
Fund Finder: A case study of database-to-ontology mapping

Jesús Barrasa, Oscar Corcho, Asunción Gómez-Pérez
(Ontology Group, Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid, Spain

(jbarrasa@eui.upm.es, ocorcho@fi.upm.es, asun@fi.upm.es)

Abstract: The mapping between databases and ontologies is a
basic problem when trying to "upgrade" deep web content to
the semantic web. Our approach suggests the declarative
definition of mappings as a way to achieve domain
independency and reusability. A specific language (expressive
enough to cover some real world mapping situations like
lightly structured databases or not 1st normal form ones) is
defined for this purpose. Along with this mapping description
language, the ODEMapster processor is in charge of carrying
out the effective instance data migration. We illustrate this by
testing both the mappings definition and processor on a case
study.

Keywords: database-to-ontology mapping, ontology
population, information integration.

1 Introduction
It is a well known fact that there is a large quantity

of existing data on the web stored using relational
database technology. This information is often referred
to as the Deep Web [Bergman, 2001] as opposed to the
surface web comprising all static web pages. Deep Web
pages don’t exist until they are generated dynamically in
response to a direct request. As a consequence traditional
search engines cannot retrieve its content and the only
manageable way of adding semantics to them is
attacking directly its source: the database.

The case study presented in this paper has been
developed in the context of the ESPERONTO1 project.
This project aims to bridge the gap between the actual
World Wide Web and the Semantic Web by providing a
service to "upgrade" existing content to Semantic Web
content, retrievable and exploitable in an automatic and
efficient way by Semantic Web tools. In this effort,
ontologies play a key role, aiming at unifying, bridging
and integrating multiple heterogeneous digital content.

The Fund Finder application is about migrating
relational database content to the semantic web.
Typically the input to this kind of problem is a database
that contains the data to be migrated and an ontology that
we want to populate with instances extracted from the
database.

The important idea behind the approach described in
this paper is that mappings between entities,

1 http://www.esperonto.net

relationships and attributes in the database’s relational
schema and the corresponding concepts, relations and
attributes of the ontology will be defined declaratively in
a mapping document. This mapping document will be
the input of a processor charged of carrying out the
effective migration in an automatic way. The fact of
defining these mappings declaratively will make our
solution domain independent and reusable.

The level of complexity of the mappings to be
defined will depend on the level of similarity of the
ontology’s conceptual model and the E/R model
underlying the database. Normally, one of them will be
richer, more generic or specific, better structured, etc.,
than the other. This paper is organized as follows:
Section 2 contains a description of the specific test case
in which the study is based. Section 3 describes the
system’s architecture and components. Section 4 gives a
global view of our approach to database-to-ontology
declarative mapping definition and a set of possible
mapping situations. Section 5 describes the most
important features of the eD2R mapping description
language. Section 6 describes how our work relates to
other experiences and approaches. And finally, section 7
comments and evaluates the results and conclusions of
our case study and gives a glimpse of some future trends.

2 Case study
The database we want to migrate (FISUB) contains
incentives and funds provided by the Catalan and
Spanish Governments and by the European Union, for
companies or entrepreneurs located in the Spanish region
of Catalonia. It contains more than 300 registers that are
updated manually on a daily basis.

The reason why we want to migrate these contents to
the Semantic Web is to be able to aggregate to them
information from other web resources related to funding
in the European Union and to allow web users to ask
intelligent queries about funding resources according to
some parameters like their profile, to look for
complementary ones, to check compatibilities and
incompatibilities between types of funding, and so on.

The FISUB database is very lightly structured as it
stores almost all information on a main table called
FUND_OPP (funding opportunity). This table has 19

columns and among them, the most important ones
(which will be used for our examples) are the following:
• TITLE stores the name or accronym assigned to the

funding opportunity.
• BEGIN_END stores important dates related to the

funding opportunity as the beginning and end of
validity.

• LEG_REF stores the legal announcement or
approval of the funding opportunity.

• FUND_OP_TYPE stores a short description about
the type of funding: A text in natural language
describing whether it is a prize, a credit, a tax
discount or other.

• URL stores the funding’s home page if it has one.
Some other tables like SECTOR (activity sector) and

AIM are used to add information about the activity sector
covered and the objectives aimed by a funding
opportunity. These satellite tables are linked to the main
table FUND_OPP through standard foreign key fields.
The main elements in the relational database schema can
be seen in figure 1.

Figure 1: Excerpts from database tables.

The ontology to be populated is the Funding
Opportunity ontology, which adds more structure and
organization as well as enhanced inference and search
capabilities to the legacy database. Figure 2 shows an
excerpt of the ontology’s concepts and relations.

Figure 2: Excerpts from the Funding Opportunity
ontology.

The mapping process is expected to extract instance
data from the database and generate a set of instances

committing to the funding opportunity ontology. Figure
2 shows graphically some of the expected results of this
mapping. As can be seen, some record fields map
directly their corresponding ontology attribute or relation
(i.e. TITLE) but for some others this correspondence is
not immediate (i.e. BEGIN_END) and some
transformation is required. Let’s have a look at some of
these mapping situations.

Figure 3: Results of the execution of the mapping
between the FISUB database and the Funding

Opportunity ontology.

• The TITLE field on the database maps directly the
title property on the ontology because both refer to
the same thing. The database field contains a string
with the name or acronym that identifies the funding
opportunity plus an optional short comment. In the
example, “PROFIT” is the Spanish technical
research support program.

• The BEGIN_END field on the database, needs to be
transformed. It stores together the dates when the
fund call opens and closes. In the ontology, the
opening and closing dates are separate attributes, so
some extraction needs to be done on the database
field.

• The type of funding is determined by analysing the
content of the field FUND_OPP_TYPE. If the
keyword “subvention” appears in the field value,
then the funding opportunity will be classified as a
Subvention. If the keyword “prize” is found instead,
then the type of the instance is Award, etc. As can
be seen, keyword search particularly suits this case.

• The case of the LEG_REF data field is slightly more
complicated. It stores a string referencing the (one
or more) official publication in which the funding
opportunity was proposed, approved, modified,
cancelled, etc. by the competent authority. The
corresponding element in the ontology is the
LegalRef property and the fact of having more than
one official publication mentioned into the
LEG_REF field, which means the database is not in

first Normal Form (1NF), will lead to the generation
of multiple relations to different instances from this
single field value. As the official publications
usually have alphanumeric codes as identifiers,
regular expression evaluation seems adequate for
this case.

3 System’s architecture
Figure 4 resents the Fund Finder architecture. We have
distinguished two layers: The modelling layer and the
implementation layer (we are ignoring the formalism
layer for the sake of clarity). At the first one we have the
ontology conceptual model in the WebODE
[Azpírez,2001] platform and the E/R model underlying
the database. At the implementation layer, we have the
ontology implemented in several ontology languages
(OWL, DAML+OIL, RDF(S)…) using WebODE
translators and the SQL implementation of the database
relational model. An instance data sub-layer would
contain instance data from the database (records) and
instances of the ontology. The grey area in the figure
shows the mapping definition and execution key
elements.

Figure 4: Diagram showing interactions between
elements in our mapping approach.

• A declarative mapping description document:
eD2R. This document contains the declarative
definitions of the mappings between components in
the SQL implementation of the relational database
model and the ones in the ontology implementation.
This documents is written in the eD2R mapping
description language.

• The ODE Mapster processor is the software in
charge of the mapping execution according to the
directives of the aforementioned mapping document.
The execution occurs automatically once the
mappings are defined.

• A database containing the data to be migrated as
instances of the ontology.

• An ontology to be populated with the data extracted
from the database. The ontology can be expressed in
any ontology implementation language, but
instances of the ontology are generated in RDF in
the first version of the processor.

• The automatically generated instance sets in RDF.

4 Global approach to database-to-
ontology mapping

4.1 Declarative mappings

A declarative mapping is a set of explicit
correspondences between components of two models. A
mapping can be defined at different levels. In our case, it
will be defined at the implementation level between a
database’s SQL description and an ontology’s
implementation. Furthermore, the intended direction of
the mappings is from the database to the ontology, which
means that we perform a process of data extraction from
the database and we populate the ontology with the
extracted information. That is why these
correspondences will actually have the following form
and not the other way round.

OntologyComponenti=Transformation(DatabaseCompo
nentj, DatabaseComponentk…)

Where OntologyComponenti is any concept, attribute or
relation in the target ontology and DatabaseComponentj
is any database table or column.
A mapping between a database schema and an ontology
can then be defined as a set of basic mapping
expressions or mapping elements between components in
both models like the one showed before. Inspired on the
proposal of [Mena et al., 2001] and conveniently adapted
to the specific case of databases, a basic mapping
expression for a concept in the ontology will be defined
as a 2-tuple <Rel, (a1.. an)> where Rel is a SQL
expression and a1… an are columns of Rel that identify
its objects (key columns). In other words, instances of
concepts will be the records extracted from the database
with an SQL query.

CONCEPT C1 : <Rel, (a1..an)>

For an attribute or relation in the ontology, a basic
mapping expression will be defined as a 4-tuple <Rel,
(a1.. an), (an1.. anm), frl> where Rel is a SQL expression;
a1.. an are attributes of Rel that identify its objects (the
key columns); an1.. anm are columns of Rel that contain
the attribute or relation values being mapped; and frl is a
function frl:D1x...xDm → R that allows the
transformation of the stored field data into the final
values of the attribute or relation (Di is the domain of
field ani in the database and R is the range of the
ontology’s attribute or relation being described). In other
words the value of an attribute or relation of the ontology
will be obtained from one or more columns of an SQL
expression directly or through the application of a
transformation function.

ATT A1.1 : <Rel, (a1..an), (an1…anm), fr1>

The two mapping elements defined can be compacted in
the following way:

CONCEPT C1 : <Rel, (a1..an)>

ATT A1.1 : <(an1…anm), fr1>
ATT A1.2 : <(an1…anm), fr2> …

Where the ATT A1.i attribute mapping expressions
inherit the two first elements (the SQL query Rel and the
set of key columns a1.. an) from their container
CONCEPT C1.
What follows is an example of a mapping. We can see
intuitively how the concept FundingOpportunity (the
prefix fo: means that the concept is defined in the
funding opportunity ‘fo’ ontology) maps all funding
opportunities in the database marked as new. The
mapping expression groups those records of the table
FUND_OPP with value 1 in the field NEW. The
different values of attribute ID identify the different
records (ID is the key of the database table).
Within this concept mapping element a set of attribute or
relation mapping elements can be defined. In the
example the property fo:title maps directly the TITLE
column and no function is applied to it’s values.
Attribute fo:deadline maps the BEGIN_END column
after applying the function getDeadline. The same
happens to the fo:legalRef relation, the column
LEG_REF and the function getLegalRef. Functions used
in the definitions should also be described in terms of the
primitives provided by the mapping language being
used, which will be discused later.

CONCEPT fo:FundingOpportunity :
<[select * from FUND_OPP where

FUND_OPP.NEW=1], FUND_OPP.ID>
 ATTRIBUTE fo:title :

<FUND_OPP.TITLE, none>
 ATTRIBUTE fo:deadline :

< FUND_OPP.BEGIN_END,getDeadline>
 RELATION fo:legalRef :

< FUND_OPP.LEG_REF,getLegalRef>

4.2 Mapping cases

Based on the experience with the test case described in
section 2, we have identified some mapping situations
between the database implementation components and
the concepts in the ontology. They are described and
summarized in table 1. The second column in this table
presents the database elements that can be mapped to an
ontology concept, and the third column describes shortly
the mapping case.

Table 1: Concept mapping cases
 Database

implementation
SQL element

Description

#1 View2 A view maps exactly one
concept in the ontology.

#2 SELECT C1,…Cn
 FROM View

A subset of the columns in
the view map a concept in
the ontology.

#3 SELECT *
FROM View
WHERE f(C1,…Cn)

A subset (selection) of the
records of a database view
map a concept in the
ontology.

#4 ImplicitSelect(View) A subset of the records of
a database view map a
concept in the ontology
but the selection cannot be
made using SQL.

#5 T(Column) One or more concepts can
be extracted from a single
data field.

Case #1 reflects the simplest mapping situation: The

view in the database is semantically equivalent to the
concept in the ontology and every record in the view
corresponds to an instance of the ontology concept.

Case #2 is similar to case #1: the ontology concept
and the database view refer to the same thing but two
things may happen:
• The database view describes it with a higher level of

detail by adding columns.
• In the view the relevant information for the specific

concept we are interested in is merged with other
concepts in the same view for optimisation purposes
or just because of a bad structure of the database.
In case #3, the ontology concept is a subclass of the

concept represented by the database table. The records in
the database table being instances of the ontology
concept can be extracted with an SQL query.

The same can be said for case #4 with a peculiarity:
the set of database records being instance of the ontology
concept cannot be extracted with standard SQL and more
complex techniques (i.e. keyword search, regular
expression matching, natural language processing…)
have to be applied on its data fields.

Finally case #5 corresponds to situations in which a
concept can be created out of a single column value. Or
even more than one in the case of tables which are not in
1NF.

For ontology attributes and relations we have
identified the following situations (the columns in table 2
are organized in the same way as those in table 1) :

2 A view represents a single database table or any join of more
than one table.

Table 2: Attributes and relations mapping cases
 Database

element
Description

#1 Column A column in a database view maps
directly an attribute or a relation.

#2 T(Column) A column in a database view maps
an attribute or a relation after some
transformation.

#3 n Column A set of columns in a database view
map an attribute or a relation.

Case #1 reflects the simplest mapping situation:

both the column in the database is semantically
equivalent to the attribute or relation in the ontology and
share the same representation format. The
correspondence is then direct.

Case #2 can cover three different cases:
1. The column in the database represents conceptually

the same as the attribute or the relation in the
ontology but they use a different representation
format (i.e. currency unit transformation) and so the
mapping needs a transformation function.

2. The column in the database stores the information
needed to populate the ontology’s attribute or
relation but the information is mixed with other
(noise) and it has to be extracted. Again a
transformation function will be needed.

3. The same as the preceding one but furthermore, the
column in the database stores more than one value
(Not in 1NF) and each one of them needs to be
extracted.
In case #3, the ontology’s attribute or relation

groups more than one database column. That means that
the ontology property is less structured than its
corresponding in the database. Let’s take as an example
the case of a postal address stored in a database using
three columns one for the road name and number,
another one for the postal code and a third one for the
town name. These three fields would map one non-
structured single field from the ontology containing the
whole postal address resulting of the concatenation of
the three column values in the database.

5 eD2R mapping description language
eD2R (extended D2R) is an extension of D2R MAP3
which is a declarative, XML-based language to describe
mappings between relational database models and
ontologies implemented in RDFS developed at Freie
Universität Berlin [Bizer, 2003].

D2R uses SQL statements in the mapping rules
giving the possibility of handling highly normalized
table structures, where instance data is spread over
several tables. On the other hand, it fails to map low

structured databases because of its limited
expressiveness and we have enhanced with new
primitives.

3 D2R MAP (Database to RDF) is available at:
http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rmap/D2Rmap.htm

In D2R, basic concept mappings are defined using
class maps. The class map is also the container of a set
of attribute and property mapping elements called
bridges (datatype property bridges and object property
bridges respectively).

eD2R adds Operation and condition elements
expressed in terms of elemental functions (Operation and
Condition items) allowing the definition of complex and
conditional transformations on field values based on
techniques such as keyword search, regular expression
matching, natural language processing and others. They
cover all three case#2 attribute and relation mapping
situations.

Classifier elements are used to apply what we called
in section 4.2 Implicit Selections (selections which are
not feasible via SQL queries) to classify elements in a
taxonomy of concepts in the ontology.

Finally eD2R’s field map elements are used for
concept extraction from data fields and correspond to
case #5 in the concept mapping cases table.

A detailed explanation of the eD2R mapping
description language can be found at [Aguado, 2003].
The diagram in figure 5 shows the original elements in
D2R and the ones in eD2R.

Figure 5: D2R and eD2R mapping description
languages’ elements.

6 Related work
Recent approaches like [Stojanovic et al.,2002] define
mappings between a database and a ontology semi-
automatically generated from the database’s relational
model. The level of similarity between both models is
very high and mappings are consequently quite direct.
They don’t deal with complex mapping situations like
the ones defined in section 4.2.

The same stands for REVERSE4, an early prototype
for mapping relational database content to ontologies,
which is integrated in the Karlsruhe Ontology and
Semantic Web Tool Suite (KAON).

[Handschuh et al., 2003] facilitates the manual
definition of mappings, through the use of a server-side
web page markup with information about the underlying
database and its relation with the web page content (Web
site cooperativity assumption). Their approach doesn’t
seem to deal with complex mapping situations like the
ones tackled in this paper.

[Beckett and Grant, 2003] surveys and discusses
mapping approaches to and from relational schemas.

Similar approaches to this work can be also found in
the Intelligent Information Integration area, in which
data from existing heterogeneous databases are extracted
according to ontologies and then combined. Examples of
such systems are Observer [Mena et al., 2000] and Picsel
[Goasdoué et al., 2000], among others. The main
differences with respect to our approach is that in these
systems the mapping between the ontologies and the
databases from which the ontology instances are
extracted are not created declaratively but with ad-hoc
software implementations.

7 Results, conclusions and future work
To sum up, the main outcomes of our experience are the
following:
• The identification and characterization of a

significant set of mapping situations when content
stored in database is migrated into an ontology.

• Extension of D2R MAP with new features covering
all the situations mentioned in section 2.

• Implementation of the ODEMapster processor to
carry out the effective migration according to the
definitions expressed using eD2R.

• Experimentation on a real world test case. The Fund
Finder application.

Regarding the future trends of our work, intensive

testing with other databases is being carried out and will
continue as well as the enhancements to eD2R language.

The eD2R language has become quite complex as a
counter-effect to its expressivity and the creation of a
mapping document becomes a tedious, time consuming

4 http://kaon.semanticweb.org/alphaworld/reverse/view

and error-prone task. A graphical user interface to
support this activity is actually under development.

Acknowledgements
This work is partially supported by a FPU grant from the
Spanish Ministry of Education (AP2002-3828), and by
the IST project Esperonto (IST-2001-34373).
We would like to thank Raúl Blanco and Carles Gómara
from CIDEM for providing the database and all
information needed.

References

[Aguado, 2003] Aguado G, Barrasa J, Corcho O, Gómez-Pérez
A, Suárez M, Blanco R, Gómara C. Accompanying document
to D8.3 Test Case application development. Fund Finder.
Esperonto project deliverable. October 2003.

[Azpírez,2001] Azpírez J, Corcho O, Fernández-López M,
Gómez-Pérez A. WebODE: a Workbench for Ontological
Engineering. First International Conference on Knowledge
Capture (K-CAP01). Victoria B.C., Canada. October 2001

[Beckett and Grant, 2003] Beckett D, Grant J (2003) SWAD-
Europe Deliverable 10.2: Mapping Semantic Web Data with
RDBMSes. Technical report.

[Bergman, 2001] Bergman MK. The Deep Web: Surfacing
hidden value. White paper. Sept 2001.

[Bizer, 2003] Bizer C. D2R MAP – A Database to RDF
Mapping Language. 12th International World Wide Web
Conference, Budapest. May 2003.

[Goasdoué et al., 2000] Goasdoué F, Lattes V, Rousset M
(2000) The Use of CARIN Language and Algorithms for
Information Integration: The PICSEL Project. International
Journal of Cooperative Information Systems (IJCIS) 9(4):383–
401

[Handschuh et al., 2003] Handschuh S, Staab S, Volz R. On
deep annotation. 12th International World Wide Web
Conference, Budapest. May 2003.

[Mena et al., 2000] Mena E, Illarramendi A, Kashyap V, Sheth
AP (2000) OBSERVER: An Approach for Query Processing in
Global Information Systems based on Interoperation across
Pre-existing Ontologies. International Journal on Distributed
and Parallel Databases 8(2):223–271

[Mena et al., 2001] Mena E, Illaramendi A. Ontology-based
query processing for global information systems. Kluwer
Academic Publishers. Pags:86-88. 2001.

[Stojanovic et al.,2002] Stojanovic L, Stojanovic N, Volz R.
Migrating data-intensive web sites into the Semantic Web.
Proceedings of the ACM Symposium on Applied Computing,
Madrid 2002.

