cs.byu.edu

Abstract

Automating schema matching is challenging. Previous
approaches (e.g. [DDH01, RB01]) to automating schema
matching focus on computing direct matches between two
schemas. Schemas, however, rarely match directly. Thus,
to complete the task of schema matching, we must also
compute indirect matches. In this paper, we focus on rec-
ognizing expected values as a technique to discover many
direct and indirect matches between a source schema and
a target schema. This technique relies on domain ontolo-
gies, which must be handcrafted. The benefits appear to
justify the cost as demonstrated in the experiments we
have conducted over a real-world application. The experi-
ments show that this technique increases the results by an
increase about 20 percentage points, yielding an overall
result above 90% precision and recall for both direct and
indirect matches.

1 Introduction

In this paper, we focus on the long-standing and chal-
lenging problem of automating schema matching [RB01].
Schema matching is a key operation for many applica-
tions including data integration, schema integration, mes-
sage mapping in E-commerce, and semantic query pro-
cessing [RB01]. Schema matching takes two schemas as
input and produces a semantic correspondence between
the schema elements in the two input schemas [RB01].
In this paper, we assume that we wish to map schema el-
ements from a source schema into a target schema. In
its simplest form, the semantic correspondence is a set
of direct matches each of which binds a source schema
element to a target schema element if the two schema
elements are semantically equivalent. To date, most re-
search [DDH01, RB01] has focused on computing direct
matches. Such simplicity, however, is rarely sufficient,

∗This material is based upon work supported by the National Science
Foundation under grant IIS-0083127.

and researchers have thus proposed the use of queries
over source schemas to form virtual schema elements
to bind with target schema elements [BE03, MHH00].
In this more complicated form, the semantic correspon-
dence is a set of indirect matches each of which binds
a virtual source schema element to a target schema ele-
ment through appropriate manipulation operations over a
source schema.

We assume that all source and target schemas are de-
scribed using conceptual-model graphs (a conceptual gen-
eralization of XML). We augment schemas with sam-
ple data and regular-expression recognizers. For each
application, we construct a domain ontology [ECJ+99],
which declares the regular-expression recognizers for a
set of concepts and relationships among the concepts. We
use the regular-expression recognizers and relationships
among the concepts to discover both direct and indirect
matches between two arbitrary schemas. In this paper,
we offer the following contributions: (1) a way to dis-
cover many direct and indirect semantic correspondences
between a source schema S and a target schema T and (2)
experimental results of our implementation to show that
our approach to schema matching performs as well (in-
deed better) than other approaches for direct matches and
also performs exceptional well for the indirect matches
with which we work. The cost for this increased per-
formance is the development of a domain ontology for
a particular application. The benefits, as demonstrated in
the experimental results, appear to justify the cost to de-
velop the domain ontology. We present the details of our
contribution as follows. Section 2 explains the internal
representation of the input and output for schema match-
ing. Section 3 describes the schema-matching technique
by applying a domain ontology to discover both direct and
indirect matches. Section 4 give an experimental result
for a data set used in [DDH01] to demonstrate the contri-
bution of applying domain ontologies to schema match-
ing. In Section 5 we summarize, consider future work,
and draw conclusions.

1



MLS
location_description

address

agent
basic_features

location

name

fax

phone_day

phone_evening

category
beds

baths

SQFT

(a) Schema 1

House

Square_feet

Agent
Name

Fax

Phone

Address

Street City

State

Bathrooms

Bedrooms

Golf_course

Water_front

MLS

Style

(b) Schema 2

Figure 1: Conceptual-model graphs for Schema 1 and Schema 2

2 Internal Representation

We use conceptual graphs to represent both the tar-
get schema and the source schemas as conceptual-
model specifications. Each conceptual schema has an
object/relationship-model instance that describes sets of
objects, sets of relationships among objects, and con-
straints over object and relationship sets. An object set
contains either data values or object identifiers, which we
respectively call a lexical object set or a nonlexical object
set. A relationship set contains tuples of objects repre-
senting relationships connecting object sets. Figure 1, for
example, shows two schema graphs. In a schema graph
we denote lexical object sets as dashed boxes, nonlexical
object sets as solid boxes, functional relationship sets as
lines with an arrow from domain object set to range ob-
ject set, and nonfunctional relationship sets as lines with-
out arrowheads. For either a target or a source schema,
we use an object/relationship-model instance to repre-
sent schema-level information in our approach for schema
mapping. An optional component of a conceptual schema
is a set of data frames, each of which describes the data of
a lexical object set. A data frame is like a type which de-
scribes data instances, but can be much more expressive.
A data-frame description can be as simple as a list of po-
tential values for an object set and can be as complex as a
regular-expression specification that represents values for
the object set. For target and source schemas in this paper,
data frames are lists of actual or sample values.

In addition to the schema- and instance-level informa-
tion available from the input source and target schemas,
for a particular application domain, we can specify a do-
main ontology [ECJ+99], which includes a set of con-
cepts and relationships among the concepts, and asso-
ciates with each concept a set of regular expressions that

matches values and keywords expected to appear for the
concept. Then using techniques described in [ECJ+99],
we can extract values from sets of data for source and
target elements and categorize their data-value patterns
based on the expected values and keywords declared for
application concepts. The derived data-value patterns and
the declared relationship sets among concepts in the do-
main ontology can help discover both direct and indi-
rect matches for schema elements. Figure 2 shows three
components in a real-estate domain ontology, which we
used to automate matching of the two schemas in Fig-
ure 1 and also for matching real-world schemas in the
real-estate domain in general. The three components
include an address component specifying Address as
potentially consisting of State, City, and Street;1 a
phone component specifying Phone as a possible super-
set of Day Phone, Evening Phone, Home Phone,
Office Phone, and Cell Phone;2 and a lot-feature
component specifying Lot Feature as a possible super-
set of V iew and Lot Size values and individual values
Water Front, Golf Course, etc.3 Behind a dashed
box (or individual value), a regular-expression recognizer
[ECJ+99] describes the expected values and keywords
for a potential application concept. The ontology ex-
plicitly declares that (1) the expected values in Address
match with a concatenation of the expected values for
Street, City and State; (2) the set of values associated
with Phone is a superset of the values in Day Phone,
Evening Phone, Home Phone, Office Phone, and
Cell Phone; and (3) the set of values associated with

1Filled-in (black) triangles denote aggregation (“part-of” relation-
ships).

2Open (white) triangles denote generalization/specialization (“ISA”
supersets and subsets).

3Large black dots denote individual objects or values.

2



Address

Street

City

State

(a) Address

Phone

Day Phone

Evening Phone

Home Phone

Office Phone

Cell Phone

(b) Phone

Lot Feature

Water Front

Wooded

Golf Course

Cul-de-sac
... Fenced Yard

View

Lot Size

(c) Lot Feature

Figure 2: Application domain ontology (partial)

Lot Feature is a superset of the values associated with
the set of V iew values, the set of Lot Size values, the
singleton-sets including Water Front, Golf Course,
Wooded, Fenced Y ard, Cul − de − sac, etc.

For any schema H , which is either a source schema
or a target schema, we let ΣH denote the union of ob-
ject sets and relationship sets in H . Our solution allows
a variety of source derived data, including missing gen-
eralizations and specializations, merged and split values,
and transformation of attributes with Boolean indicators
into values and vice versa. Therefore, our solution “ex-
tends” the source schema elements in ΣH to include view
schema elements, each of which we call a virtual object
or relationship set. We let VH denote the extension of ΣH

with derived, virtual object and relationship sets. We con-
sider a source-to-target mapping between a source schema
S and a target schema T as a function fST . The do-
main of fST is VS , and the range of fST is ΣT . Thus
we can denote a source-to-target mapping as a function
fST (VS) → ΣT . Intuitively, a source-to-target map-
ping represents an one-to-one mapping between a view-
augmented source schema and a target schema.

3 Matching Technique

Provided with the domain ontology described in Figure 2
and a set of data values for elements in Schema 1 in Fig-
ure 1(a) and Schema 2 in Figure 1(b), we can discover
indirect matches as follows. (We first introduce the idea
with examples and then more formally explain how this
works in general.)

1. Merged/Split Values. Based on the Address de-
clared in the ontology in Figure 2, the recognition-of-
expected-values technique [ECJ+99] can help detect
that (1) the values of address in Schema 1 of Fig-
ure 1(a) match with the ontology concept Address,
and (2) the values of Street, City, and State in
Schema 2 of Figure 1(b) match with the ontol-
ogy concepts Street, City, and State respectively.
Thus, if Schema 1 is the source and Schema 2 is the
target, we can use manipulation Decomposition op-
erators to split the values for address in the source
as the values for three virtual object sets such that
the three virtual object sets match with Street, City,
and State respectively in the target. If we let Schema
2 be the source and Schema 1 be the target, based
on the same information, we can identify an indirect
match that declares a virtual object set derived by ap-
plying a manipulation Composition operator over the
source to merge values in Street, City, and State to
directly match with address in the target.4

2. Superset/Subset Values. Based on the specification
of the regular expression for Phone, the schema ele-
ments phone day and phone evening in Schema 1
of Figure 1(a) match with the concepts Day Phone
and Evening Phone respectively, and Phone in
Schema 2 of Figure 1(b) also matches with the
concept Phone. Phone in the ontology explic-
itly declares that its set of expected values is a su-
perset of the expected values of Day Phone and
Evening Phone. Thus we are able to identify the
indirect matching schema elements between Phone
in Schema 2 and phone day and phone evening in
Schema 1. If Schema 1 is the source and Schema 2 is
the target, we can apply a manipulation Union oper-
ator over Schema 1 to derive a virtual Phone ′ whose
values are a superset of values in phone day and
phone evening. Thus Phone′ can directly match
with Phone in Schema 2. If Schema 2 is the source
and Schema 1 is the target, we may be able to rec-
ognize keywords such as day-time, day, work phone,
evening, and home associated with each listed phone

4When applying the manipulation operations over sources in data-
integration applications, the data-integration system requires routines to
merge/split values so that correctly retrieving data from sources.

3



in the source. If so, we can use a manipulation Se-
lection operator to sort out which phones belong in
which specialization (if not, a human expert may not
be able to sort these out either).

3. Object-Set Name as Value. In Schema 2
of Figure 1(b) the features Water front and
Golf course are object-set names rather than val-
ues. The Boolean values “Yes” and “No” asso-
ciated with them are not the values but indicate
whether the values Water front and Golf course
should be included as description values for
location description of house in Schema 1 of Fig-
ure 1(a). Because regular-expression recognizers
can recognize schema element names as well as
values, the recognizer for Lot Feature recognizes
names such as Water front and Golf course in
Schema 2 as values. Moreover, the recognizer for
Lot Feature can also recognize data values asso-
ciated with location description in Schema 1 such
as “Mountain View”, “City Overlook”, and “Water-
Front Property”. Thus, when Schema 1 is the
source and Schema 2 is the target, whenever we
match a target-schema-element name with a source
location description value, we can declare “Yes”
as the value for the matching target concept by ap-
plying a manipulation Boolean operator over the
location description value. If, on the other hand,
Schema 2 is the source and Schema 1 is the target,
we can declare that the schema element name should
be a value for location description for each “Yes”
associated with the matching source element by ap-
plying a manipulation DeBoolean operator.

We now more formally describe these three types of in-
direct matches. Let ci be an application concept, such as
Street, and consider a concatenation of concepts such as
Address components. Suppose the regular expression for
concept ci matches the first part of a value v for a schema
element and the regular expression for concept c j matches
the last part of v, then we say that the concatenation c i ◦cj

matches v. In general, we may have a set of concatenated
concepts Cs match a source element s and a set of con-
catenated concepts Ct match a target element t. For each
concept in Cs or in Ct, we have an associated hit ratio. Hit
ratios give the percentage of s or t values that match (or
are included in at least some match) with the values of the
concepts in Cs or Ct respectively. We also have a hit ratio
rs associated with Cs that gives the percentage of s values
that match the concatenation of concepts in Cs, and a hit
ratio rt associated with Ct that gives the percentage of t
values that match the concatenation of concepts in C t. To
obtain hit ratios for Boolean fields recognized as schema-
element names, we distribute the schema-element names
over all the Boolean fields that have “Yes” values.

We decide if s matches with t directly or indirectly by
comparing Cs and Ct when the hit ratios rs and rt are
above an accepted threshold. If Cs equals Ct, we declare
a direct match (s, t). Otherwise, if Cs ⊃ Ct (Cs ⊂ Ct),
we derive an indirect match (s, t) through a Decomposi-
tion (Composition) operation. If both Cs and Ct contain
one individual concept cs and ct respectively, and if the
values of concept cs (ct) are declared as a subset of the
values of concept ct (cs), we derive an indirect match (s,
t) through a Union (Selection) operation. When we have
schema-element names as values, distribution of the name
over the Boolean value fields converts these schema ele-
ments into standard schema elements with conventional
value-populated fields. Thus no additional comparisons
are needed to detect direct and indirect matches when
schema-element names are values. We must, however, re-
member the Boolean conversion for both source and target
schemas to correctly derive indirect matches.

We compute the confidence value for a mapping (s, t),
which we denoted as conf(s, t), as follows. If we can de-
clare a direct match or derive an indirect match through
manipulating Union, Selection, Composition, Decompo-
sition, Boolean, and DeBoolean operators for (s, t), we
output the highest confidence value 1.0 for conf(s, t).
Otherwise, we construct two vectors vs and vt whose
coefficients are hit ratios associated with concepts in Cs

and Ct. To take the partial similarity between vs and vt

into account, we calculate a VSM [BYRN99] cosine mea-
sure cos(vs, vt) between vs and vt, and let conf(s, t) be
(cos(vs, vt) × (rs + rt)/2).

Figure 3 shows the matrix containing confidence values
computed based on expected values declared in the do-
main ontology of Figure 2 using Schema 1 in Figure 1(a)
as a source schema and Schema 2 in Figure 1(b) as a target
schema.5 The schema elements along the top are source
schema elements taken from Schema 1. The schema el-
ements on the left are target schema elements taken from
Schema 2. Observe that the technique correctly identi-
fies the indirect matches between location description
in the source and Golf course and Water front in the
target, between phone day and phone evening in the
source and Phone in the target, and between address and
location in the source and Street, City, and State in the
target. Note that in Figure 3 there are several nonlexical
object sets whose values are object identifiers in Schema 1
and Schema 2. An NA in the matrix denotes that the object
identifiers associated with either the source object set in a
column or the target object set in a row are not applica-
ble for value analysis. Furthermore, for this example, we
did not include the specifications for expected values or
keywords of “bedrooms” and “bathrooms” in our domain
ontology. The values for Bedrooms and Bathrooms in

5In order to make the matrix fit the page, we use several abbreviations
of object-set names in the source schema.

4



the target and the values for beds and baths in the source
do not match any concept in the domain ontology. If one
set of data values corresponds to the expected values spec-
ified for a concept and another set of data values does not
correspond to any concept in the ontology, the confidence
is 0.0. For example, the confidence conf(baths, Phone)
is 0.0 because the values for Phone in the target corre-
spond to the concept Phone in the ontology, but the val-
ues for baths in the source do not. If neither values of
a pair corresponds to any concept specification in the on-
tology,6 the entry is NA. For example, the NA for the pair
(baths, Bathrooms) denotes that the data values for nei-
ther baths in the source nor Bathrooms in the target
match any concept in the real-estate domain ontology. If
the domain ontology is not complete with respect to an ap-
plication, our approach needs other matching techniques
to discover matches that are not discovered through com-
paring expected values in the domain ontology.

4 Experimental Results

We evaluate the performance of our approach based
on three measures: precision, recall and the F-
measure, a standard measure for recall and precision to-
gether [BYRN99]. We considered a real-world appli-
cation, Real Estate, to evaluate our matching technique.
We used a data set downloaded from the LSD homepage
[DDH01] for the applications, and we faithfully translated
the schemas from DTDs to conceptual-model graphs. The
Real Estate application has five schemas. We decided to
let any one of the schema graphs be the target and let
any other schema graph be the source. We decided not
to test any single schema as both a target and a source.
In summary, we tested 20 pairs of schemas for the Real
Estate application. In order to evaluate the contribution
of the domain ontology-based matching technique, we
tested two runs when comparing a source schema and a
target schema. In the first run, we considered only match-
ing techniques that compare object-set names and exploit
structure properties [XE03]. In the second run, we added
our matching techniques based on domain ontologies.

In the 20 pairs of application schemas, the problems
of Merged/Split Values appear four times, the problems
of Superset/Subset Values appear 48 times, and the prob-
lems of Object-Set Name as Value appear 10 times. With
all other indirect and direct matches, there are a total of
876 object-set and relationship-set matches. In the first
run, the performance reached 73% recall, 67% precision,
and an F-measure of 70%. In the second run, which
used a real-estate domain ontology, the performance im-
proved dramatically and reached 94% recall, 90% preci-

6We are not able to compare the expected values without the help of
the domain ontology.

sion, and an F-measure of 92%. By applying the domain
ontology, the algorithm successfully found all the indi-
rect matches related to the four problems of Merged/Split
Values and all the indirect matches related to the 10 prob-
lems of Object-Set Name as Value. For the problem of
Superset/Subset Values, the algorithm correctly found all
the indirect matches related to 44 of 48 problems and in-
correctly declared four extra Superset/Subset Values prob-
lems. Of these eight, six of them were ambiguous, mak-
ing it nearly impossible for a human to decide, let alone
a machine. In four of the six ambiguous cases there were
various kinds of phones for firms, agents, contacts, and
phones with and without message features, and in another
two cases there were various kinds of descriptions and
comments about a house written in free-form text. The
two clearly incorrect cases happened when the algorithm
unioned (selected) office and cell phones and mapped
them to phones for a firm instead of just mapping office
phones to firm phones and discarding cell phones, which
had no match at all in the other schema.

One obvious limitation to our approach is the need to
manually construct an application-specific domain ontol-
ogy. Our experience in teaching others to use our system
suggests that a domain ontology of the kind we use can be
created in a few dozen person-hours. This is not inordi-
nately long; indeed, it is comparable to the time it takes to
make a training corpus for machine learning. Moreover,
since we predefine a domain ontology for a particular ap-
plication, we can compare any two schemas for the appli-
cation using the same domain ontology, so that the work
of creating a domain ontology is amortized over repeated
usage. Further, the domain ontology does not necessar-
ily need to cover all concepts and relationships in the ap-
plication schemas, even though it can be revised to help
discover more direct and indirect matches.

5 Conclusions and Future Work

Based mainly on expected values declared in domain on-
tologies, we presented a matching technique for automat-
ically discovering many direct and indirect matches be-
tween sets of source and target schema elements. We de-
tected indirect matches related to problems such as Super-
set/Subset values, Merged/Split values, as well as Object-
Set Names as Value. Without this technique, the precision
and recall results of the experiments we conducted were
only in the neighborhood of 70%, whereas with this tech-
nique the results increased to over 90%.

Since domain ontologies appear to play an impor-
tant role in indirect matching, finding ways to semi-
automatically generate them is a goal worthy of some ad-
ditional work. It is possible to use learning techniques to
collect a set of informative and representative keywords

5



MLS bath. bed. cat. SQ. location basic agent fax phone phone name location address
desc. features day evening

House NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Bathrooms 0.0 NA NA NA 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0

Bedrooms 0.0 NA NA NA 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0
MLS 1.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0

Square feet 0.0 0.0 0.0 0.0 1.0 0.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0
Water front 0.0 0.0 0.0 0.0 0.0 1.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0
Golf course 0.0 0.0 0.0 0.0 0.0 1.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0

Address NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Agent NA NA NA NA NA NA NA NA NA NA NA NA NA NA

F ax 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 1.0 0.0 0.0 0.0 0.0 0.0
P hone 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 1.0 1.0 0.0 0.0 0.0
Name 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 1.0 0.0 0.0
Street 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 1.0 1.0
State 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 1.0 1.0
City 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 1.0 1.0

Style 0.0 0.0 0.0 0.0 0.0 0.0 NA NA 0.0 0.0 0.0 0.0 0.0 0.0

Figure 3: Expected-data-values confidence-value matrix

for application concepts in domain ontologies. Thus,
without human interaction except for some labeling, we
can make use of many keywords taken from the data
of the application itself and thus specify some regular-
expression recognizers for the application concepts in a
semi-automatic way. Furthermore, many values, such as
dates, times, and currency amounts are common across
many application domains and can easily be shared.

References

[BE03] J. Biskup and D.W. Embley. Extracting in-
formation from heterogeneous information
sources using ontologically specified target
views. Information Systems, 28(3):169–212,
May 2003.

[BYRN99] R. Baeza-Yates and B. Ribeiro-Neto. Mod-
ern Information Retrieval. Addison Wesley,
Menlo Park, California, 1999.

[DDH01] A. Doan, P. Domingos, and A. Halevy. Rec-
onciling schemas of disparate data sources:
A machine-learning approach. In Proceed-
ings of the 2001 ACM SIGMOD International
Conference on Management of Data (SIG-
MOD’01), pages 509–520, Santa Barbara,
California, May 21–24 2001.

[ECJ+99] D.W. Embley, D.M. Campbell, Y.S. Jiang,
S.W. Liddle, D.W. Lonsdale, Y.-K. Ng, and
R.D. Smith. Conceptual-model-based data
extraction from multiple-record Web pages.
Data & Knowledge Engineering, 31(3):227–
251, November 1999.

[MHH00] R. Miller, L. Haas, and M.A. Hernandez.
Schema mapping as query discovery. In Pro-
ceedings of the 26th International Confer-
ence on Very Large Databases (VLDB’00),
pages 77–88, Cairo, Egypt, September 10–14
2000.

[RB01] E. Rahm and P.A. Bernstein. A survey of
approaches to automatic schema matching.
The VLDB Journal, 10(4):334–350, Decem-
ber 2001.

[XE03] L. Xu and D.W. Embley. Discovering direct
and indirect matches for schema elements. In
Proceedings of the 8th International Confer-
ence on Database Systems for Advanced Ap-
plications (DASFAA 2003), pages 39–46, Ky-
oto, Japan, March 26–28 2003.

6


