
Fabio Fioravanti (Ed.)

CILC 2011

26th Italian Conference on Computational Logic
Pescara, Italy, August 31 - September 2, 2011
Proceedings

c© 2011 for the individual papers by the papers’ authors. This volume is published and
copyrighted by its editor. Copying permitted for private and academic purposes. Re-
publication of material from this volume requires permission from the copyright owners.

Editor’s address:
Fabio Fioravanti
University of Chieti-Pescara
Department of Sciences
Viale Pindaro 42
65127 Pescara, Italy

fioravanti@sci.unich.it

Preface

From August 31th to September 2nd 2011, the University of Chieti-Pescara hosted the
Italian Conference on Computational Logic, CILC 2011. It was the 26th edition of the an-
nual meeting organized by the Italian Association for Logic Programming (GULP, Gruppo
Ricercatori e Utenti di Logic Programming), which, since its first edition in 1986, consti-
tutes the main Italian forum for computational logic researchers, users and developers to
discuss work and exchange ideas.

The program of CILC 2011 featured thirty technical contributions (21 long and 9 short
presentations), two invited talks and a tutorial.

The invited talks were given by Andrea Omicini, who reviewed 25 years of coordination
models and languages, and Fausto Spoto, who presented a method based on abstract inter-
pretation for nullness analysis of a Java-like language.

The tutorial was given by Fabrizio Riguzzi, who presented and compared various proba-
bilistic logic languages.

The technical presentations concerned a number of different topics related to computa-
tional logic including game theory, description logics, answer set programming as well as
constraint, abductive, inductive and probabilistic extensions of logic programming. Some
of them reported successful applications of computational logic techniques to real world
problems.

A selection of the accepted papers will appear in a special issue of Fundamenta Informat-
icae.

The complete program with links to presentation slides is available at the following address
http://www.sci.unich.it/cilc2011.

The quality of the technical contributions and the number of participants (about fifty, most
of whom were young researchers) confirms that the Italian computational logic community
is very lively and active.

I wish to thank all who contributed to the success of this edition including authors, speak-
ers, reviewers, participants and organizers.

September 2011 Fabio Fioravanti

Organizing Committee

Marco Bottalico, Università di Chieti-Pescara, Italy
Paola Campli, Università di Chieti-Pescara, Italy
Emanuele De Angelis, Università di Chieti-Pescara, Italy
Fabio Fioravanti, Università di Chieti-Pescara, Italy
Daniele Magazzeni, Università di Chieti-Pescara, Italy
Maria Chiara Meo, Università di Chieti-Pescara, Italy
Francesca Scozzari, Università di Chieti-Pescara, Italy

Program Committee

Stefano Bistarelli, Università di Perugia, Italy
Francesco Buccafurri, Università “Mediterranea” di Reggio Calabria, Italy
Amedeo Cesta, Istituto di Scienze e Tecnologie della Cognizione - CNR, Italy
Stefania Costantini, Università dell’Aquila, Italy
Alessandro Dal Palù, Università degli Studi di Parma, Italy
Wolfgang Faber, Università della Calabria, Italy
Marco Faella, Università di Napoli “Federico II”, Italy
Moreno Falaschi, Università di Siena, Italy
Fabio Fioravanti, Università di Chieti-Pescara, Italy
Camillo Fiorentini, Università di Milano, Italy
Rosella Gennari, Università di Bolzano, Italy
Laura Giordano, Università del Piemonte Orientale, Italy
Francesca A. Lisi, Università di Bari, Italy
Viviana Mascardi, Università di Genova, Italy
Isabella Mastroeni, Università di Verona, Italy
Maria Chiara Meo, Università di Chieti-Pescara, Italy
Marco Montali, Università di Bologna, Italy
Marianna Nicolosi Asmundo, Università di Catania, Italy
Mimmo Parente, Università di Salerno, Italy
Carla Piazza, Università di Udine, Italy
Gian Luca Pozzato, Università di Torino, Italy
Alessandro Provetti, Università di Messina, Italy
Fabrizio Riguzzi, Università di Ferrara, Italy
Riccardo Rosati, Università di Roma “La Sapienza”, Italy
Sabina Rossi, Università di Venezia, Italy
Salvatore Ruggieri, Università di Pisa, Italy
Valerio Senni, Università di Roma “Tor Vergata”, Italy
Luciano Serafini, Fondazione Bruno Kessler, Trento, Italy
K. Brent Venable, Università di Padova, Italy

Contents

LONG PRESENTATIONS

On modal mu-calculus in S5 and applications
Giovanna D’Agostino, Giacomo Lenzi 9

MCINTYRE: A Monte Carlo Algorithm for Probabilistic Logic Programming
Fabrizio Riguzzi 25

Nonmonotonic extensions of low-complexity DLs: complexity results and proof
methods
Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato 41

An Inductive Logic Programming Approach to Learning Inclusion Axioms in
Fuzzy Description Logics
Francesca Alessandra Lisi, Umberto Straccia 57

On the satisfiability problem for a 4-level quantified syllogistic and some applica-
tions to modal logic
Domenico Cantone, Marianna Nicolosi Asmundo 73

The Birth of a WASP: Preliminary Report on a New ASP Solver
Carmine Dodaro, Mario Alviano, Wolfgang Faber, Nicola Leone, Francesco Ricca,
Marco Sirianni 99

Testing ASP programs in ASPIDE
Onofrio Febbraro, Kristian Reale, Francesco Ricca 115

Complexity of Super-Coherence Problems in Answer Set Programming
Mario Alviano, Wolfgang Faber, Stefan Woltran 131

Verifying Compliance of Business Processes with Temporal Answer Sets
Davide D’Aprile, Laura Giordano, Valentina Gliozzi, Alberto Martelli, Gian Luca
Pozzato, Daniele Theseider Dupré 147

The CHR-based Implementation of the SCIFF Abductive System
Marco Alberti, Marco Gavanelli, Evelina Lamma 163

CONTENTS

Controlling Polyvariance for Specialization-based Verification
Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, Valerio Senni 179

Finding Partitions of Arguments with Dung’s Properties via SCSPs
Stefano Bistarelli, Paola Campli, Francesco Santini 199

A Tabled Prolog Program for Solving Sokoban
Neng-Fa Zhou, Agostino Dovier 215

EM over Binary Decision Diagrams for Probabilistic Logic Programs
Elena Bellodi, Fabrizio Riguzzi 229

Synthesizing Concurrent Programs using Answer Set Programming
Emanuele De Angelis, Alberto Pettorossi, Maurizio Proietti 245

ProdProc - Product and Production Process Modeling and Configuration
Dario Campagna, Andrea Formisano 261

PrettyCLP: a Light Java Implementation for Teaching CLP
Alessio Stalla, Davide Zanucco, Agostino Dovier, Viviana Mascardi 281

A framework for structured knowledge extraction and representation from nat-
ural language via deep sentence analysis
Stefania Costantini, Niva Florio, Alessio Paolucci 297

Logic-based reasoning support for SBVR
Dmitry Solomakhin, Enrico Franconi, Alessandro Mosca 311

The following two papers were presented at the CILC 2011 conference but have not been
included in this volume because they appear elsewhere.

The paper Conformance Checking of Executed Clinical Guidelines in presence of Basic
Medical Knowledge by Alessio Bottrighi, Federico Chesani, Paola Mello, Marco Montali,
Stefania Montani and Paolo Terenziani appears in the Proceedings of the 4th Interna-
tional Workshop on Process-oriented Information Systems in Healthcare (ProHealth 11),
Clermont-Ferrand, France, August 29, 2011.

The paper Integration of abductive reasoning and constraint optimization in SCIFF by
Marco Gavanelli, Marco Alberti and Evelina Lamma appears in the Proceedings of the
25th International Conference on Logic Programming (ICLP ’09), Lecture Notes in Com-
puter Science, 2009, Volume 5649/2009, 387-401.

CONTENTS

SHORT PRESENTATIONS

Winning CaRet Games with Modular Strategies
Ilaria De Crescenzo, Salvatore La Torre 327

A Note on the Approximation of Mean-Payoff Games
Raffaella Gentilini 333

On a Logic for Coalitional Games with Priced-Resource Agents
Dario Della Monica, Margherita Napoli, Mimmo Parente 341

Cyclic pregroups and natural language: a computational algebraic analysis
Claudia Casadio, Mehrnoosh Sadrzadeh 349

TERENCE: An Adaptive Learning System for Reasoning about Stories with Poor
Comprehenders and their Educators
Tania Di Mascio, Rosella Gennari, Pierpaolo Vittorini 365

Nested Weight Constraints in ASP
Stefania Costantini, Andrea Formisano 371

The temporal representation and reasoning of complex events
Francesco Mele, Antonio Sorgente 385

Solving XCSP problems by using Gecode
Massimo Morara, Jacopo Mauro, Maurizio Gabbrielli 401

Formalization and Automated reasoning about a Complex Signalling Network
Annamaria Basile, Maria Rosa Felice, Alessandro Provetti 407

On modal µ-calculus in S5 and applications

Giovanna D’Agostino1 and Giacomo Lenzi2

1 University of Udine, Italy
2 University of Salerno, Italy gilenzi@unisa.it

Abstract. We show that the vectorial µ-calculus model checking prob-
lem over arbitrary graphs reduces to the vectorial, existential µ-calculus
model checking problem over S5 graphs. We also draw some consequences
of this fact. Moreover, we give a proof that satisfiability of µ-calculus in
S5 is NP -complete, and by using S5 graphs we give a new proof that the
satisfiability problem of the existential µ-calculus is also NP -complete.

1 Introduction

Model checking is a technique widely used in verification of computer systems,
be they hardware or software, see [4]. In model checking, systems are modeled
as sets with one or more binary relation (in this paper we focus on systems
with one relation, i.e. graphs). The desirable properties a system should have
are formalized in some modal-like logic. Actually, modal logic itself is not ex-
pressive enough. For this reason, one considers more powerful formalisms. One
of them is modal µ-calculus, introduced in [15], an extension of modal logic with
least and greatest fixpoints of monotonic set-theoretic functions. Intuitively, least
fixpoints correspond to inductive definitions, and greatest fixpoints correspond
to coinductive definitions. Unlike plain modal logic, the µ-calculus is powerful
enough to express global properties of systems, i.e. properties which depend on
the whole possible history of the system. For instance, with greatest fixpoints
we can capture safety properties such as “the system will never crash”, whereas
with least fixpoints we can capture termination properties such as “every com-
putation of the system will terminate”. More complicate properties, e.g. fairness,
can be used by combining least and greatest fixpoints.

The model checking technique raises a natural computational question, which
is known as the (µ-calculus) model checking problem. Formally, the µ-calculus
model checking problem is: given a µ-calculus formula and a finite graph, check
whether the graph satisfies the formula. Because of the importance of model
checking in practice, it would be desirable to have an efficient, i.e. polynomial
time computable, model checking algorithm for arbitrary (finite) graphs, but this
algorithm has not been found. We know that the problem is in the complexity
class UP , see [14] (and a co − UP bound follows since the µ-calculus is closed
under negation). Recall that the class UP (Unique P) contains the problems
solved in polynomial time by nondeterministic Turing machines which have at
most one accepting path on each input. So, the class UP lies somewhere between
P and NP (in particular, the model checking problem is in NP). We will see

that the µ-calculus is tightly related to games, in particular parity games, and
in fact a promising approach to the model checking problem is the study of
various kinds of games. It must be said, however, that efficient model checking
algorithms exist when the number of alternating fixpoints is bounded, and this
is often the case in practice.

The other main theme of this paper is given by S5 graphs, i.e. graphs whose
relation is an equivalence.

The modal logic of S5 graphs (also called modal logic S5) is important be-
cause it is widely recognized as a good epistemic logic, where the box operator
[]φ means that some agent knows φ. When modal logic is interpreted on Kripke
structures, i.e. graphs, the vertices of the structure represent possible situations,
and it is reasonable that the knowledge of an agent is represented by an equiv-
alence relation on the vertices, which indicates that certain situations are not
distinguishable, in the agent’s knowledge.

So, S5 is a way of formalizing the ideas of knowledge, and it is used in many
applications such as artificial intelligence, etc. Often multimodal versions of S5
are considered, where different agents come into play; in this paper, however, we
will focus on a single modality, representing a single agent.

We will consider also the class of all transitive graphs, called K4 in the
modal logic literature. Many interesting relations are transitive: for instance, the
relation “the event A is posterior to the event B” defines a transitive relation
between events. In this paper K4 graphs play only a minor role; papers dedicated
to the µ-calculus in K4 are [2], [5] and [6].

In this paper we compare the behavior of the µ-calculus on arbitrary graphs
and on S5 graphs. It is well known that the µ-calculus is expressively equivalent
to modal logic over S5, but this equivalence does not transfer automatically to
an equivalence in complexity, neither for model checking, nor for satisfiability.

From this perspective we first show that the µ-calculus model checking prob-
lem for arbitrary graphs is as difficult as the subcase of S5 graphs, although the
class of S5 graphs is significantly simpler than the class of all graphs.

Then we move to the satisfiability problem. Quite generally, recall that the
satisfiability problem for a logic L on a class of models C is: given a formula φ
in L, decide whether there is a model of φ which is in C.

The satisfiability problem of the µ-calculus on arbitrary graphs is settled, in
the sense that it is EXPTIME-complete: EXPTIME-hardness of the problem
follows from [12], and membership to EXPTIME is proved in [8]. We note
that S5 has also an application to the satisfiability problem of fragments of the
µ-calculus: the satisfiability problem of the so-called existential (or box-free) µ-
calculus on arbitrary graphs is as difficult as the same problem on S5 graphs. By
using this observation we give an alternative proof of a result of [13] to the effect
that the satisfiability problem for the existential µ-calculus is NP -complete. We
also give a proof that satisfiability of µ-calculus in S5 is NP -complete, so in this
respect we have a better complexity than the EXPTIME complexity the full
µ-calculus. Both results depend on a linear size model property for µ-calculus
formulas in S5.

10 Giovanna D’Agostino, Giacomo Lenzi

1.1 Related work

Given the relevance of S5 as epistemic logic, many papers in the modal logic
literature are dedicated to it, and in particular on its proof theory. Finding a
good axiom system for S5 is a longstanding open problem, see [19]. The situation
is even more difficult for the modal µ-calculus in S5, where a recent contribution
is [1].

2 Syntax

2.1 Scalar modal µ-calculus

We present here the usual modal µ-calculus, and we call it scalar because, as we
will see, there is also a vectorial version of the µ-calculus. We follow the standard
presentation of the formulas of modal µ-calculus:

φ = A | ¬A | X | φ ∨ φ | φ ∧ φ | 〈 〉φ | []φ | µX.φ | νX.φ,

where A ranges over a set At of atoms and X ranges over a set V ar of fixpoint
variables. 〈 〉 and [] denote the modal operators: the diamond, or the existential
operator, and the box, or the universal operator.

Intuitively, µX.φ(X) denotes the least fixpoint of the function φ(X), and
νX.φ(X) denotes the greatest fixpoint of this function.

A µ-calculus formula φ is called guarded if for every fixpoint subformula of
φ, say νX.ψ(X) or µX.ψ(X), every occurrence of X in ψ is in the scope of a
modal operator.

Free and bound variables are defined in analogy with first order logic, be-
cause fixpoints µX and νX are syntactically analogous to quantifiers ∃x and
∀x (note however that semantically, fixpoint variables correspond to monadic
second order variables, i.e. variables ranging over sets, rarther than first order
variables ranging over individuals).

A µ-calculus formula is called a sentence if it has no free variables. Although
formulas are not closed under negation, a negation of sentences is available: the
negation of a sentence is obtained by exchanging A and ¬A, ∧ and ∨, 〈 〉 and
[], and µ with ν.

Given a formula φ, we denote by |φ| the size of φ.

2.2 Functional µ-calculus

We can generalize modal µ-calculus to functional µ-calculus, following [3]. Func-
tional µ-calculus has n-ary function symbols, to be interpreted by monotonic
functions on powersets (or more generally, on complete lattices). The syntax is

X|φ ∧ ψ|φ ∨ ψ|f(φ1, . . . , φn)|µX.φ|νX.φ.

On modal mu-calculus in S5 and applications 11

2.3 Vectorial µ-calculus

The most standard presentation of modal µ-calculus is in the scalar syntax of
the previous section. In this section we generalize the syntax by allowing systems
of equations: although this extension does not affect the expressiveness of the
logic, it may increase succinctness.

We essentially follow the presentation of [3]. We restrict to powersets rather
than arbitrary complete lattices. So we can consider a set V and n monotonic
functions f1, . . . , fn from P (V)n+m to P (V). A µ-system is a system S of n
equations

S :

x1 =θ1 f1(x1, . . . , xn, y1, . . . , ym)

. . .
xn =θn

fn(x1, . . . , xn, y1, . . . , ym)

where θ1, . . . , θn ∈ {µ, ν}.
The µ-system S is by definition equivalent to a n tuple of scalar µ-calculus

formulas, called the solution of S, computed inductively as follows.
If n = 1 then the solution is θx1.f1(x1, y1, . . . , ym).
If n > 1, let g1(x2, . . . , xn, y1, . . . , ym) = θ1x1.f1(x1, . . . , xn, y1, . . . , ym). The

solution of S is (g1(h2, . . . , hn, y1, . . . , ym), h2, . . . , hn), where (h2, . . . , hn) is the
solution of the system

S1 :

x2 =θ2 f2(g1(x2, . . . , xn, y1, . . . , ym), . . . , xn, y1, . . . , ym)

. . .
xn =θn

fn(g1(x2, . . . , xn, y1, . . . , ym), . . . , xn, y1, . . . , ym)

We denote by soli(S) the i-th component of the solution of S.
A µ-system of equations is called a modal µ-system if all functions fi are

combinations of variables, atoms, negated atoms, conjunctions, disjunctions, di-
amonds, and boxes.

The modal µ-calculus vectorial model checking problem is: given a finite
graph G and a modal µ-system S, decide whether G satisfies sol1(S).

2.4 The LEFT relation

Given a µ-system S, we define a relation LEFT between the variables of S as
follows.

Let y, z two variables of S. We say that y is at left of z, written y LEFT z,
if there is an equation of S where y is the variable at the left hand side of the
equality and z occurs at the right hand side.

A modal µ-system is called a modal system if the LEFT relation on variables
is acyclic. Every modal system is equivalent to a formula of modal logic.

12 Giovanna D’Agostino, Giacomo Lenzi

2.5 Composition

Let φ(X) be a formula containing a free variable X and let ψ be a sentence. Then
the composition φ[X/ψ] is the formula obtained by replacing X everywhere with
ψ in φ. Note that ψ is a sentence, hence there is no variable capturing.

The usual notion of composition of formulas can be extended to µ-systems
as follows.

Let S be a µ-system. The scope of a left variable y in S is the set of all
variables z such that there is a LEFT path from y to z.

Let S, T be two systems where the variables at left of S and T are disjoint.
Let A be an atom of S. Then the composition of S and T is the system obtained
by concatenating the equations of S and of T and by replacing A with the left
variable of the first equation of T . Composition is possible only without capture,
i.e. T must not have free variables y such that some occurrence of A is in the
scope of y in S.

2.6 Vectorial alternation depth hierarchy

We define the vectorial hierarchies V EC−Σn, V EC−Πn, V EC−∆n as follows.
V EC −Σ0 = V EC −Π0 are the modal systems. V EC −Σn+1 is the closure of
V EC−Πn under composition and adding a µ equation as a first equation of the
system. V EC−Πn+1 is the closure of V EC−Σn under composition and adding a
ν equation as a first equation of the system. V EC−∆n = V EC−Σn∩V EC−Πn.
The alternation depth of a system S is the least n such that S is in V EC−∆n+1.

3 Semantics and related concepts

3.1 Graphs and models

Like it is usually done for modal logic, we give Kripke semantics to the µ-calculus
by using the notion of model.

A graph (also called frame) is a pair G = (V,E), where V is a set of vertices
and E is a binary edge relation on V .

A graph G = (V,E) is called total if E = V 2, i.e., all possible edges are
present.

A path in a graph G from a vertex x to a vertex y is a finite sequence of
vertices z1, . . . , zn such that z1 = x, zn = y and ziEzi+1 for every i < n.

A point y is reachable from a point x if there is a path from x to y.
A model is a pair (G,Col), where G is a graph and Col is a coloring function

from some domain D to the powerset of V .

3.2 Bisimulation

Intuitively, bisimulation between models indicates that the two models have the
same observable behavior. Formally, we can define a bisimulation between two
models (G,Col) and (G′, Col′) as a relation B ⊆ V (G) × V (G′) such that,
whenever (xBx′):

On modal mu-calculus in S5 and applications 13

– x ∈ Col(d) if and only if x′ ∈ Col′(d) for every d ∈ D;
– if xEy, then there is y′ such that x′E′y′ and yBy′;
– if x′E′y′, then there is y such that xEy and yBy′.

We say that two pointed colored graphs (G,Col, x) and (G′, Col′, x′) are bisimilar
if and only if there is a bisimulation B such that xBx′.

3.3 Special classes of graphs

We consider a few subclasses of graphs.
A graph (V,E) is called total if E = V 2, that is, all possible edges are present.
The class K4 is the class of all (vertex colored) graphs whose relation is

transitive. The class S5 is the class of all (vertex colored) graphs whose relation
is an equivalence relation. Since equivalence relations are reflexive, symmetric
and transitive, S5 is included in K4 (as a class of graphs). The names K4 and
S5 come from the modal logic literature.

We also speak of total models, K4 models and S5 models in the obvious
sense.

Note that every total graph belongs to S5. Moreover, for every S5 model
M and every vertex x of M , there is a total model M ′ containing x such that
(M,x) and (M ′, x) are bisimilar: in fact M ′ is the submodel of M given by all
points of M reachable from x.

Moreover, every S5 model M is bisimilar to a S5 graph M ′, colored in the
same way, where every two different points have different colors: in fact, M ′ is M
modulo the equivalence relation of having the same color, and the bisimulation
is the projection function.

3.4 Semantics

The semantics of µ-calculus extends the usual Kripke semantics for modal logic.
So, to give semantics to the µ-calculus, we must consider models of the form
M = (G,V al) where G = (V,E) is a graph and V al is a valuation function from
At ∪ V ar to the powerset of V . To each model M and each formula φ we can
associate a subset ||φ||M of V , defined in this way:

– ||A||M = V al(A) and ||¬A||M = V \ V al(A) if A is an atom;
– ||X||M = V al(X);
– ||φ ∨ ψ||M = ||φ||M ∪ ||ψ||M ;
– ||φ ∧ ψ||M = ||φ||M ∩ ||ψ||M ;
– ||〈 〉φ||M is the set of all elements of V having some successor in ||φ||M ;
– ||[]φ||M is the set of all elements of V having every successor in ||φ||M ;
– ||µX.φ(X)||M is the smallest set S ⊆ V such that S = ||φ||M [X := S],

where M [X := S] is obtained from M by letting V al(X) = S;
– ||νX.φ(X)||M is the greatest set S ⊆ V such that S = ||φ||M [X := S].

14 Giovanna D’Agostino, Giacomo Lenzi

The last two items are well defined since the map sending S to ||φ||M [X := S]
is a monotonic function on the powerset of V and so, by the Knaster-Tarski
Theorem, this map has both a least and a greatest fixpoint.

We also say that a vertex v of a model M verifies a formula φ, written
M, v |= φ, if v ∈ ||φ||M .

4 Parity games

4.1 Definition

It is notoriously difficult to understand µ-calculus formulas, especially when
there are many alternating fixpoints. A means to understand the µ-calculus is
given by parity games. We will see that the semantics of µ-calculus formulas can
be given in terms of parity games.

Intuitively, a parity game is a game where two players, called c and d, move
in a graph (the notation, due to Arnold, suggests that c means conjunctive
and d means disjunctive). The vertexes of the graph are labeled with finitely
many positive integers. d wants to have many high even numbers along the play,
whereas c wants to have many odd numbers.

Let us define parity games more formally. A parity game is a structure Γ =
(Vc, Vd, E, v0, Ω), where Vc and Vd are disjoint sets, E is a binary relation on
Vc ∪ Vd, v0 ∈ Vc ∪ Vd is the initial vertex, and Ω : Vc ∪ Vd → {1, . . . , n} is the
priority function; the number n is called the index of the game.

A play of Γ is a sequence of vertices, starting from v0, where the successor
of the current vertex must be an E-successor of that vertex, and this successor
is chosen by the player d, if the vertex is in Vd, and by c if the vertex is in Vc.

If the play reaches a position where either player has no moves, the other
wins. If this never happens, then the play is infinite, and d wins if the greatest
priority occurring infinitely often is even, and c wins otherwise.

A strategy of a player p is a function which, given an initial segment of a
play ending with a p- position, determines the next move of p. A strategy is
positional if the move depends only on the last vertex of the segment.

A strategy Σ of a player p is winning if every play where p moves according
to Σ is won by p.

Note that parity games are Borel games, so by Borel determinacy, see [17],
they enjoy determinacy: there is always one of the two players who has a winning
strategy.

A well known property of parity games is positional determinacy:

Theorem 1. (See [9], Theorem 4.4) If either player has a winning strategy in
a parity game, then it has a positional winning strategy.

However in this paper we will use a slightly stronger form of determinacy.
Let us call a strategy strongly positional if the move on a position depends only
on the successors of the position (not on the position itself). Clearly, a strongly
positional strategy is positional, but the converse does not hold: if two different

On modal mu-calculus in S5 and applications 15

nodes have the same successors, a stronlgy positional strategy gives the same
answer on the two nodes, whereas a positional one need not to.

Now a careful analysis of [9] gives the following strenghtening of the previous
theorem:

Corollary 1. If either player has a winning strategy in a parity game, then it
has a strongly positional winning strategy.

Proof. Note that players c and d are called AND and OR in [9]. The successor
of an OR position in the positional strategy of Theorem 4.4 of [9] is chosen in a
way which does not quite depend on the OR position, but depends only on the
set of positions reachable in one step from that OR position. So, the resulting
strategy is actually strongly positional. ut

4.2 From the µ-calculus to parity games

The semantics of the µ-calculus can be given in terms of a parity game. More
precisely, given a sentence φ and a model M = (V,E, V al), with a distinguished
vertex v0 of V , we can define an evaluation game Γ (φ, v0,M) as follows (we
consider sentences rather than arbitrary formulas for simplicity).

The positions of Γ (φ, v0,M) are the pairs (ψ, v), where v ∈ V and ψ is a
subformula of φ. The d positions are the pairs of the form (ψ ∨χ, v) or (〈 〉ψ, v);
all other positions are c positions. (φ, v0) is the initial position.

There are edges from (ψ∨χ, v) or (ψ∧χ, v) to (ψ, v) and (χ, v); from (〈 〉ψ, v)
or ([]ψ, v) to (ψ,w) for every successor w of v in V ; from (µX.ψ, v) and (νX.ψ, v)
to (ψ, v); and if a variable occurrence X appears in a subformula µX.ψ or νX.ψ,
there is an edge from (X, v) to (µX.ψ, v) or (νX.ψ, v) respectively. Finally, we
put also an edge from (A, v) or (¬A, v) to itself for every atom A, and from (Y, v)
to itself for every variable Y free in φ.

To define the Ω function we proceed as follows. First we assign priorities to
fixpoint subformulas of φ: we assign to each greatest fixpoint subformula νX.χ
in φ a priority 2|χ|, and we assign to µX.χ a priority 2|χ|+ 1. This ensures that:

– least fixpoints have odd priority;
– greatest fixpoints have even priority;
– the priority of larger subformulas is larger.

Now we let Ω(ψ, v) be the priority of ψ, if ψ is a fixpoint formula; Ω(A, v) = 2
if M,v |= A and Ω(A, v) = 1 otherwise, if A is an atom, a negated atom or a
free variable of φ; and Ω(ψ, v) = 1 otherwise.

It results that M, v0 |= φ if and only if player d has a winning strategy in
Γ (φ, v0,M).

4.3 From parity games to µ-calculus

We have seen that in a sense, µ-calculus reduces to parity games. However, as is
well known, also the other way round is true: if we consider parity game of index

16 Giovanna D’Agostino, Giacomo Lenzi

n as a graph vertex-colored by c, d, 1, . . . , n, then there is a µ-calculus formula
Wn, due to Walukiewicz, such that an arena for parity games (G, v0) verifies Wn

if and only if player d has a winning strategy in the parity game associated to
(G, v0). This formula is

Wn = µX1νX2 . . . θXn.(d→ 〈 〉
∧

i

(i→ Xi) ∧ (c→ []
∧

i

(i→ Xi).

5 The reduction to S5

In [13] there is a reduction of µ-calculus model checking to box free µ-calculus
model checking. Here we modify the result by specializing to S5 and by referring
to the vectorial model checking rather than the scalar one:

Theorem 2. Given a finite model M and a modal µ-system S, there is a finite
S5 model M ′ and a box free modal µ-system S′, such that M ′ and S′ are built
in time polynomial in the size of M plus the size of S, and such that M verifies
sol1(S) if and only if M ′ verifies sol1(S′).

Proof. Let M = (V,E, V al) be a model. Let S be a modal µ-system. Up to
perform a polynomial time rewriting of S, we can suppose that the equations
of S have one of the following forms: X = A, X = ¬A where A is an atom,
X = Y ∨ Z, X = Y ∧ Z, X = 〈 〉Y , X = []Y , X = Y .

Now M ′ is obtained as follows. The vertices of M ′ are the vertices of M . Let
us enumerate these vertices as v1, . . . , vn. Let Ai be an atom which is true in G’
only in the point vi. The relation E′ of M ′ holds for every pair of vertices of M ′,
so M ′ is an S5 model.

Moreover S′ is obtained by replacing every equation of S of the form

X = 〈 〉Y

with
X =

∨
{Ai ∧ 〈 〉(Aj ∧ Y)|viRvj},

and every equation of S of the form

X = []Y

with
X =

∧
{Ai → 〈 〉(Aj ∧ Y)|viRvj}.

Note that one could expect that the right hand side of X = []Y is replaced
by the De Morgan dual of X = 〈 〉Y , so to have

∧{Ai → [](Aj → Y)|viRvj}.
However, the atoms Ai are interpreted as singletons, so

[](Aj → Y)

On modal mu-calculus in S5 and applications 17

is in fact equivalent to its De Morgan dual

〈 〉(Aj ∧ Y),

and this allows us to replace the box with the diamond.
ut

We do not know whether Theorem 2 can be specialized to the scalar µ-
calculus. In fact, the problem is that the translation from a modal µ-system to
a single formula of the modal µ-calculus (i.e., the algorithm which builds the
solution of a modal µ-system) takes exponential time in general.

6 Corollaries

It is well known that there is a translation of vectorial µ-calculus in S5 to
vectorial modal logic in S5. In fact, given a modal µ-system in S5, we can first
consider its solution and translate it into modal logic. From the previous theorem
we obtain:

Corollary 2. If there is a polynomial time computable translation from box-
free vectorial µ-calculus in S5 to vectorial modal logic in S5, then the vectorial
µ-calculus model checking problem is in P .

Proof. By [16], model checking for vectorial modal logic (over arbitrary graphs)
reduces in polynomial time to the problem of solving Boolean equation systems
with only one type of fixpoint, and this problem is in P by [3]. By the previous
theorem, vectorial model checking reduces to vectorial model checking over S5
in polynomial time; so if the translation in the statement exists, then by a chain
of reductions, the vectorial µ-calculus model checking problem is in P . ut

Considerations analogous to S5 hold in the larger class of graphs K4. In fact,
from [2], [6] and [5] it follows that there is a translation from vectorial µ-calculus
in K4 to V EC −Π2 in K4. From the previous theorem we obtain:

Corollary 3. If there is a polynomial time computable translation from vecto-
rial µ-calculus in K4 to V EC −Π2 in K4, then the µ-calculus model checking
problem is in P .

Proof. Every S5 graph is also a K4 graph, so by the previous theorem, there
is a polynomial time reduction from vectorial model checking over arbitrary
graphs to vectorial model checking in K4. Moreover, by [16], model checking for
V EC −Π2 (over arbitrary graphs) reduces in polynomial time to the problem
of solving Boolean equation systems of class Π2, and this problem is in P by [3].
So if the translation in the statement exists, then by a chain of reductions, the
vectorial µ-calculus model checking problem is in P .

ut

18 Giovanna D’Agostino, Giacomo Lenzi

7 Satisfiability in S5

In this section we investigate the µ-calculus satisfiability problem for S5. We
begin with establishing a linear size model property.

Lemma 1. If a formula φ has a S5 model, then it has a S5 model of size linear
in φ.

Proof. Let (M,x0) be a S5 model of φ. Up to bisimulation we can suppose that
M is total. Then player d has a winning strategy in the game Γ (φ, x0,M). By
Corollary 1, d has a strongly positional winning strategy in the game, call it Σ.
Consider a diamond position (〈 〉ψ, y) of the game. Since M is total, the set of
successors of (〈 〉ψ, y) does not depend on y, so the choice of Σ also does not
depend on y, but only on ψ. Let us denote by (ψ, xψ) the successor position of
(〈 〉ψ, y) chosen by Σ. Let N be the submodel of M given by x0 plus all points
xψ.

First, N has size linear in φ because its size is at most the number of diamond
subformulas of φ (plus one). Moreover, we note that if player c in the game always
chooses elements of N in box positions, then the game remains in N forever, and
is won by d since Σ is winning on M .

ut
As a consequence we have:

Theorem 3. The satisfiability problem for the µ-calculus in S5 is NP -complete.

Proof. NP -hardness holds because the µ-calculus contains propositional logic.
To show that the problem is in NP , suppose that models and formulas are en-

coded as strings in a convenient finite alphabet (e.g. ASCII code). We prove that
there is a problem S in PTIME and a polynomial p such that φ is satisfiable in
S5 iff there exists a witness z such that (φ, z) ∈ S and length(z) ≤ p(length(φ)).

Since µ-calculus model checking is inNP (see [7]), we know that there exists a
problem S′ in PTIME and a polynomial q such that, for any finite model M , M
satisfies φ iff there exists a y with (M,φ, y) ∈ S′ and length(y) ≤ q(length(M)+
length(φ)). Moreover, by Lemma 1, φ is satisfiable in S5 iff φ is satisfiable in a
modelM of size linear in φ, which we can code with a length at most r(length(φ))
for some polynomial r.

Let S be the set of tuples (φ,M, y) such that:

– M is an S5 model (i.e. the accessibility relation is an equivalence);
– (M,φ, y) ∈ S′;
– length(M) ≤ r(length(φ));
– length(y) ≤ q(length(M) + length(φ)).

So, φ is satisfiable in S5 if and only if there exists a witness z = (M,y) such that
(φ, z) ∈ S. Note that S is in PTIME. Moreover, (φ, z) ∈ S implies length(z) ≤
p(length(φ)), where p(x) = r(x) + q(r(x) + x). So, φ is satisfiable in S5 if and
only if there exists a witness z = (M,y) such that (φ, z) ∈ S and length(z) ≤
p(length(φ)). So S and p satisfy the desired properties.

ut

On modal mu-calculus in S5 and applications 19

Note that the restriction of the previous theorem to modal logic was already
known, see [11].

8 On existential µ-calculus

A formula of the µ-calculus is called existential, or box-free, if it contains no
box operators []φ. Intuitively, existential µ-calculus is considerably simpler
than general µ-calculus. In fact, the satisfiability problem for the µ-calculus
is EXPTIME-complete, whereas, as shown in [13], the same problem for the
existential µ-calculus is NP -complete. Note that this last result can be obtained
in a way different from [13] as follows.

First we observe:

Lemma 2. The satisfiability problem for existential µ-calculus is polynomial
time equivalent to the same problem on S5.

Proof. If an existential formula φ has a model M , then φ is also true on the
reflexive, symmetric, transitive closure of M , which is an S5 graph of the same
size as M .

ut
Moreover, as a corollary of the previous section we have:

Corollary 4. The satisfiability problem for existential µ-calculus in S5 is NP -
complete.

Proof. The satisfiability problem for existential µ-calculus in S5 is NP because,
by Theorem 3, it is a particular case of an NP problem. Moreover, the problem
is NP -hard because existential µ-calculus contains propositional logic. ut

From the previous lemma and the previous corollary it follows:

Corollary 5. The satisfiability problem for existential µ-calculus is NP -complete.

9 On µ-calculus and modal logic in S5

It is known that µ-calculus in S5 is as expressive as modal logic, so in S5 there
is no fixpoint alternation hierarchy. In this section we describe two translations
from µ-calculus to modal logic; the first is due to Alberucci and Facchini, whereas
the second is based on a bisimulation argument.

9.1 On the complexity of translations from the µ-calculus to modal
logic over S5

In [2] a recursive translation of µ-calculus into modal logic in S5 is given. The
construction is performed by induction on ordinals (rather than ordinary induc-
tion on numbers). In order to set up the construction, a notion of ordinal rank
of µ-calculus formulas is introduced, with the following properties:

20 Giovanna D’Agostino, Giacomo Lenzi

– rank(A) = rank(¬A) = 1;
– rank(〈 〉φ) = rank([]φ) = rank(φ) + 1;
– rank(φ ∧ ψ) = rank(φ ∨ ψ) = max{rank(φ), rank(ψ)}+ 1;
– rank(µX.φ(X)) = rank(νX.φ(X)) = sup{rank(φn(X)) + 1;n ∈ IN}.

A µ-calculus sentence φ is well named if it is guarded and, for any variable
X, no two distinct occurrences of fixpoint operators in φ bind X, and the atom
X occurs only once in φ.

Using the semantical laws µX.ψ(X,X) = µX.µY.ψ(X,Y), νX.ψ(X,X) =
νX.νY.ψ(X,Y) (see [3]), and renaming of bounded variables, we see that any
µ-calculus formula is equivalent to a well named formula of a size which is linear
in the size of φ. For instance, the formula µX([]X∧〈 〉X)∧νX[]X is equivalent
to the well named formula µXµY ([]X ∧ 〈 〉Y) ∧ νZ[]Z.

The following translation t from well named µ-formulas to modal logic in S5
can be defined:

– t(A) = A, t(¬A) = ¬A;
– t(true) = true, t(false) = false;
– t(〈 〉φ) = 〈 〉t(φ);
– t([]φ) = []t(φ);
– t(φ ∧ ψ) = t(φ) ∧ t(ψ);
– t(φ ∨ ψ) = t(φ) ∨ t(ψ);
– t(µX.φ(X)) = t((φ(φ(false))∗);
– t(νX.φ(X)) = t((φ(φ(true))∗),

where (φ(φ(false))∗, (φ(φ(true))∗ denote the well named formulas obtained from
φ(φ(false)), φ(φ(true)) by renaming repeated bound variables. The translation
t is given by induction on the rank, so it is well defined. Moreover:

Lemma 3. If φ is a well named formula, then the length of t(φ) is at most 2|φ|.

Proof. We need a preliminary composition lemma:

Lemma 4. t(φ[X/ψ]) = t(φ)[X/t(ψ)].

Proof. By induction on φ. ut
Now the bound as in the lemma can be proved by induction on the rank of
φ. The most delicate case is µX.ψ(X) and νX.ψ(X). Now, by Lemma 4, we
have t(µX.ψ(X)) = t(ψ(ψ(false)) = t(ψ)[X/t(ψ(false))], and since X oc-
curs only once in ψ, we obtain the bound |t(µX.ψ)| = |t(ψ)[X/t(ψ(false))]| ≤
2|t(ψ(false))| ≤ 2 × 2|ψ(false)| = 2|ψ(false)|+1 ≤ 2|µX.ψ(X)|. The case of ν is
analogous. ut

So, the translation t is at most exponential. We also can show that the
exponential upper bound for the translation t is tight. In fact, consider the well
named formulas:

φn = µX1 . . . µXn.X1 ∨ (X2 ∨ . . . ∨Xn).

We can show by induction that t(φn) has size at least 2n. In fact, the base case
n = 1 is true; for the inductive case, we begin with a lemma:

On modal mu-calculus in S5 and applications 21

Lemma 5. The following equivalences hold:

– |t(φ(false ∨ α))| > |t(φ(α)|;
– if X is a variable free in φ, then |t(φ(X ∨ α))| > |t(φ(α)|.

Proof. By induction on φ. ut

Now consider t(φn) with n > 1. By definition of t we have

t(φn) = t(µX2 . . . µXn.(µX2 . . . µXn.false ∨X2 ∨ . . . ∨Xn) ∨X2 . . . ∨Xn)

and by Lemma 4 we obtain

t(φn) = t(µX2 . . . µXn.Y ∨X2 . . .∨Xn)[Y/t(µX2 . . . µXn.false∨X2∨ . . .∨Xn).

By evaluating the sizes we see that

|t(φn)| ≥ |t(µX2 . . . µXn.Y ∨X2 . . .∨Xn)|+|t(µX2 . . . µXn.false∨X2∨. . .∨Xn)]|−1;

by Lemma 5 we obtain

|t(φn)| ≥ 2|t(µX2 . . . µXn.X2 ∨ . . . Xn)|,

and, by renaming the variables,

|t(φn)| ≥ 2|t(φn−1)|.

Finally, the inductive hypothesis gives |t(φn−1)| ≥ 2n−1, so |t(φn)| ≥ 2n.

9.2 An alternative translation

A translation from µ-calculus to modal logic different from [2] is obtained as
follows. Let φ be a µ-calculus formula containing a set At of atoms. Then, up to
bisimulation, there are finitely many S5 models colored with At, more precisely
exponentially many of them. Each bisimulation class is described by a character-
istic formula, that is, the conjunction of 〈 〉γ where γ is a conjunction of atoms
and negated atoms present in the model of the class, and ¬〈 〉γ where γ is a
conjunction not present in the class. So, φ is equivalent to the disjunction of the
characteristic formulas of the bisimulation classes of the models of φ. Note that
this alternative translation is also (at most) exponential.

9.3 A corollary

Both translations of the previous subsections give an exponential blow up in the
size of the formula. It is then natural to ask whether there exists a polynomial
time computable translation from the µ-calculus to modal logic over S5. This
question is related to the results of the previous section, as the following final
corollary shows:

22 Giovanna D’Agostino, Giacomo Lenzi

Corollary 6. If there is a polynomial time computable translation from the µ-
calculus to modal logic over S5 and Theorem 2 specializes to scalar µ-calculus,
then the µ-calculus model checking problem is in P .

Proof. Given a µ-formula φ and a model M , first reduce the problem to a µ-
formula φ′ over an S5 model M ′, and then apply the polynomial translation in
order to obtain a modal formula φ∗ with

M |= φ⇔M ′ |= φ∗.

Since both M ′ and φ∗ are obtained in polynomial time from M,φ and modal
model checking is in P , we have done. ut

10 Conclusion

In this paper we have investigated some aspects of µ-calculus on S5 graphs.
Arguably, these graphs are quite simple. However, simplicity of S5 graphs gives
us better satisfiability bounds than arbitrary graphs, but not better bounds on
the model checking problem.

An interesting question is whether there is a direct, natural translation from
modal µ systems to modal systems in S5: by this we mean that the translation
should not go through transforming a system of equations into a single scalar
term.

A similar analysis of µ-calculus model checking and satisfiability could be
carried over other important classes of graphs. An example is K4. Since satisfi-
ability in K4 efficiently reduces to general satisfiability, in K4 we have the same
bound as in K, that is, EXPTIME. It would be interesting to see whether a
better bound can be given. Note that for model checking, as we have seen, a
better bound for K4 with respect to arbitrary graphs does not exist.

The same analysis could be done for other interesting classes of graphs, e.g.
the longstanding Gödel-Löb class GL (i.e. the transitive wellfounded graphs),
or for more recent classes such as graphs of bounded tree width or classes with
forbidden minors. A good model checking algorithm for bounded tree width is
e.g. [18], but we do not have yet a polynomial time model checking algorithm
on graphs of bounded tree width. Apparently there is no result on satisfiability
on bounded tree width.

Acknowledgments

This work has been partially supported by the PRIN project n. 20089M932N
Innovative and multi-disciplinary approaches for constraint and preference rea-
soning.

On modal mu-calculus in S5 and applications 23

References

1. L. Alberucci, Sequent Calculi for the Modal µ-Calculus over S5. J. Log. Comput.
19(6): 971–985 (2009).

2. L. Alberucci and A. Facchini, The modal µ-calculus hierarchy over restricted classes
of transition systems, J. Symb. Logic 74 (2009) 1367–1400.

3. A. Arnold and D. Niwinski, Rudiments of µ-calculus, North-Holland, 2001.
4. Edmund M. Clarke, Jr., Orna Grumberg and Doron A. Peled, Model Checking,

MIT Press, 1999.
5. A. Dawar and M. Otto, Modal characterisation theorems over special classes of

frames, Ann. Pure Appl. Logic 161 (2009), 1–42.
6. G. D’Agostino and G. Lenzi, On the µ-calculus over transitive and finite transitive

frames, Theor. Comput. Sci. 411(50): 4273–4290 (2010).
7. E. Allen Emerson: Model Checking and the Mu-calculus. Descriptive Complexity

and Finite Models 1996: 185–214.
8. E. A. Emerson and C. S. Jutla, The complexity of tree automata and logics of

programs. In Proc. 29th IEEE FOCS 328–337 (1988).
9. E. A. Emerson and C. S. Jutla. Tree Automata, Mu-Calculus and Determinacy

(Extended Abstract). FOCS 1991: Pages 368–377.
10. Robert S. Streett and E. Allen Emerson. An Automata Theoretic Decision Proce-

dure for the Propositional Mu-Calculus. Information and Computation 81 (1989),
249–264.

11. R. Fagin, Reasoning about knowledge, MIT Press, 2003.
12. M. J. Fischer and R. E. Ladner, Propositional dynamic logic of regular programs,

J. Comput. System Sci., 18 (1979), pp. 194–211.
13. Thomas A. Henzinger, Orna Kupferman, and Rupak Majumdar, On the Univer-

sal and Existential Fragments of the Mu-Calculus, Theoretical Computer Science
354:173-186, 2006.

14. M. Jurdzinski, Deciding the winner in parity games is in UP ∩ co − UP , Inform.
Proc. Letters 68 (1998), 119-124.

15. D. Kozen, Results on the Propositional mu-Calculus, Theor. Comput. Sci. 27: 333–
354 (1983).

16. A. Mader, Verification of Modal Properties using Boolean Equation Systems, Ph.
D. Thesis, 1997.

17. D. A. Martin, Borel determinacy, Ann. Math., 102 (1975), pp. 363–371.
18. J. Obdrzalek, Fast Mu-Calculus Model Checking when Tree-Width Is Bounded.

CAV 2003, 80–92.
19. F. Poggiolesi, A cut-free simple sequent calculus for modal logic S5, Review of

Symbolic Logic, 1:3–15, 2008.
20. I. Walukiewicz, Completeness of Kozen’s Axiomatisation of the Propositional Mu-

Calculus, Information and Computation 157 (2000), 142–182.

24 Giovanna D’Agostino, Giacomo Lenzi

MCINTYRE: A Monte Carlo Algorithm for
Probabilistic Logic Programming

Fabrizio Riguzzi

ENDIF – Università di Ferrara – Via Saragat, 1 – 44122 Ferrara, Italy.
{fabrizio.riguzzi}@unife.it

Abstract. Probabilistic Logic Programming is receiving an increasing
attention for its ability to model domains with complex and uncertain
relations among entities. In this paper we concentrate on the problem
of approximate inference in probabilistic logic programming languages
based on the distribution semantics. A successful approximate approach
is based on Monte Carlo sampling, that consists in verifying the truth of
the query in a normal program sampled from the probabilistic program.
The ProbLog system includes such an algorithm and so does the cplint

suite. In this paper we propose an approach for Monte Carlo inference
that is based on a program transformation that translates a probabilistic
program into a normal program to which the query can be posed. In
the transformation, auxiliary atoms are added to the body of rules for
performing sampling and checking for the consistency of the sample.
The current sample is stored in the internal database of the Yap Prolog
engine. The resulting algorithm, called MCINTYRE for Monte Carlo
INference wiTh Yap REcord, is evaluated on various problems: biological
networks, artificial datasets and a hidden Markov model. MCINTYRE
is compared with the Monte Carlo algorithms of ProbLog and cplint

and with the exact inference of the PITA system. The results show that
MCINTYRE is faster than the other Monte Carlo algorithms.

Keywords: Probabilistic Logic Programming, Monte Carlo Methods, Logic Pro-
grams with Annotated Disjunctions, ProbLog.

1 Introduction

Probabilistic Logic Programming (PLP) is an emerging field that has recently
seen many proposals for the integration of probability in logic programming.
Such an integration overcomes the limit of logic of dealing only with certain
propositions and the limit of works in probability theory that consider mostly
simple descriptions of domain entities instead of complex relational descriptions.

PLP is of interest also for its many application domains, the most promising
of which is maybe Probabilistic Inductive Logic Programming [5] in which PLP
languages are used to represent the theories that are induced from data. This
allows a richer representation of the domains that often leads to increased mod-
eling accuracy. This trend can be cast in a more general tendency in Machine

Learning to combine aspects of uncertainty with aspects of logic, as is testified
by the development of the field of Statistical Relational Learning [7].

Many languages have been proposed in PLP. Among them, many share a
common approach for defining the semantics, namely the so called distribution
semantics [17]. This approach sees a probabilistic logic program as a descrip-
tion of a probability distribution over normal logic programs, from which the
probability of queries is computed. Example of languages following the distri-
bution semantics are Probabilistic Logic Programs [3], Probabilistic Horn Ab-
duction [10], Independent Choice Logic [11], PRISM [17], Logic Programs with
Annotated Disjunctions (LPADs) [21] and ProbLog [6]. These languages have
essentially the same expressive power [20,4] and in this paper we consider only
LPADs and ProbLog, because they stand at the extremes of syntax complexity,
LPADs having the most complex syntax and ProbLog the simplest, and because
most existing inference algorithms can be directly applied to them.

The problem of inference, i.e., the problem of computing the probability of a
query from a probabilistic logic program, is very expensive, being #P complete
[8]. Nevertheless, various exact inference algorithms have been proposed, such
as the ProbLog system1 [6], cplint2 [12,13] and PITA3 [14,16] and have been
successfully applied to a variety of non-trivial problems. All of these algorithms
find explanations for queries and then use Binary Decision Diagrams (BDDs)
for computing the probability. This approach has been shown to be faster than
algorithms not using BDDs. Reducing the time to answer a probabilistic query
is important because in many applications, such as in Machine Learning, a high
number of queries must be issued. To improve the speed, approximate inference
algorithms have been proposed. Some compute a lower bound of the probability,
as the k-best algorithm of ProbLog [8] which considers only the k most probable
explanations for the query, while some compute an upper and a lower bound,
as the bounded approximation algorithm of ProbLog [8] that builds an SLD
tree only to a certain depth. A completely different approach for approximate
inference is based on sampling the normal programs encoded by the probabilis-
tic program and checking whether the query is true in them. This approach,
called Monte Carlo, was first proposed in [8] for ProbLog, where a lazy sampling
approach was used in order to avoid sampling unnecessary probabilistic facts.
[1] presented algorithms for k-best, bounded approximation and Monte Carlo
inference for LPADs that are all based on a meta-interpreter. In particular, the
Monte Carlo approach uses the arguments of the meta-interpreter predicate to
store the samples taken and to ensure consistency of the sample.

In this paper we present the algorithm MCINTYRE for Monte Carlo INfer-
ence wiTh Yap REcord that computes the probability of queries by means of
a program transformation technique. The disjunctive clauses of an LPAD are
first transformed into normal clauses to which auxiliary atoms are added to the
body for taking samples and storing the results. The internal database of the

1 http://dtai.cs.kuleuven.be/problog/
2 http://www.ing.unife.it/software/cplint/
3 https://sites.google.com/a/unife.it/ml/pita

26 Fabrizio Riguzzi

Yap Prolog engine is used to record all samples taken thus ensuring that samples
are consistent. The truth of a query in a sampled program can be then tested
by asking the query to the resulting normal program.

MCINTYRE is compared with the Monte Carlo algorithms of ProbLog and
cplint and with the exact inference algorithm of the PITA system on various
problems: biological networks, artificial datasets and a hidden Markov model.
The results show that the performances of MCINTYRE overcome those of the
other Monte Carlo algorithms.

The paper is organized as follows. In Section 2 we review the syntax and the
semantics of PLP. Section 3 illustrates previous approaches for inference in PLP
languages. Section 4 presents the MCINTYRE algorithm. Section 5 describes
the experiments and Section 6 concludes the paper.

2 Probabilistic Logic Programming

One of the most interesting approaches to the integration of logic programming
and probability is the distribution semantics [17], which was introduced for the
PRISM language but is shared by many other languages.

A program in one of these languages defines a probability distribution over
normal logic programs called worlds. This distribution is then extended to queries
and the probability of a query is obtained by marginalizing the joint distribution
of the query and the programs. We present the semantics for programs without
function symbols but the semantics has been defined also for programs with
function symbols [17,15].

The languages following the distribution semantics differ in the way they
define the distribution over logic programs. Each language allows probabilis-
tic choices among atoms in clauses: Probabilistic Logic Programs, Probabilistic
Horn Abduction , Independent Choice Logic, PRISM and ProbLog allow proba-
bility distributions over facts, while LPADs allow probability distributions over
the heads of disjunctive clauses. All these languages have the same expressive
power: there are transformations with linear complexity that can convert each
one into the others [20,4]. Next we will discuss LPADs and ProbLog.

Formally a Logic Program with Annotated Disjunctions T [21] consists of a
finite set of annotated disjunctive clauses. An annotated disjunctive clause Ci is
of the form hi1 : Πi1; . . . ;hini

: Πini
: −bi1, . . . , bimi

. In such a clause hi1, . . . hini

are logical atoms and bi1, . . . , bimi are logical literals, {Πi1, . . . ,Πini} are real
numbers in the interval [0, 1] such that

∑ni

k=1Πik ≤ 1. bi1, . . . , bimi is called
the body and is indicated with body(Ci). Note that if ni = 1 and Πi1 = 1 the
clause corresponds to a non-disjunctive clause. If

∑ni

k=1Πik < 1 the head of the
annotated disjunctive clause implicitly contains an extra atom null that does
not appear in the body of any clause and whose annotation is 1−∑ni

k=1Πik. We
denote by ground(T) the grounding of an LPAD T .

An atomic choice is a triple (Ci, θj , k) where Ci ∈ T , θj is a substitution
that grounds Ci and k ∈ {1, . . . , ni}. (Ci, θj , k) means that, for the ground
clause Ciθj , the head hik was chosen. In practice Ciθj corresponds to a random

MCINTYRE: A Monte Carlo Algorithm for Probabilistic Logic Programming 27

variable Xij and an atomic choice (Ci, θj , k) to an assignment Xij = k. A set of
atomic choices κ is consistent if (Ci, θj , k) ∈ κ, (Ci, θj , l) ∈ κ⇒ k = l, i.e., only
one head is selected for a ground clause. A composite choice κ is a consistent set
of atomic choices. The probability P (κ) of a composite choice κ is the product of
the probabilities of the individual atomic choices, i.e. P (κ) =

∏
(Ci,θj ,k)∈κΠik.

A selection σ is a composite choice that contains an atomic choice (Ci, θj , k)
for each clause Ciθj in ground(T). A selection σ identifies a normal logic program
wσ defined as wσ = {(hik : −body(Ci))θj |(Ci, θj , k) ∈ σ}. wσ is called a world of
T . Since selections are composite choices, we can assign a probability to possible
worlds: P (wσ) = P (σ) =

∏
(Ci,θj ,k)∈σΠik.

Since the program does not have function symbols, the set of worlds is finite:
WT = {w1, . . . , wm} and, since the probabilities of the individual choices sum to
1, P (w) is a distribution over worlds:

∑
w∈WT

P (w) = 1. We also assume that
each world w has a two-valued well founded model WFM(w). If a query Q is
true in WFM(w) we write w |= Q.

We can define the conditional probability of a queryQ given a world: P (Q|w) =
1 if w |= Q and 0 otherwise. The probability of the query can then be obtained
by marginalizing over the query

P (Q) =
∑

w

P (Q,w) =
∑

w

P (Q|w)P (w) =
∑

w|=Q
P (w)

Example 1. The following LPAD T encodes a very simple model of the develop-
ment of an epidemic or a pandemic:

C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X), cold.
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

This program models the fact that if somebody has the flu and the climate
is cold, there is the possibility that an epidemic or a pandemic arises. We are
uncertain about whether the climate is cold but we know for sure that David
and Robert have the flu. Clause C1 has two groundings, both with three atoms
in the head, while clause C2 has a single grounding with two atoms in the head,
so overall there are 3 × 3 × 2 = 18 worlds. The query epidemic is true in 5 of
them and its probability is

P (epidemic) = 0.6 · 0.6 · 0.7 + 0.6 · 0.3 · 0.7 + 0.6 · 0.1 · 0.7+
0.3 · 0.6 · 0.7 + 0.1 · 0.6 · 0.7 =
0.588

A ProbLog program is composed by a set of normal clauses and a set of proba-
bilistic facts, possibly non-ground. A probabilistic fact takes the form

Π :: f.

where Π is in [0,1] and f is an atom. The semantics of such program can be
given by considering an equivalent LPAD containing, for each ProbLog normal

28 Fabrizio Riguzzi

clause h : −B, a clause h : 1 : −B and, for each probabilistic ProbLog fact, a
clause

f : Π.

The semantics of the ProbLog program is the same as that of the equivalent
LPAD.

It is also possible to translate an LPAD into a ProbLog program [4]. A clause
Ci of the LPAD with variables X

hi1 : Πi1; . . . ;hini
: Πini

: −Bi

is translated into

hi1 : −Bi, fi1(X).
hi2 : −Bi, problog not(fi1(X)), fi2(X).
...
hini−1 : −Bi, problog not(fi1(X)), . . . , problog not(fini−2(X)), fini−1(X).
hini : −Bi, problog not(fi1(X)), . . . , problog not(fini−1(X)).

πi1 :: fi1(X).
...
πin−1 :: fini−1(X).

where problog not/1 is a ProbLog builtin predicate that implements negation
for probabilistic atoms and πi1 = Πi1, πi2 = Πi2

1−πi1
, πi3 = Πi3

(1−πi1)(1−πi2)
, In

general πij = Πij∏j−1

k=1
(1−πik)

.

Example 2. The ProbLog program equivalent to the LPAD of Example 1 is

C11 = epidemic : −flu(X), cold, f1(X).
C12 = pandemic : −flu(X), cold, problog not(f1(X)), f2(X).
C13 = 0.6 :: f1(X).
C14 = 0.75 :: f2(X).
C21 = cold : −f3.
C22 = 0.7 :: f3.
C3 = flu(david).
C4 = flu(robert).

3 Inference Algorithms

In order to compute the probability of a query from a probabilistic logic program,
[6] proposed the ProbLog system that first finds a set of explanations for the
query and then computes the probability from the set by using Binary Decision
Diagrams. An explanation is a set of probabilistic facts used in a derivation of the
query. The set of explanations can be seen as a Boolean DNF formula in which

MCINTYRE: A Monte Carlo Algorithm for Probabilistic Logic Programming 29

the Boolean propositions are random variables. Computing the probability of
the formula involves solving the disjoint sum problem which is #P-complete
[19]. BDDs represent an approach for solving this problem that has been shown
to work well in practice [6,13,14].

[8] proposed various approaches for approximate inference that are now in-
cluded in the ProbLog system. The k-best algorithm finds only the k most prob-
able explanations for a query and then builds a BDD from them. The resulting
probability is only a lower bound but if k is sufficiently high it represents a
good approximation. The bounded approximation algorithm computes a lower
bound and an upper bound of the probability of the query by using iterative
deepening to explore the SLD tree for the query. The SLD tree is built partially,
the successful derivations it contains are used to build a BDD for computing
the lower bound while the successful derivations plus the incomplete ones are
used to compute the upper bound. If the difference between the upper and the
lower bound is above the required precision, the SLD tree is built up to a greater
depth. This process is repeated until the required precision is achieved. These
algorithms are implemented by means of a program transformation technique
applied to the probabilistic atoms: they are turned into clauses that, when the
atom is called, add the probabilistic fact to the current explanation.

[1] presented an implementation of k-best and bounded approximation for
LPADs that is based on a meta-interpreter and showed that in some cases this
gives good results.

[8] also presented a Monte Carlo algorithm that samples the possible pro-
grams and tests the query in the samples. The probability of the query is then
given by the fraction of programs where the query is true. The Monte Carlo
algorithm for ProbLog is realized by using an array with an element for each
ground probabilistic fact that stores one of three values: sampled true, sampled
false and not yet sampled. When a probabilistic fact is called, the algorithm first
checks whether the fact has already been sampled by looking at the array. If
it has not been sampled, then it samples it and stores the result in the array.
Probabilistic facts that are non-ground in the program are treated differently. A
position in the array is not reserved for them since their grounding is not known
at the start, rather samples for groundings of these facts are stored in the in-
ternal database of Yap and the sampled value is retrieved when they are called.
If no sample has been taken for a grounding, a sample is taken and recorded in
the database.

[1] presents a Monte Carlo algorithm for LPADs that is based on a meta-
interpreter. In order to keep track of the samples taken, two arguments of the
meta-interpreter predicate are used, one for keeping the input set of choices and
one for the output set of choices. This algorithm is included in the cplint suite
available in the source tree of Yap4.

4 http://www.dcc.fc.up.pt/~vsc/Yap/downloads.html

30 Fabrizio Riguzzi

4 MCINTYRE

MCINTYRE first transforms the program and then queries the transformed
program. The disjunctive clause Ci = hi1 : Πi1 ∨ . . .∨hin : Πini

: −bi1, . . . , bimi
.

where the parameters sum to 1, is transformed into the set of clauses MC(Ci):
MC(Ci, 1) = hi1 : −bi1, . . . , bimi

,
sample head(ParList, i, V C,NH), NH = 1.

. . .
MC(Ci, ni) = hini : −bi1, . . . , bimi ,

sample head(ParList, i, V C,NH), NH = ni.
where V C is a list containing each variable appearing in Ci and ParList is
[Πi1, . . . ,Πini

]. If the parameters do not sum up to 1 the last clause (the one
for null) is omitted. Basically, we create a clause for each head and we sample a
head index at the end of the body with sample head/4. If this index coincides
with the head index, the derivation succeeds, otherwise it fails. Thus failure can
occur either because one of the body literals fails or because the current clause
is not part of the sample.

For example, clause C1 of epidemic example becomes
MC(C1, 1) = epidemic : −flu(X), cold,

sample head([0.6, 0.3, 0.1], 1, [X], NH), NH = 1.
MC(C1, 2) = pandemic : −flu(X), cold,

sample head([0.6, 0.3, 0.1], 1, [X], NH), NH = 2.
The predicate sample head/4 samples an index from the head of a clause and
uses the builtin Yap predicates recorded/3 and recorda/3 for respectively re-
trieving or adding an entry to the internal database. Since sample head/4 is at
the end of the body and since we assume the program to be range restricted, at
that point all the variables of the clause have been grounded. A program is range
restricted if all the variables appearing in the head also appear in positive literals
in the body. If the rule instantiation had already been sampled, sample head/4
retrieves the head index with recorded/3, otherwise it samples a head index
with sample/2:

sample_head(_ParList,R,VC,NH):-
recorded(exp,(R,VC,NH),_),!.

sample_head(ParList,R,VC,NH):-
sample(ParList,NH),
recorda(exp,(R,VC,NH),_).

sample(ParList, HeadId) :-
random(Prob),
sample(ParList, 0, 0, Prob, HeadId).

sample([HeadProb|Tail], Index, Prev, Prob, HeadId) :-
Succ is Index + 1,
Next is Prev + HeadProb,
(Prob =< Next ->

MCINTYRE: A Monte Carlo Algorithm for Probabilistic Logic Programming 31

HeadId = Index
;
sample(Tail, Succ, Next, Prob, HeadId)

).

Tabling can be effectively used to avoid re-sampling the same atom. To take a
sample from the program we use the following predicate

sample(Goal):-
abolish_all_tables,
eraseall(exp),
call(Goal).

A fixed number of samples n is taken and the fraction p̂ of samples in which
the query succeds is computed. In order to compute the confidence interval of p̂,
we use the central limit theorem to approximate the binomial distribution with
a normal distribution. Then the 95% binomial proportion confidence interval is
calculated as

p̂± z1−α/2
√
p̂ (1− p̂)

n

where z1−α/2 is the 1 − α/2 percentile of a standard normal distribution and
usually α = 0.05 . If the width of the interval is below a user defined threshold
δ, we stop and we return the fraction of successful samples.

This estimate of the confidence interval is good for a sample size larger than
30 and if p̂ is not too close to 0 or 1. The normal approximation fails totally
when the sample proportion is exactly zero or exactly one. Empirically, it has
been observed that the normal approximation works well as long as np̂ > 5 and
n(1− p̂) > 5.

5 Experiments

We considered three sets of benchmarks: graphs of biological concepts from [6],
artificial datasets from [9] and a hidden Markov model from [2]. On these dataset,
we compare MCINTYRE, the Monte Carlo algorithm of ProbLog [8], the Monte
Carlo algorithm of cplint [1] and the exact system PITA which has been shown
to be particularly fast [14]. All the experiments have been performed on Linux
machines with an Intel Core 2 Duo E6550 (2333 MHz) processor and 4 GB of
RAM. The algorithms were run on the data for 24 hours or until the program
ended for lack of memory. δ = 0.01 was chosen as the maximum confidence
interval width for Monte Carlo algorithms. The normal approximation tests np̂ >
5 and n(1 − p̂) > 5 were disabled in MCINTYRE because they are not present
in ProbLog. For each experiment we used tabling when it gave better results.

In the graphs of biological concepts the nodes encode biological entities such
as genes, proteins, tissues, organisms, biological processes and molecular func-
tions, and the edges conceptual and probabilistic relations among them. Edges

32 Fabrizio Riguzzi

are thus represented by ground probabilistic facts. The programs have been sam-
pled from the Biomine network [18] containing 1,000,000 nodes and 6,000,000
edges. The sampled programs contain 200, 400, . . ., 10000 edges. Sampling was
repeated ten times, to obtain ten series of programs of increasing size. In each
program we query the probability that the two genes HGNC 620 and HGNC 983
are related.

For MCINTYRE and ProbLog we used the following definition of path

path(X,X).
path(X,Y):-X\==Y, path(X,Z),arc(Z,Y).
arc(X,Y):-edge(Y,X).
arc(X,Y):-edge(X,Y).

For MCINTYRE, we tabled path/2 using Yap tabling with the directive

:- table path/2.

while for ProbLog we tabled the path predicate by means of ProbLog tabling
with the command

problog_table(path/2),

For PITA we used the program

path(X,Y):-path(X,Y,[X],Z).
path(X,X,A,A).
path(X,Y,A,R):-X\==Y, arc(X,Z), \+ member(Z,A), path(Z,Y,[Z|A],R).
arc(X,Y):-edge(Y,X).
arc(X,Y):-edge(X,Y).

that performs loop checking by keeping a list of visited nodes rather than by using
tabling because this approach gave the best results. We used the same program
also for cplint because it does not allow to use tabling for loop checking.

Figure 1(a) shows the number of graphs for each size for which MCINTYRE,
ProbLog, cplint and PITA were able to compute the probability. Figure 1(b)
shows the execution times of the four algorithms as a function of graph size
averaged over the graphs on which the algorithms succeeded.

MCINTYRE and ProbLog were able to solve all graphs, while PITA and
cplint stopped much earlier. As regards speed, MCINTYRE is much faster
than cplint and slightly faster than ProbLog. For non-small programs it is also
faster than PITA.

The growing head dataset from [9] contains propositional programs in which
the head of clauses are of increasing size. For example, the program for size 4 is

a0 :- a1.
a1:0.5.
a0:0.5; a1:0.5 :- a2.
a2:0.5.
a0:0.333333333333; a1:0.333333333333; a2:0.333333333333 :- a3.
a3:0.5.

MCINTYRE: A Monte Carlo Algorithm for Probabilistic Logic Programming 33

2000 4000 6000 8000 10000
0

2

4

6

8

10

Edges

A
n
s
w
e
r
s

MCINTYRE
ProbLog
cplint
PITA

(a) Solved graphs.

2000 4000 6000 8000 10000
10

−2

10
0

10
2

10
4

10
6

Size

T
i
m
e

(
s
)

MCINTYRE
ProbLog
cplint
PITA

(b) Average execution times .

Fig. 1. Biological graph experiments.

The equivalent ProbLog program is

a0 :- a1. 0.5::a1f.
a1:-a1f. 0.5::a0_2.
a0:-a2,a0_2.
a1:-a2,problog_not(a0_2). 0.5::a2f.
a2:-a2f.
0.333333333333::a0_3. 0.5::a1_3.
a0:-a3,a0_3.
a1:-a3,problog_not(a0_3),a1_3.
a2:-a3,problog_not(a0_3),problog_not(a1_3).
0.5::a3f.
a3:-a3f.

In this dataset no predicate is tabled for both MCINTYRE and ProbLog. Figure
2(a) shows the time for computing the probability of a0 as a function of the
size. MCINTYRE is faster than ProbLog and PITA for non-small programs but
all of them are much slower and less scalable than cplint. The reason why

20 40 60 80 100
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
i
m
e

(
s
)

MCINTYRE
ProbLog
cplint
PITA

(a) Sampling last.

20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

N

T
i
m
e

(
s
)

MCINTYRE
ProbLog
cplint
PITA

(b) Sampling first.

Fig. 2. Growing head from [9].

34 Fabrizio Riguzzi

cplint performs so well is that the meta-interpreter checks for the consistency
of the sample when choosing a clause to resolve with the goal, rather than after
having resolved all the body literals as in MCINTYRE and ProbLog. However,
since the clauses are ground, the sampling predicates of MCINTYRE can be
put at the beginning of the body, simulating cplint behavior. Similarly, the
probabilistic atoms can be put at the beginning of the body of ProbLog clauses.
With this approach, we get the timings depicted in Figure 2(b) which shows that
now MCINTYRE and ProbLog are faster than cplint and MCINTYRE is the
fastest.

The blood type dataset from [9] determines the blood type of a person on
the basis of her chromosomes that in turn depend on those of her parents. The
blood type is given by clauses of the form

bloodtype(Person,a):0.90 ; bloodtype(Person,b):0.03 ;
bloodtype(Person,ab):0.03 ; bloodtype(Person,null):0.04 :-
pchrom(Person,a),mchrom(Person,a).

where pchrom/2 indicates the chromosome inherited from the father and mchrom
/2 that inherited from the mother. There is one such clause for every combination
of the values {a, b, null} for the father and mother chromosomes. In turn, the
chromosomes of a person depend from those of her parents, with clauses of the
form

mchrom(Person,a):0.90 ; mchrom(Person,b):0.05 ;
mchrom(Person,null):0.05 :-
mother(Mother,Person), pchrom(Mother,a), mchrom(Mother,a).

There is one such clause for every combination of the values {a, b, null} for
the father and mother chromosomes of the mother and similarly for the father
chromosome of a person. In this dataset we query the blood type of a person
on the basis of that of its ancestors. We consider families with an increasing
number of components: each program adds two persons to the previous one.
The chromosomes of the parentless ancestors are given by disjunctive facts of
the form

mchrom(p,a):0.3 ; mchrom(p,b):0.3 ; mchrom(p,null):0.4.
pchrom(p,a):0.3 ; pchrom(p,b):0.3 ; pchrom(p,null):0.4.

For both MCINTYRE and ProbLog all the predicates are tabled.
Figure 3 shows the execution times as a function of the family size. Here

MCINTYRE is faster than ProbLog but slower than the exact inference of PITA.
This is probably due to the fact that the bodies of clauses with the same atoms
in the head are mutually exclusive in this dataset and the goals in the bodies
are independent, making BDD operations particularly fast.

In the growing body dataset [9] the clauses have bodies of increasing size.
For example, the program for size 4 is,

a0:0.5 :- a1.

MCINTYRE: A Monte Carlo Algorithm for Probabilistic Logic Programming 35

0 50 100 150 200
10

−4

10
−2

10
0

10
2

10
4

N

T
i
m
e

(
s
)

MCINTYRE
ProbLog
cplint
PITA

Fig. 3. [Bloodtype from [9].

a0:0.5 :- \+ a1, a2.
a0:0.5 :- \+ a1, \+ a2, a3.
a1:0.5 :- a2.
a1:0.5 :- \+ a2, a3.
a2:0.5 :- a3.
a3:0.5.

In this dataset as well no predicate is tabled for both MCINTYRE and ProbLog
and the sampling predicates of MCINTYRE and the probabilistic atoms of
ProbLog have been put at the beginning of the body since the clauses are ground.
Figure 4(a) shows the execution time for computing the probability of a0. Here
PITA is faster and more scalable than Monte Carlo algorithms, again probably
due to the fact that the bodies of clauses with the same heads are mutually ex-
clusive thus simplifying BDD operations. Figure 4(b) shows the execution time
of the Monte Carlo algorithms only, where it appears that MCINTYRE is faster
than ProbLog and cplint.

20 40 60 80 100
10

−4

10
−2

10
0

10
2

10
4

10
6

N

T
i
m
e

(
s
)

MCINTYRE
ProbLog
cplint
PITA

(a) All algorithms.

2 4 6 8 10 12 14
10

−2

10
0

10
2

10
4

10
6

N

T
i
m
e

(
s
)

MCINTYRE
ProbLog
cplint

(b) Monte Carlo algorithms.

Fig. 4. Growing body. from [9].

The UWCSE dataset [9] describes a university domain with predicates such as
taught_by/2, advised_by/2, course_level/2, phase/2, position/2, course/1,

36 Fabrizio Riguzzi

professor/1, student/1 and others. Programs of increasing size are considered
by adding facts for the student/1 predicate, i.e., by considering an increasing
number of students. For both MCINTYRE and ProbLog all the predicates are
tabled. The time for computing the probability of the query taught_by(c1,p1)
as a function of the number of students is shown in Figure 5(a). Here MCIN-
TYRE is faster than ProbLog and both scale much better than PITA.

0 10 20 30 40
10

−4

10
−2

10
0

10
2

10
4

N

T
i
m
e

(
s
)

MCINTYRE
ProbLog
cplint
PITA

(a) UWCSE.

20 40 60 80 100
10

−3

10
−2

10
−1

10
0

10
1

10
2

N
T
i
m
e

(
s
)

MCINTYRE
ProbLog
cplint
PITA

(b) Hidden Markov Model.

Fig. 5. UWCSE and Hidden Markov Model

The last experiment involves the Hidden Markov model for DNA sequences
from [2]: bases are the output symbols and three states are assumed, of which
one is the end state. The following program generates base sequences.

hmm(O):-hmm1(_,O).
hmm1(S,O):-hmm(q1,[],S,O).
hmm(end,S,S,[]).
hmm(Q,S0,S,[L|O]):- Q\= end, next_state(Q,Q1,S0), letter(Q,L,S0),
hmm(Q1,[Q|S0],S,O).

next_state(q1,q1,_S):1/3;next_state(q1,q2,_S):1/3;
next_state(q1,end,_S):1/3.

next_state(q2,q1,_S):1/3;next_state(q2,q2,_S):1/3;
next_state(q2,end,_S):1/3.

letter(q1,a,_S):0.25;letter(q1,c,_S):0.25;letter(q1,g,_S):0.25;
letter(q1,t,_S):0.25.

letter(q2,a,_S):0.25;letter(q2,c,_S):0.25;letter(q2,g,_S):0.25;
letter(q2,t,_S):0.25.

The algorithms are used to compute the probability of hmm(O) for random se-
quences O of increasing length. Tabling was not used for MCINTYRE nor for
ProbLog.

Figure 5(b) show the time taken by the various algorithms as a function of
the sequence length. Since the probability of such a sequence goes rapidly to
zero, the derivations of the goal terminate mostly after a few steps only and

MCINTYRE: A Monte Carlo Algorithm for Probabilistic Logic Programming 37

all Monte Carlo algorithms take constant time with MCINTYRE faster that
ProbLog and cplint.

6 Conclusions

Probabilistic Logic Programming is of high interest for its many application
fields. The distribution semantics is one of the most popular approaches to PLP
and underlies many languages, such as LPADs and ProbLog. However, exact in-
ference is very expensive, being #P complete and thus approximate approaches
have to be investigated. In this paper we propose the algorithm MCINTYRE that
performs approximate inference by means of a Monte Carlo technique, namely
random sampling. MCINTYRE transforms an input LPAD into a normal pro-
gram that contains a clause for each head of an LPAD clause. The resulting
clauses contain in the body auxiliary predicates that perform sampling and check
for the consistency of the sample.

MCINTYRE has been tested on graphs of biological concepts, on four artifi-
cial datasets from [9] and on a hidden Markov model. In all cases it turned out
to be faster than the Monte Carlo algorithms of ProbLog and cplint. It is also
faster and more scalable than exact inference except in two datasets, blood type
and growing body, that however possess peculiar characteristics. MCINTYRE
is available in the cplint package of the source tree of Yap and instructions on
its use are available at http://www.ing.unife.it/software/cplint/.

In the future we plan to investigate other approximate inference techniques
such as lifted belief propagation and variational methods.

References

1. Bragaglia, S., Riguzzi, F.: Approximate inference for logic programs with annotated
disjunctions. In: International Conference on Inductive Logic Programming. LNAI,
vol. 6489, pp. 30–37. Springer (2011)

2. Christiansen, H., Gallagher, J.P.: Non-discriminating arguments and their uses.
In: International Conference on Logic Programming. LNCS, vol. 5649, pp. 55–69.
Springer (2009)

3. Dantsin, E.: Probabilistic logic programs and their semantics. In: Russian Confer-
ence on Logic Programming. LNCS, vol. 592, pp. 152–164. Springer (1991)

4. De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A.,
Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon, I.,
Vennekens, J.: Towards digesting the alphabet-soup of statistical relational learn-
ing. In: Roy, D., Winn, J., McAllester, D., Mansinghka, V., Tenenbaum, J. (eds.)
Proceedings of the 1st Workshop on Probabilistic Programming: Universal Lan-
guages, Systems and Applications, in NIPS (2008)

5. De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S. (eds.): Probabilistic In-
ductive Logic Programming - Theory and Applications, LNCS, vol. 4911. Springer
(2008)

6. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and
its application in link discovery. In: International Joint Conference on Artificial
Intelligence. pp. 2462–2467. AAAI Press (2007)

38 Fabrizio Riguzzi

7. Getoor, L., Taskar, B. (eds.): Introduction to Statistical Relational Learning. MIT
Press (2007)

8. Kimmig, A., Demoen, B., De Raedt, L., Costa, V.S., Rocha, R.: On the imple-
mentation of the probabilistic logic programming language ProbLog. Theory and
Practice of Logic Programming 11(2-3), 235–262 (2011)

9. Meert, W., Struyf, J., Blockeel, H.: CP-Logic theory inference with contextual
variable elimination and comparison to BDD based inference methods. In: Interna-
tional Conference on Inductive Logic Programming. LNCS, vol. 5989, pp. 96–109.
Springer (2010)

10. Poole, D.: Logic programming, abduction and probability - a top-down anytime
algorithm for estimating prior and posterior probabilities. New Generation Com-
puting 11(3-4), 377–400 (1993)

11. Poole, D.: The Independent Choice Logic for modelling multiple agents under
uncertainty. Artificial Intelligence 94(1-2), 7–56 (1997)

12. Riguzzi, F.: A top-down interpreter for LPAD and CP-Logic. In: Congress of
the Italian Association for Artificial Intelligence. LNCS, vol. 4733, pp. 109–120.
Springer (2007)

13. Riguzzi, F.: Extended semantics and inference for the Independent Choice Logic.
Logic Journal of the IGPL 17(6), 589–629 (2009)

14. Riguzzi, F., Swift, T.: Tabling and Answer Subsumption for Reasoning on Logic
Programs with Annotated Disjunctions. In: International Conference on Logic Pro-
gramming. LIPIcs, vol. 7, pp. 162–171. Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik (2010)

15. Riguzzi, F., Swift, T.: An extended semantics for logic programs with annotated
disjunctions and its efficient implementation. In: Italian Conference on Computa-
tional Logic. No. 598 in CEUR Workshop Proceedings, Sun SITE Central Europe
(2010)

16. Riguzzi, F., Swift, T.: The PITA system: Tabling and answer subsumption for
reasoning under uncertainty. Theory and Practice of Logic Programming, Interna-
tional Conference on Logic Programming Special Issue 11(4-5) (2011)

17. Sato, T.: A statistical learning method for logic programs with distribution seman-
tics. In: International Conference on Logic Programming. pp. 715–729. MIT Press
(1995)

18. Sevon, P., Eronen, L., Hintsanen, P., Kulovesi, K., Toivonen, H.: Link discovery
in graphs derived from biological databases. In: International Workshop on Data
Integration in the Life Sciences. LNCS, vol. 4075, pp. 35–49. Springer (2006)

19. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Jour-
nal on Computing 8(3), 410–421 (1979)

20. Vennekens, J., Verbaeten, S.: Logic programs with annotated disjunctions. Tech.
Rep. CW386, Department of Computer Science, Katholieke Universiteit Leuven,
Belgium (2003)

21. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: International Conference on Logic Programming. LNCS, vol. 3131,
pp. 195–209. Springer (2004)

MCINTYRE: A Monte Carlo Algorithm for Probabilistic Logic Programming 39

Nonmonotonic Extensions of Low Complexity DLs:
Complexity Results and Proof Methods

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3, and Gian Luca Pozzato2

1 Dip. di Informatica - U. Piemonte O. - Alessandria - Italy -laura@mfn.unipmn.it
2 Dip. Informatica - Univ. di Torino - Italy{gliozzi,pozzato}@di.unito.it

3 LSIS-UMR CNRS 6168 - Marseille - France -nicola.olivetti@univ-cezanne.fr

Abstract. In this paper we propose nonmonotonic extensions of low complexity
Description LogicsEL⊥ andDL-Litecore for reasoning about typicality and de-
feasible properties. The resulting logics are calledEL⊥Tmin andDL-LitecTmin.
We summarize complexity results for such extensions recently studied. Entail-
ment inDL-LitecTmin is in Πp

2 , whereas entailment inEL⊥Tmin is EXPTIME-
hard. However, considering the known fragment of Left LocalEL⊥Tmin, we
have that the complexity of entailment drops toΠp

2 . Furthermore, we present
tableau calculi forEL⊥Tmin (focusing on Left Local knowledge bases) and
DL-LitecTmin. The calculi perform a two-phase computation in order to check
whether a query is minimally entailed from the initial knowledge base. The cal-
culi are sound, complete and terminating. Furthermore, they represent decision
procedures for Left LocalEL⊥Tmin knowledge bases andDL-LitecTmin knowl-
edge bases, whose complexities match the above mentioned results.

1 Introduction
The family of description logics (DLs) is one of the most important formalisms of
knowledge representation. They have a well-defined semantics based on first-order
logic and offer a good trade-off between expressivity and complexity. DLs have been
successfully implemented by a range of systems and they are at the base of languages
for the semantic web such as OWL. A DL knowledge base (KB) comprises two com-
ponents: the TBox, containing the definition of concepts (and possibly roles), and a
specification of inclusion relations among them, and the ABox containing instances of
concepts and roles. Since the very objective of the TBox is tobuild a taxonomy of con-
cepts, the need of representing prototypical properties and of reasoning about defeasible
inheritance of such properties naturally arises.

Nonmonotonic extensions of Description Logics (DLs) have been actively investi-
gated since the early 90s, [15, 4, 2, 3, 7, 12, 10, 9, 6]. A simple but powerful nonmono-
tonic extension of DLs is proposed in [12, 10, 9]: in this approach “typical” or “nor-
mal” properties can be directly specified by means of a “typicality” operatorT en-
riching the underlying DL; the typicality operatorT is essentially characterised by
the core properties of nonmonotonic reasoning axiomatizedby preferential logic[13].
In ALC + T [12], one can consistently express defeasible inclusions and exceptions
such as: typical students do not pay taxes, but working students do typically pay taxes,
but working students having children normally do not:T(Student) ⊑ ¬TaxPayer ;
T(Student ⊓ Worker) ⊑ TaxPayer ; T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑
¬TaxPayer . Although the operatorT is nonmonotonic in itself, the logicALC+T, as

well as the logicEL+⊥
T [10] extendingEL⊥, is monotonic. As a consequence, unless

a KB contains explicit assumptions about typicality of individuals (e.g. that john is a
typical student), there is no way of inferring defeasible properties of them (e.g. that john
does not pay taxes). In [9], a non monotonic extension ofALC+T based on a minimal
model semantics is proposed. The resulting logic, calledALC+Tmin, supports typical-
ity assumptions, so that if one knows that john is a student, one can nonmonotonically
assume that he is also atypical student and therefore that he does not pay taxes. As an
example, for a TBox specified by the inclusions above, inALC + Tmin the following
inference holds: TBox∪ {Student(john)} |=ALC+Tmin ¬TaxPayer (john).

Similarly to other nonmonotonic DLs, adding the typicalityoperator with its minimal-
model semantics to a standard DL, such asALC, leads to a very high complexity
(namely query entailment inALC + Tmin is in CO-NEXPNP [9]). This fact has moti-
vated the study of nonmonotonic extensions of low complexity DLs such asDL-Litecore

[5] andEL⊥ of theEL family [1] which are nonetheless well-suited for encoding large
knowledge bases (KBs).

In this paper, we hence consider the extensions of the low complexity logicsDL-Litecore

andEL⊥ with the typicality operator based on the minimal model semantics introduced
in [9]. We summarize complexity upper bounds for the resulting logicsEL⊥Tmin and
DL-LitecTmin studied in [11]. ForEL⊥, it turns out that its extensionEL⊥Tmin is un-
fortunately EXPTIME-hard. This result is analogous to the one forcircumscribedEL⊥
KBs [3]. However, the complexity decreases toΠp

2 for the fragment ofLeft LocalEL⊥
KBs, corresponding to the homonymous fragment in [3]. The same complexity upper
bound is obtained forDL-LitecTmin.

We also present tableau calculi forDL-LitecTmin as well as for the Left Local
fragment ofEL⊥Tmin for deciding minimal entailment inΠp

2 . Our calculi perform a
two-phase computation: in the first phase, candidate models(complete open branches)
falsifying the given query are generated, in the second phase the minimality of candi-
date models is checked by means of an auxiliary tableau construction. The latter tries
to build a model which is “more preferred” than the candidateone: if it fails (being
closed) the candidate model is minimal, otherwise it is not.Both tableaux constructions
comprise some non-standard rules for existential quantification in order to constrain the
domain (and its size) of the model being constructed. The second phase makes use in
addition of special closure conditions to prevent the generation of non-preferred mod-
els. The calculi are very simple and do not require any blocking machinery in order to
achieve termination. It comes as a surprise that the modification of the existential rule
is sufficient to match theΠp

2 complexity.

2 The typicality operator T and the LogicEL⊥Tmin

Before describingEL⊥Tmin, let us briefly recall the underlying monotonic logicEL+⊥
T

[10], obtained by adding toEL⊥ the typicality operatorT. The intuitive idea is that

T(C) selects thetypical instances of a conceptC. In EL+⊥
T we can therefore dis-

tinguish between the properties that hold for all instancesof conceptC (C ⊑ D), and
those that only hold for the normal or typical instances ofC (T(C) ⊑ D).

Formally, theEL+⊥
T language is defined as follows.

42 Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato

Definition 1. We consider an alphabet of concept namesC, of role namesR, and of
individualsO. GivenA ∈ C andR ∈ R, we define

C := A | ⊤ | ⊥ | C ⊓C CR := C | CR ⊓CR | ∃R.C CL := CR | T(C)
A KB is a pair (TBox, ABox). TBox contains a finite set of general concept inclusions
(or subsumptions)CL ⊑ CR. ABox contains assertions of the formCL(a) andR(a, b),
wherea, b ∈ O.

The semantics ofEL+⊥
T [10] is defined by enriching ordinary models ofEL⊥

by a preference relation< on the domain, whose intuitive meaning is to compare the
“typicality” of individuals:x < y, means thatx is more typical thany. Typical members
of a conceptC, that is members ofT(C), are the membersx of C that are minimal with
respect to this preference relation.

Definition 2 (Semantics ofT). A modelM is any structure〈∆, <, I〉 where∆ is the
domain;< is an irreflexive and transitive relation over∆ that satisfies the following
Smoothness Condition: for all S ⊆ ∆, for all x ∈ S, eitherx ∈ Min<(S) or ∃y ∈
Min<(S) such thaty < x, whereMin<(S) = {u : u ∈ S and∄z ∈ S s.t.z < u}.
Furthermore,< is multilinear: if u < z and v < z, then eitheru = v or u < v or
v < u. I is the extension function that maps each conceptC to CI ⊆ ∆, and each role
r to rI ⊆ ∆I × ∆I . For concepts ofEL⊥, CI is defined in the usual way. For theT
operator:(T(C))I = Min<(CI).

Given a modelM, I can be extended so that it assigns to each individuala of O a
distinct elementaI of the domain∆. We say thatM satisfies an inclusionC ⊑ D if
CI ⊆ DI , and thatM satisfiesC(a) if aI ∈ CI andaRb if (aI , bI) ∈ RI . Moreover,
M satisfies TBox if it satisfies all its inclusions, andM satisfies ABox if it satisfies all
its formulas.M satisfies a KB (TBox,ABox), if it satisfies both its TBox and its ABox.

The operatorT [12] is characterized by a set of postulates that are essentially a
reformulation of the KLM [13] axioms ofpreferential logicP. T has therefore all the
“core” properties of nonmonotonic reasoning as it is axiomatised byP. The semantics
of the typicality operator can be specified by modal logic. The interpretation ofT can
be split into two parts: for anyx of the domain∆, x ∈ (T(C))I just in case (i)x ∈ CI ,
and (ii) there is noy ∈ CI such thaty < x. Condition (ii) can be represented by means
of an additional modality�, whose semantics is given by the preference relation<
interpreted as an accessibility relation. Observe that by the Smoothness Condition,�
has the properties of Gödel-Löb modal logic of provability G. The interpretation of�
in M is as follows:(�C)I = {x ∈ ∆ | for everyy ∈ ∆, if y < x theny ∈ CI}. We
immediately get thatx ∈ (T(C))I if and only if x ∈ (C ⊓ �¬C)I . From now on, we
considerT(C) as an abbreviation forC ⊓�¬C.

As mentioned in the Introduction, the main limit ofEL+⊥
T is that it ismonotonic.

Even if the typicality operatorT itself is nonmonotonic (i.e.T(C) ⊑ E does not imply

T(C ⊓ D) ⊑ E), what is inferred from anEL+⊥
T KB can still be inferred from any

KB’ with KB ⊆ KB’. In order to perform nonmonotonic inferences, as done in[9], we

strengthen the semantics ofEL+⊥
T by restricting entailment to a class of minimal (or

preferred) models. We call the new logicEL⊥Tmin. Intuitively, the idea is to restrict
our consideration to models thatminimize the non typical instances of a concept.

Nonmonotonic extensions of low-complexity DLs 43

Given a KB, we consider a finite setLT of concepts: these are the concepts whose
non typical instances we want to minimize. We assume that thesetLT contains at least
all conceptsC such thatT(C) occurs in the KB or in the queryF , where aqueryF is
either an assertionC(a) or an inclusion relationC ⊑ D. As we have just said,x ∈ CI

is typical if x ∈ (�¬C)I . Minimizing the non typical instances ofC therefore means
to minimize the objects not satisfying�¬C for C ∈ LT. Hence, for a given model
M = 〈∆, <, I〉, we define:

M�−
LT

= {(x,¬�¬C) | x 6∈ (�¬C)I , with x ∈ ∆, C ∈ LT}.
Definition 3 (Preferred and minimal models).Given a modelM = 〈∆ <, I〉 of a
knowledge base KB, and a modelM′ = 〈∆′, <′, I ′〉 of KB, we say thatM is preferred
to M′ with respect toLT, and we writeM <LT M′, if (i) ∆ = ∆′, (ii) M�−

LT
⊂

M′�−
LT

, (iii) aI = aI′ for all a ∈ O.M is aminimal modelfor KB (with respect toLT)
if it is a model of KB and there is no other modelM′ of KB such thatM′ <LT M.

Definition 4 (Minimal Entailment in EL⊥Tmin). A queryF is minimally entailed
in EL⊥Tmin by KB with respect toLT if F is satisfied in all models of KB that are
minimal with respect toLT. We write KB|=EL⊥Tmin

F .

Example 1. The KB of the Introduction can be reformulated as follows in EL+⊥
T:

TaxPayer ⊓NotTaxPayer ⊑ ⊥; Parent ⊑ ∃HasChild .⊤; ∃HasChild .⊤ ⊑ Parent ;
T(Student) ⊑ NotTaxPayer ; T(Student ⊓ Worker) ⊑ TaxPayer ; T(Student ⊓
Worker ⊓Parent) ⊑ NotTaxPayer . LetLT = {Student,Student ⊓Worker ,Student
⊓Worker ⊓Parent}. Then TBox∪ {Student(john)} |=EL⊥Tmin

NotTaxPayer(john),
sincejohnI ∈ (Student ⊓ �¬Student)I for all minimal modelsM = 〈∆ <, I〉
of the KB. In contrast, by the nonmonotonic character of minimal entailment, TBox
∪ {Student(john),Worker (john)} |=EL⊥Tmin

TaxPayer (john). Last, notice that
TBox∪ {∃HasChild .(Student ⊓Worker)(jack)} |=EL⊥Tmin

∃HasChild .TaxPayer
(jack). The latter shows that minimal consequence applies toimplicit individuals as
well, without any ad-hoc mechanism.

Theorem 1 (Complexity for EL⊥Tmin KBs (Theorem 3.1 in [11])).The problem of
deciding whether KB|=EL⊥Tmin

α is EXPTIME-hard.

In order to lower the complexity of minimal entailment inEL⊥Tmin, we consider a
syntactic restriction on the KB called Left Local KBs. This restriction is similar to the
one introduced in [3] for circumscribedEL⊥ KBs.

Definition 5 (Left Local knowledge base).A Left Local KB only contains subsump-
tionsCLL

L ⊑ CR, whereC andCR are as in Definition 1 and:

CLL
L := C | CLL

L ⊓ CLL
L | ∃R.⊤ | T(C)

There is no restriction on the ABox.

Observe that the KB in the Example 1 is Left Local, as no concept of the form
∃R.C with C 6= ⊤ occurs on the left hand side of inclusions. In [11] an upper bound
for the complexity ofEL⊥Tmin Left Local KBs is provided by a small model theorem.
Intuitively, what allows us to keep the size of the small model polynomial is that we
reuse the same world to verify the same existential concept throughout the model. This
allows us to conclude that:

44 Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato

Theorem 2 (Complexity for EL⊥Tmin Left Local KBs (Theorem 3.12 in [11])).If
KB is Left Local, the problem of deciding whether KB|=EL⊥Tmin

α is in Πp
2 .

3 The Logic DL-LitecTmin

In this section we present the extension of the logicDL-Litecore [5] with theT operator.
We call the resulting logicDL-LitecTmin. The language ofDL-LitecTmin is defined
as follows.

Definition 6. We consider an alphabet of concept namesC, of role namesR, and of
individualsO. GivenA ∈ C andr ∈ R, we define

CL := A | ∃R.⊤ | T(A) R := r | r− CR := A | ¬A | ∃R.⊤ | ¬∃R.⊤

A DL-LitecTmin KB is a pair (TBox, ABox). TBox contains a finite set of concept
inclusions of the formCL ⊑ CR. ABox contains assertions of the formC(a) andr(a, b),
whereC is a conceptCL or CR, r ∈ R, anda, b ∈ O.

As forEL⊥Tmin, a modelM for DL-LitecTmin is any structure〈∆, <, I〉, defined
as in Definition 2, whereI is extended to take care of inverse roles: givenr ∈ R,
(r−)I = {(a, b) | (b, a) ∈ rI}.

In [11] it has been shown that a small model construction similar to the one for
Left LocalEL⊥Tmin KBs can be made also forDL-LitecTmin. As a difference, in this
case, we exploit the fact that, for each atomic roler, the same element of the domain
can be used to satisfy all occurrences of the existential∃r.⊤. Also, the same element of
the domain can be used to satisfy all occurrences of the existential∃r−.⊤.

Theorem 3 (Complexity for DL-LitecTmin KBs (Theorem 4.6 in [11])).The prob-
lem of deciding whether KB|=DL-LitecTmin

α is in Πp
2 .

4 The Tableau Calculus for Left LocalEL⊥Tmin

In this section we present a tableau calculusTABEL⊥T
min for deciding whether a queryF

is minimally entailed from a Left Local knowledge base in thelogic EL⊥Tmin. It per-

forms a two-phase computation: in the first phase, a tableau calculus, calledTABEL⊥T
PH1 ,

simply verifies whether KB∪ {¬F} is satisfiable in anEL⊥T model, building candi-

date models; in the second phase another tableau calculus, calledTABEL⊥T
PH2 , checks

whether the candidate models found in the first phase areminimalmodels of KB, i.e.

for each open branch of the first phase,TABEL⊥T
PH2 tries to build a model of KB which

is preferred to the candidate model w.r.t. Definition 3. The whole procedureTABEL⊥T
min

is formally defined at the end of this section (Definition 8).

As usual,TABEL⊥T
min tries to build an open branch representing a minimal model

satisfying KB∪ {¬F}. The negation of a query¬F is defined as follows: ifF ≡ C(a),
then¬F ≡ (¬C)(a); if F ≡ C ⊑ D, then¬F ≡ (C ⊓ ¬D)(x), wherex does not
occur in KB. Notice that we introduce the connective¬ in a very “localized” way. This
is very different from introducing the negation all over theknowledge base, and indeed
it does not imply that we jump out of the language ofEL⊥Tmin.

Nonmonotonic extensions of low-complexity DLs 45

TABEL⊥T
min makes use of labels, which are denoted withx, y, z, Labels represent

either a variable or an individual of the ABox, that is to say an element ofO∪V . These

labels occur inconstraints(or labelled formulas), that can have the formx
R−→ y or

x : C, wherex, y are labels,R is a role andC is either a concept or the negation of a
concept ofEL⊥Tmin or has the form�¬D or¬�¬D, whereD is a concept.

Let us now analyze the two components ofTABEL⊥T
min , starting withTABEL⊥T

PH1 .

4.1 First Phase: the tableaux calculusTABEL⊥T
P H1

A tableau ofTABEL⊥T
PH1 is a tree whose nodes are tuples〈S | U | W 〉. S is a set of

constraints, whereasU contains formulas of the formC ⊑ DL, representing subsump-
tion relationsC ⊑ D of the TBox.L is a list of labels, used in order to ensure the
termination of the tableau calculus.W is a set of labelsxC used in order to build a
“small” model, matching the construction of Theorem 3.11 in[11]. A branch is a se-
quence of nodes〈S1 | U1 | W1〉, 〈S2 | U2 | W2〉, . . . , 〈Sn | Un | Wn〉 . . ., where each
node〈Si | Ui | Wi〉 is obtained from its immediate predecessor〈Si−1 | Ui−1 | Wi−1〉
by applying a rule ofTABEL⊥T

PH1 , having〈Si−1 | Ui−1 | Wi−1〉 as the premise and
〈Si | Ui | Wi〉 as one of its conclusions. A branch is closed if one of its nodes is an
instance of a (Clash) axiom, otherwise it is open. A tableau is closed if all its branches
are closed.

The calculusTABEL⊥T
PH1 is different in two respects from the calculusALC+Tmin

presented in [9]. First, the rule(∃+) is split in the following two rules:

〈S, u : ∃R.C | U | W 〉
〈S, u

R−→ xC , xC : C | U | W ∪ {xC}〉 . . .
(∃+)1

〈S, u
R−→ y1, y1 : C | U | W 〉 〈S, u

R−→ ym, ym : C | U | W 〉

(∃+)2
〈S, u : ∃R.C | U | W 〉

〈S, u
R−→ xC | U | W 〉 . . .〈S, u

R−→ y1, y1 : C | U | W 〉 〈S, u
R−→ ym, ym : C | U | W 〉

if xC !∈ W and y1, . . . , ym are all the labels occurring in S

if xC ∈ W and y1, . . . , ym are all the labels occurring in S

When the rule(∃+)1 is applied to a formulau : ∃R.C, it introduces a new label
xC only when the setW does not already containxC . Otherwise, sincexC has been

already introduced in that branch,u
R−→ xC is added to the conclusion of the rule

rather than introducing a new label. As a consequence, in a given branch,(∃+)1 only
introduces a new labelxC for each conceptC occurring in the initial KB in some∃R.C,
and no blocking machinery is needed to ensure termination. As it will become clear in
the proof of Theorem 4, this is possible since we are considering Left Local KBs, which
have small models; in these models all existentials∃R.C occurring in KB are made true
by reusing a single witnessxC (Theorem 3.12 in [11]). Notice also that the rules(∃+)1
and(∃+)2 introduce a branching on the choice of the label used to realize the existential
restrictionu : ∃R.C: just the leftmost conclusion of(∃+)1 introduces a new label (as

mentioned, thexC such thatxC : C andu
R−→ xC are added to the branch); in all the

other branches, each one of the other labelsyi occurring inS may be chosen.
Second, in order to build multilinear models of Definition 2,the calculus adopts

a strengthened version of the rule(�−) used inTABALC+T
min [9]. We write S as an

46 Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato

abbreviation forS, u : ¬�¬C1, . . . , u : ¬�¬Cn. Moreover, we defineSM
u→y = {y :

¬D, y : �¬D | u : �¬D ∈ S} and, fork = 1, 2, . . . , n, we defineS
�−k

u→y = {y :
¬�¬Cj ⊔ Cj | u : ¬�¬Cj ∈ S ∧ j 6= k}. The strengthened rule(�−) is as follows:

〈S, x : Ck, x : !¬Ck, SM
u→x, S

!−k

u→x | U | W 〉
. . .

(!−)

〈S, y1 : Ck, y1 : !¬Ck, SM
u→y1

, S
!−k

u→y1
| U | W 〉 〈S, ym : Ck, ym : !¬Ck, SM

u→ym
, S

!−k

u→ym
| U | W 〉

〈S, u : ¬!¬C1, u : ¬!¬C2, . . . , u : ¬!¬Cn | U | W 〉

for all k = 1, 2, . . . , n, wherey1, . . . , ym are all the labels occurring inS andx is new.
Rule (�−) contains:n branches, one for eachu : ¬�¬Ck in S; in each branch a

newtypical Ck individual x is introduced (i.e.x : Ck andx : �¬Ck are added), and
for all otheru : ¬�¬Cj , eitherx : Cj holds or the formulax : ¬�¬Cj is recorded;
- othern ×m branches, wherem is the number of labels occurring inS, one for each
label yi and for eachu : ¬�¬Ck in S; in these branches, a givenyi is chosen as a
typical instance ofCk, that is to sayyi : Ck andyi : �¬Ck are added, and for all other
u : ¬�¬Cj , eitheryi : Cj holds or the formulayi : ¬�¬Cj is recorded. This rule
is sound with respect to multilinear models. The advantage of this rule over the(�−)
rule in the calculusTABALC+T

min is that all the negated box formulas labelled byu are
treated in one step, introducing only a new labelx in (some of) the conclusions. Notice
that in order to keepS readable, we have used⊔. This is the reason why our calculi
contain the rule for⊔, even if this constructor does not belong toEL⊥Tmin.

In order to check the satisfiability of a KB, we build itscorresponding constraint
system〈S | U | ∅〉, and we check its satisfiability. GivenKB=(TBox,ABox), its corre-
sponding constraint system〈S | U | ∅〉 is defined as follows:S = {a : C | C(a) ∈
ABox} ∪ {a R−→ b | R(a, b) ∈ ABox}; U = {C ⊑ D∅ | C ⊑ D ∈ TBox}.
Definition 7 (Model satisfying a constraint system).LetM = 〈∆, I, <〉 be a model
as in Definition 2. We define a functionα which assigns to each variable ofV an element
of ∆, and assigns every individuala ∈ O to aI ∈ ∆.M satisfies a constraintF under

α, writtenM |=α F , as follows: (i)M |=α x : C iff α(x) ∈ CI ; (ii) M |=α x
R−→ y

iff (α(x), α(y)) ∈ RI . A constraint system〈S | U | W 〉 is satisfiable if there is a model
M and a functionα such thatM satisfies every constraint inS underα and that, for
all C ⊑ DL ∈ U and for allx ∈ ∆, we have that ifx ∈ CI thenx ∈ DI .

Given a KB=(TBox,ABox), it is satisfiable if and only if its corresponding constraint
system〈S | U | ∅〉 is satisfiable. In order to verify the satisfiability of KB∪ {¬F},
we useTABEL⊥T

PH1 to check the satisfiability of the constraint system〈S | U | ∅〉 ob-
tained by adding the constraint corresponding to¬F to S′, where〈S′ | U | ∅〉 is
the corresponding constraint system of KB. To this purpose,the rules of the calculus

TABEL⊥T
PH1 are applied until either a contradiction is generated (Clash) or a model sat-

isfying 〈S | U | ∅〉 can be obtained from the resulting constraint system.
Given a node〈S | U | W 〉, for each subsumptionC ⊑ DL ∈ U and for each label

x that appears in the tableau, we add toS the constraintx : ¬C ⊔ D: we refer to this
mechanism asunfolding. As mentioned above, each formulaC ⊑ D is equipped with
a list L of labels in which it has been unfolded in the current branch.This is needed to

Nonmonotonic extensions of low-complexity DLs 47

〈S, u : ∃R.C | U | W 〉
〈S, u

R−→ xC , xC : C | U | W ∪ {xC}〉 . . .
(∃+)1

if y : ¬C !∈ S

〈S | U,C ⊑ DL | W 〉

if x occurs in S and x !∈ L

(Unfold)〈S, x : T(C) | U | W 〉 〈S, x : ¬T(C) | U | W 〉
〈S, x : C, x : !¬C | U | W 〉 〈S, x : ¬C | U | W 〉 〈S, x : ¬!¬C | U | W 〉

(T+) (T−)

(⊓+) (⊓−)

(cut)

x occurs in S
if x : ¬!¬C !∈ S and x : !¬C !∈ S

C ∈ LT

〈S, x : ¬D | U | W 〉〈S, x : ¬C | U | W 〉〈S, x : C, x : D | U | W 〉
〈S, x : C ⊓D | U | W 〉 〈S, x : ¬(C ⊓D) | U | W 〉

〈S, x : C, x : ¬C | U | W 〉 (Clash)⊥(Clash)¬⊤

〈S, x : !¬C | U | W 〉〈S, x : ¬∃R.C, x
R−→ y, y : ¬C | U | W 〉

〈S, x : ¬∃R.C, x
R−→ y | U | W 〉

(∃−)

(Clash)

〈S, x : ¬!¬C | U | W 〉
〈S | U | W 〉

〈S, x : ⊥ | U | W 〉〈S, x : ¬⊤ | U | W 〉

〈S, x : ¬C ⊔D | U,C ⊑ DL,x | W 〉

(∃+)2
〈S, u : ∃R.C | U | W 〉

〈S, u
R−→ xC | U | W 〉

〈S, x : C | U | W 〉 〈S, x : D | U | W 〉

〈S, x : C ⊔D | U | W 〉
(⊔+)

〈S, u
R−→ y1, y1 : C | U | W 〉

. . .〈S, u
R−→ y1, y1 : C | U | W 〉

〈S, u
R−→ ym, ym : C | U | W 〉

〈S, u
R−→ ym, ym : C | U | W 〉

〈S, x : Ck, x : !¬Ck, SM
u→x, S

!−k

u→x | U | W 〉
. . .

(!−)

〈S, y1 : Ck, y1 : !¬Ck, SM
u→y1

, S
!−k

u→y1
| U | W 〉 〈S, ym : Ck, ym : !¬Ck, SM

u→ym
, S

!−k

u→ym
| U | W 〉

k = 1, 2, . . . , n

x new

if xC !∈ W and y1, . . . , ym are all the labels occurring in S

if xC ∈ W and y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S, y1 != u, . . . , ym != u

〈S, u : ¬!¬C1, u : ¬!¬C2, . . . , u : ¬!¬Cn | U | W 〉

Fig. 1. The calculusTABEL⊥T
PH1 .

avoid multiple unfolding of the same subsumption by using the same label, generating
infinite branches.

Before introducing the rules ofTABEL⊥T
PH1 we need some more definitions. First,

we define an ordering relation≺ to keep track of the temporal ordering of insertion of
labels in the tableau, that is to say ify is introduced in the tableau, thenx ≺ y for all
labelsx that are already in the tableau. Furthermore, ifx is the label occurring in the
queryF , thenx ≺ y for all y occurring in the constraint system corresponding to the

initial KB. The rules ofTABEL⊥T
PH1 are presented in Figure 1. Rules(∃+

1) and (�−)
are calleddynamicsince they can introduce a new variable in their conclusions. The
other rules are calledstatic. We do not need any extra rule for the positive occurrences
of the� operator, since these are taken into account by the computation of SM

x→y of
(�−). The (cut) rule ensures that, given any conceptC ∈ LT, an open branch built

by TABEL⊥T
PH1 contains eitherx : �¬C or x : ¬�¬C for each labelx: this is needed

in order to allowTABEL⊥T
PH2 to check the minimality of the model corresponding to the

open branch.

The rules ofTABEL⊥T
PH1 are applied with the followingstandard strategy: 1. apply

a rule to a labelx only if no rule is applicable to a labely such thaty ≺ x; 2. apply

48 Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato

dynamic rules only if no static rule is applicable. In [8] it has been shown that the
calculus is sound and complete with respect to the semanticsin Definition 7 and it
ensures termination:

Theorem 4 (Soundness and completeness ofTABEL⊥T
PH1 [8]). If KB 6|=EL⊥Tmin

F ,
then the tableau for the constraint system corresponding toKB ∪ {¬F} contains an
open saturated branch, which is satisfiable (via an injective assignment from labels to
domain elements) in a minimal model of KB. Given a constraintsystem〈S | U | W 〉, if

it is unsatisfiable, then it has a closed tableau inTABEL⊥T
PH1 .

Theorem 5 (Termination ofTABEL⊥T
PH1 [8]). Any tableau generated byTABEL⊥T

PH1 for
〈S | U | ∅〉 is finite.

Let us conclude this section by estimating the complexity ofTABEL⊥T
PH1 . Let n be the

size of the initial KB, i.e. the length of the string representing KB, and let〈S | U |
∅〉 be its corresponding constraint system. We assume that the size of F andLT is
O(n). The calculus builds a tableau for〈S | U | ∅〉 whose branches’s size isO(n).
This immediately follows from the fact that dynamic rules(∃+)1 and(�−) generate
at mostO(n) labels in a branch. Indeed, the rule(∃+)1 introduces a new labelxC for
each conceptC occurring in KB, then at mostO(n) labels. Concerning(�−), consider
a branch generated by its application to a constraint system〈S, u : ¬�¬C1 . . . , u :
¬�¬Cn | U | W 〉. In the worst case, a new labelx1 is introduced. Suppose also
that the branch under consideration is the one containingx1 : C1 andx1 : �¬C1.
The(�−) rule can then be applied to formulasu : ¬�¬Ck, introducing also a further
new labelx2. However, by the presence ofx1 : �¬C1, the rule(�−) can no longer
consistently introducex2 : ¬�¬C1, sincex2 : �¬C1 ∈ SM

x1→x2
. Therefore,(�−) is

applied to¬�¬C1 . . .¬�¬Cn in u. This application generates (at most) one new world
x1 that labels (at most)n − 1 negated boxed formulas. A further application of(�−)
to ¬�¬C1 . . .¬�¬Cn−1 in x1 generates (at most) one new worldx2 that labels (at
most)n − 2 negated boxed formulas, and so on. Overall, at mostO(n) new labels are
introduced by(�−) in each branch. For each of these labels, static rules apply at most
O(n) times: (Unfold) is applied at mostO(n) times for eachC ⊑ D ∈ U , one for each
label introduced in the branch. The rule(cut) is also applied at mostO(n) times for each
label, sinceLT contains at mostO(n) formulas. As the number of different concepts in
KB is at mostO(n), in all steps involving the application of boolean rules, there are at
mostO(n) applications of these rules. Therefore, the length of the tableau branch built
by the strategy isO(n2). Finally, we observe that all the nodes of the tableau contain
a number of formulas which is polynomial inn, therefore to test whether a node is an
instance of a (Clash) axiom has at most complexity polynomial in n.

Theorem 6 (Complexity ofTABEL⊥T
PH1). Given a KB and a queryF , the problem of

checking whether KB∪ {¬F} in TABEL⊥T
PH1 is satisfiable is inNP.

4.2 The tableaux calculusTABEL⊥T
P H2

Let us now introduce the calculusTABEL⊥T
PH2 which, for each open branchB built by

TABEL⊥T
PH1 , verifies whether it represents a minimal model of the KB. Given an open

Nonmonotonic extensions of low-complexity DLs 49

(∃+)

(Unfold)

(Clash)〈S, x : C, x : ¬C | U | K〉

(Clash)∅ (Clash)!−〈S | U | ∅〉 〈S, x : ¬!¬C | U | K〉
if x : ¬!¬C !∈ K

〈S | U, C ⊑ DL | K〉

x ∈ D(B) and x !∈ L

〈S, x : C ⊓D | U | K〉
〈S, x : C, x : D | U | K〉 〈S, x : ¬C | U | K〉

(T+)

(T−)

(⊓+) (⊓−)

(cut)

if x : ¬!¬C !∈ S and x : !¬C !∈ S
C ∈ LT

〈S, x : ¬D | U | K〉
〈S, x : ¬(C ⊓D) | U | K〉

〈S, x : !¬C | U | K〉 〈S, x : ¬!¬C | U | K〉
〈S | U | K〉〈S, x : ¬T(C) | U | K〉

〈S, x : ¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S, x : T(C) | U | K〉
〈S, x : C, x : !¬C | U | K〉

〈S, u : ¬!¬C1, . . . , u : ¬!¬Cn | U | K, u : ¬!¬C1, . . . , u : ¬!¬Cn〉

(Clash)⊥〈S, x : ¬⊤ | U | K〉 (Clash)¬⊤ 〈S, x : ⊥ | U | K〉

(!−)

〈S, x : ¬C ⊔D | U,C ⊑ DL,x | K〉

x ∈ D(B)

〈S, u
R−→ y1, y1 : C | U | K〉

〈S, u : ∃R.C | U | K〉

〈S, u
R−→ ym, ym : C | U | K〉

〈S, ym : Ck, ym : !¬Ck, SM
u→ym

, S
!−k

u→ym
| U | K〉

. . .

〈S, y1 : Ck, y1 : !¬Ck, SM
u→y1

, S
!−k

u→y1
| U | K〉 . . .

if D(B) = {y1, . . . , ym}

if D(B) = {y1, . . . , ym} and y1 != u, . . . , ym != u

Fig. 2. The calculusTABEL⊥T
PH2 . To save space, we omit the rule(⊔+).

branchB of a tableau built fromTABEL⊥T
PH1 , letD(B) be the set of labels occurring on

B. Moreover, letB�−
be the set of formulasx : ¬�¬C occurring inB, that is to say

B�−
= {x : ¬�¬C | x : ¬�¬C occurs inB}.

A tableau ofTABEL⊥T
PH2 is a tree whose nodes are tuples of the form〈S | U | K〉,

whereS andU are defined as in a constraint system, whereasK contains formulas

of the formx : ¬�¬C, with C ∈ LT. The basic idea ofTABEL⊥T
PH2 is as follows.

Given an open branchB built by TABEL⊥T
PH1 and corresponding to a modelMB of

KB ∪ {¬F}, TABEL⊥T
PH2 checks whetherMB is a minimal model of KB by trying to

build a model of KB which is preferred toMB. To this purpose, it keeps track (inK)
of the negated box used inB (B�−

) in order to check whether it is possible to build

a model of KB containing less negated box formulas. The tableau built byTABEL⊥T
PH2

closes if it is not possible to build a model smaller thanMB, it remains open otherwise.
Since by Definition 3 two models can be compared only if they have the same domain,

TABEL⊥T
PH2 tries to build an open branch containing all the labels appearing onB, i.e.

those inD(B). To this aim, the dynamic rules use labels inD(B) instead of introducing

new ones in their conclusions. The rules ofTABEL⊥T
PH2 are shown in Fig. 2.

More in detail, the rule(∃+) is applied to a constraint system containing a formula

x : ∃R.C; it introducesx
R−→ y andy : C wherey ∈ D(B), instead ofy being a new

label. The choice of the labely introduces a branching in the tableau construction. The
rule (Unfold) is applied toall the labels ofD(B) (and not only to those appearing in
the branch). The rule(�−) is applied to a node〈S, u : ¬�¬C1, . . . , u : ¬�¬Cn | U |
K〉, when{u : ¬�¬C1, . . . , u : ¬�¬Cn} ⊆ K, i.e. when the negated box formulas

50 Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato

u : ¬�¬Ci also belong to the open branchB. Even in this case, the rule introduces
a branch on the choice of the individualyi ∈ D(B) to be used in the conclusion. In
case a tableau node has the form〈S, x : ¬�¬C | U | K〉, andx : ¬�¬C 6∈ K, then

TABEL⊥T
PH2 detects a clash, called (Clash)�− : this corresponds to the situation where

x : ¬�¬C does not belong toB, while the model corresponding to the branch being
built containsx : ¬�¬C, and hence isnot preferred to the model represented byB.

The calculusTABEL⊥T
PH2 also contains the clash condition (Clash)∅. Since each ap-

plication of(�−) removes the negated box formulasx : ¬�¬Ci from the setK, when
K is empty all the negated boxed formulas occurring inB also belong to the current

branch. In this case, the model built byTABEL⊥T
PH2 satisfies the same set ofx : ¬�¬Ci

(for all individuals) asB and, thus, it is not preferred to the one represented byB.

Theorem 7 (Soundness and completeness ofTABEL⊥T
PH2 [8]). Given a KB and a

queryF , let 〈S′ | U | ∅〉 be the corresponding constraint system ofKB, and 〈S |
U | ∅〉 the corresponding constraint system ofKB ∪ {¬F}. An open branchB built by

TABEL⊥T
PH1 for 〈S | U | ∅〉 is satisfiable by an injective mapping in a minimal model of

KB iff the tableau inTABEL⊥T
PH2 for 〈S′ | U | B�−〉 is closed.

TABEL⊥T
PH2 always terminates. Termination is ensured by the fact that dynamic rules

make use of labels belonging toD(B), which is finite, rather than introducing “new”
labels in the tableau.

Theorem 8 (Termination of TABEL⊥T
PH2). Let 〈S′ | U | B�−〉 be a constraint system

starting from an open branchB built by TABEL⊥T
PH1 , then any tableau generated by

TABEL⊥T
PH2 is finite.

It is possible to show that the problem of verifying that a branchB represents a minimal

model for KB inTABEL⊥T
PH2 is in NP in the size ofB.

The overall procedureTABALC+T
min is defined as follows:

Definition 8. Let KB be a knowledge base whose corresponding constraint system is
〈S | U | ∅〉. LetF be a query and letS′ be the set of constraints obtained by adding to

S the constraint corresponding to¬F . The calculusTABEL⊥T
min checks whether a query

F is minimally entailed from aKB by means of the following procedure:(phase 1)the

calculusTABEL⊥T
PH1 is applied to〈S′ | U | ∅〉; if, for each branchB built byTABEL⊥T

PH1 ,

either (i) B is closed or (ii)(phase 2)the tableau built by the calculusTABEL⊥T
PH2 for

〈S | U | B�−〉 is open, thenKB |=LT
min F , otherwiseKB 6|=LT

min F .

Theorem 9 (Soundness and completeness ofTABEL⊥T
min [8]). TABEL⊥T

min is a sound
and complete decision procedure for verifying if KB|=LT

min F .

The complexity ofTABEL⊥T
min matches the results of Theorem 2. Consider the com-

plementary problem: KB6|=LT

min F . This problem can be solved according to the proce-
dure in Definition 8: by nondeterministically generating anopen branch of polynomial

length in the size of KB inTABEL⊥T
PH1 (a modelMB of KB ∪ {¬F}), and then by

Nonmonotonic extensions of low-complexity DLs 51

calling an NP oracle which verifies thatMB is a minimal model of KB. In fact, the
verification thatMB is not a minimal model of the KB can be done by an NP algo-

rithm which nondeterministically generates a branch inTABEL⊥T
PH2 of polynomial size

in the size ofMB (and of KB), representing a modelMB′
of KB preferred toMB.

Hence, the problem of verifying that KB6|=LT
min F is in NPNP, i.e. in Σp

2 , and the

problem of deciding whether KB|=LT

min F is in CO-NPNP, i.e. inΠp
2 .

Theorem 10 (Complexity ofTABEL⊥T
min). The problem of deciding whetherKB |=LT

min

F by means ofTABEL⊥T
min is in Πp

2 .

5 A Tableau Calculus forDL-LitecTmin

In this section we present a tableau calculusTABLitecT
min for deciding query entailment

in the logicDL-LitecTmin. The calculus is similar to the one forEL⊥Tmin in the
previous section, however it contains a few significant differences. Let us analyze in

detail the two components ofTABLitecT
min .

5.1 First Phase: the tableaux calculusTABLitecT
P H1

The calculusTABLitecT
PH1 is significantly different in three respects from the calculus

for EL⊥Tmin. We try to explain such differences in detail. First of all, given a set of
constraintsS and a roler ∈ R, we definer(S) = {x r−→ y | x r−→ y ∈ S}.

1. The rule(∃+) is split in the following two rules:

y new

〈S, x : ∃r.⊤ | U〉

〈S, x
r−→ y | U〉

(∃+)r
1

〈S, x : ∃r.⊤ | U〉
(∃+)r

2〈S, x
r−→ y1 | U〉 〈S, x

r−→ ym | U〉. . . 〈S, x
r−→ y1 | U〉 〈S, x

r−→ ym | U〉. . .

if y1, . . . , ym are all the labels occurring in S if y1, . . . , ym are all the labels occurring in S
if r(S) != ∅if r(S) = ∅

As in the calculusTABEL⊥T
PH1 , the split of the(∃+) in the two rules above reflects the

main idea of the construction of a small model at the base of Theorem 4.5 in [11]. Such
small model theorem essentially shows thatDL-LitecTmin KBs can have small models
in which all existentials∃R.⊤ occurring in KB are made true in the model by reusing a
single witnessy. In the calculus we use the same idea: when the rule(∃+)r

1 is applied
to a formulax : ∃r.⊤, it introduces a new labely and the constraintx

r−→ y only
when there is no other previous constraintu

r−→ v in S, i.e.r(S) = ∅. Otherwise, rule
(∃+)r

2 is applied and it introducesx
r−→ y. As a consequence,(∃+)r

2 does not introduce
any new label in the branch whereas(∃+)r

1 only introduces a new labely for each role
r occurring in the initial KB in some∃r.⊤ or ∃r−.⊤, and no blocking machinery is
needed to ensure termination.

2. In order to keep into account inverse roles, two further rules for existential for-
mulas are introduced:

(∃+)r−
1

〈S, x : ∃r−.⊤ | U〉〈S, x : ∃r−.⊤ | U〉
〈S, y

r−→ x | U〉 〈S, y1
r−→ x | U〉 〈S, ym

r−→ x | U〉

y new

. . . 〈S, y1
r−→ x | U〉 〈S, ym

r−→ x | U〉. . .
(∃+)r−

2

if y1, . . . , ym are all the labels occurring in S
if y1, . . . , ym are all the labels occurring in S

if r(S) = ∅ if r(S) != ∅

52 Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato

These rules work similarly to(∃+)r
1 and (∃+)r

2 in order to build a branch repre-
senting a small model: when the rule(∃+)r−

1 is applied to a formulax : ∃r−.⊤, it
introduces a new labely and the constrainty

r−→ x only when there is no other con-
straintu

r−→ v in S. Otherwise, since a constrainty
r−→ u has been already introduced

in that branch,y
r−→ x is added to the conclusion of the rule.

3. Negated existential formulas can occur in a branch, but only having the form
(i) x : ¬∃r.⊤ or (ii) x : ¬∃r−.⊤. (i) means thatx has no relationships with other
individuals via the roler, i.e. we need to detect a contradiction if both (i) and, for some
y, x

r−→ y belong to the same branch, in order to mark the branch as closed. The

clash condition (Clash)r is added to the calculusTABLitecT
PH1 in order to detect such a

situation. Analogously, (ii) means that there is noy such thaty is related tox by means
of r, then (Clash)r− is introduced in order to close a branch containing both (ii)and,
for somey, a constrainty

r−→ x. These clash conditions are as follows:

(Clash)r (Clash)r−〈S, x
r−→ y, x : ¬∃r.⊤ | U〉 〈S, y

r−→ x, x : ¬∃r−.⊤ | U〉

The rules ofTABLitecT
PH1 are presented in Figure 3. The calculusTABLitecT

PH1 is sound,
complete and terminating.

(Clash)〈S, x : C, x : ¬C | U〉

〈S, x : C, x : !¬C | U〉

〈S, x : ¬!¬C | U〉〈S, x : ¬C | U〉
(Unfold)

〈S | U,C ⊑ DL〉

(T+)
〈S, x : T(C) | U〉

(T−)〈S, x : ¬T(C) | U〉

if x occurs in S and x !∈ L

(Clash)r (Clash)r−〈S, x
r−→ y, x : ¬∃r.⊤ | U〉 〈S, y

r−→ x, x : ¬∃r−.⊤ | U〉

〈S, x : ¬!¬C | U〉〈S, x : !¬C | U〉
〈S | U〉

(cut)

x occurs in S

if x : ¬!¬C !∈ S and x : !¬C !∈ S
C ∈ LT

y new

〈S, x : ∃r.⊤ | U〉
〈S, x

r−→ y | U〉
(∃+)r

1

〈S, x
r−→ y1 | U〉 〈S, x

r−→ ym | U〉. . .

〈S, x : ∃r.⊤ | U〉
(∃+)r

2
〈S, x

r−→ y1 | U〉 〈S, x
r−→ ym | U〉. . .

y new

(∃+)r−
1

〈S, x : ∃r−.⊤ | U〉
〈S, y

r−→ x | U〉 〈S, y1
r−→ x | U〉 〈S, ym

r−→ x | U〉. . .

〈S, x : ∃r−.⊤ | U〉
〈S, y1

r−→ x | U〉 〈S, ym
r−→ x | U〉. . .

(∃+)r−
2

(!−)

k = 1, 2, . . . , n

〈S, y : Ck, y : !¬Ck, SM
x→y, S

!−k

x→y | U〉

〈S, x : ¬!¬C1, . . . ,¬!¬Cn | U〉

y new
〈S, y1 : Ck, y1 : !¬Ck, SM

x→y1
, S

!−k

x→y1
| U〉 〈S, ym : Ck, ym : !¬Ck, SM

x→ym
, S

!−k

x→ym
| U〉. . .

∀

if y1, . . . , ym are all the labels occurring in S if y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S
if y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S, y1 != x, . . . , ym != x

〈S, x : ¬C ⊔D | U,C ⊑ DL,x〉

〈S, x : C ⊔D | U〉
〈S, x : C | U〉 〈S, x : D | U〉

(⊔+)

if r(S) = ∅ if r(S) != ∅

if r(S) = ∅ if r(S) != ∅

Fig. 3. The calculusTABLitecT
PH1 .

Theorem 11 (Soundness and completeness ofTABLitecT
PH1). If KB 6|=DL-LitecTmin

F , then the tableau for the constraint system corresponding to KB∪ {¬F} contains an
open saturated branch, which is satisfiable (via an injective assignment from labels to
domain elements) in a minimal model of KB. Given a constraintsystem〈S | U〉, if it is

unsatisfiable, then it has a closed tableau inTABLitecT
PH1 .

Theorem 12 (Termination ofTABLitecT
PH1). Any tableau generated byTABLitecT

PH1 for
〈S | U〉 is finite.
Reasoning as we have done forTABEL⊥T

PH1 , we can show that:

Nonmonotonic extensions of low-complexity DLs 53

(Unfold)

(Clash)〈S, x : C, x : ¬C | U | K〉

(Clash)∅ (Clash)!−〈S | U | ∅〉 〈S, x : ¬!¬C | U | K〉
if x : ¬!¬C !∈ K

〈S | U,C ⊑ DL | K〉

x ∈ D(B) and x !∈ L

(T+) (T−)

(cut)

if x : ¬!¬C !∈ S and x : !¬C !∈ S
C ∈ LT

〈S, x : !¬C | U | K〉 〈S, x : ¬!¬C | U | K〉
〈S | U | K〉

〈S, x : ¬T(C) | U | K〉
〈S, x : ¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S, x : T(C) | U | K〉
〈S, x : C, x : !¬C | U | K〉

(!−)

x ∈ D(B)

(Clash)r (Clash)r−〈S, y
r−→ x, x : ¬∃r−.⊤ | U | K〉〈S, x

r−→ y, x : ¬∃r.⊤ | U | K〉

〈S, x : ¬!¬C1, . . . , x : ¬!¬Cn | U | K, x : ¬!¬C1, . . . , x : ¬!¬Cn〉

〈S, x : ∃r.⊤ | U | K〉

〈S, x
r−→ y1 | U | K〉 . . . 〈S, x

r−→ yn | U | K〉 〈S, y1
r−→ x | U | K〉 . . . 〈S, yn

r−→ x | U | K〉

〈S, x : ∃r−.⊤ | U | K〉
(∃+)r−(∃+)r

〈S, ym : Ck, ym : !¬Ck, SM
x→ym

, S
!−k

x→ym
| U | K〉〈S, y1 : Ck, y1 : !¬Ck, SM

x→y1
, S

!−k

x→y1
| U | K〉 . . .

k = 1, 2, . . . , n∀

〈S, ym
r−→ x | U | K〉〈S, x

r−→ ym | U | K〉
if D(B) = {y1, . . . , ym}if D(B) = {y1, . . . , ym}

if D(B) = {y1, . . . , ym} and y1 != x, . . . , ym != x

〈S, x : C | U | K〉 〈S, x : D | U | K〉
〈S, x : C ⊔D | U | K〉

〈S, x : ¬C ⊔D | U,C ⊑ DL,x | K〉 (⊔+)

Fig. 4. The calculusTABLitecT
PH2 .

Theorem 13 (Complexity ofTABLitecT
PH1). Given a KB and a queryF , the problem of

checking whether KB∪ {¬F} in TABLitecT
PH1 is satisfiable is inNP.

5.2 The tableaux calculusTABLitecT
P H2

Let us now introduce the calculusTABLitecT
PH2 . Exactly as forTABEL⊥T

PH2 , for each

open saturated branchB built by TABLitecT
PH1 , it verifies whether it represents a min-

imal model of the KB. The rules ofTABLitecT
PH2 are shown in Figure 4. The rules(∃+)r

and(∃+)r− introducex
r−→ y andy

r−→ x, respectively, wherey ∈ D(B), instead of
y being a new label.

Theorem 14 (Soundness and completeness ofTABLitecT
PH2). Given aKB and a query

F , let 〈S′ | U〉 be the corresponding constraint system ofKB, and〈S | U〉 the cor-
responding constraint system ofKB ∪ {¬F}. An open saturated branchB built by

TABLitecT
PH1 for 〈S | U〉 is satisfiable by an injective mapping in a minimal model of

KB iff the tableau inTABLitecT
PH2 for 〈S′ | U | B�−〉 is closed.

Theorem 15 (Termination of TABLitecT
PH2). Let 〈S′ | U | B�−〉 be a constraint sys-

tem starting from an open saturated branchB built by TABLitecT
PH1 , then any tableau

generated byTABLitecT
PH2 is finite.

By reasoning exactly as done forTABEL⊥T
min , we prove that:

Theorem 16 (Complexity ofTABLitecT
min). The problem of deciding whetherKB |=LT

min

F by means ofTABLitecT
min is in Πp

2 .

54 Laura Giordano, Valentina Gliozzi, Nicola Olivetti, Gian Luca Pozzato

6 Conclusions
We have proposed a nonmonotonicextension of low complexityDLsEL⊥ andDL-Litecore

for reasoning about typicality and defeasible properties.We have summarized com-
plexity results recently studied for such extensions [11],namely that entailment is EX-
PTIME-hard forEL⊥Tmin, whereas it drops toΠp

2 when considering the Left Local
Fragment ofEL⊥Tmin. The sameΠp

2 complexity has been found forDL-LitecTmin.
These results match the complexity upper bounds of the same fragments in circum-
scribed KBs [3]. We have also provided tableau calculi for checking minimal entailment
in the Left Local fragment ofEL⊥Tmin as well as inDL-LitecTmin. The proposed
calculi match the complexity results above. Of course, manyoptimizations are possible
and we intend to study them in future work.

As mentioned in the Introduction, several nonmonotonic extensions of DLs have
been proposed in the literature [15, 4, 2, 3, 7, 12, 10, 9, 6] and we refer to [12] for a sur-
vey. Concerning nonmonotonic extensions of low complexityDLs, the complexity of
circumscribedfragments of theEL⊥ and DL-lite families have been studied in [3].
Recently, a fragment ofEL⊥ for which the complexity of circumscribed KBs is poly-
nomial has been identified in [14]. In future work, we shall investigate complexity of
minimal entailment and proof methods for such a fragment extended withT and possi-
bly the definition of a calculus for it.

References
1. F. Baader, S. Brandt, and C. Lutz. Pushing theEL envelope. InIJCAI, pages 364–369, 2005.
2. F. Baader and B. Hollunder. Priorities on defaults with prerequisites, and their application in

treating specificity in terminological default logic.JAR, 15(1):41–68, 1995.
3. P. Bonatti, M. Faella, and L. Sauro. Defeasible inclusions in low-complexity dls: Preliminary

notes. InIJCAI, pages 696–701, 2009.
4. P. A. Bonatti, C. Lutz, and F. Wolter. DLs with circumscription. In KR, p. 400–410, 2006.
5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R.Rosati. Tractable Reasoning

and Efficient Query Answering in DLs: The DL-Lite Family.JAR, 39(3):385429, 2007.
6. G. Casini and U. Straccia. Rational closure for defeasible DLs. InJELIA, p. 77–90, 2010.
7. F. M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge and negation

as failure.ACM Trans. Comput. Log., 3(2):177–225, 2002.
8. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. A tableau calculus for a nonmono-

tonic extension ofEL⊥. In TABLEAUX, pages 164–179, 2011.
9. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Reasoning About Typicality in

Preferential Description Logics. InJELIA, pages 192–205, 2008.
10. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Prototypical reasoning with low

complexity Description Logics: Preliminary results. InLPNMR, pages 430–436, 2009.
11. L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Reasoning about typicality in low

complexity DLs: the logicsEL⊥Tmin andDL-LitecTmin. In IJCAI, pages 894–899, 2011.
12. L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato.ALC+Tmin: a preferential extension

of description logics.Fundamenta Informaticae, 96:1–32, 2009.
13. S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and

cumulative logics.Artificial Intelligence, 44(1-2):167–207, 1990.
14. P.A.Bonatti, M. Faella, and L. Sauro.EL with default attributes and overriding. InISWC,

pages 64–79, 2010.
15. U. Straccia. Default inheritance reasoning in hybrid kl-one-style logics. InIJCAI, pages

676–681, 1993.

Nonmonotonic extensions of low-complexity DLs 55

An Inductive Logic Programming Approach to
Learning Inclusion Axioms in

Fuzzy Description Logics

Francesca A. Lisi1 and Umberto Straccia2

1 Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”, Italy
lisi@di.uniba.it

2 ISTI - CNR, Pisa, Italy
straccia@isti.cnr.it

Abstract. Fuzzy Description Logics (DLs) are logics that allow to deal
with vague structured knowledge. Although a relatively important amount
of work has been carried out in the last years concerning the use of fuzzy
DLs as ontology languages, the problem of automatically managing fuzzy
ontologies has received very little attention so far. We report here our
preliminary investigation on this issue by describing a method for induc-
ing inclusion axioms in a fuzzy DL-Lite like DL.

1 Introduction

Description Logics (DLs) [1] play a key role in the design of ontologies. An on-
tology consists of a hierarchical description of important concepts in a particular
domain, along with the description of the properties (of the instances) of each
concept. In this context, DLs are important as they are essentially the theoreti-
cal counterpart of the Web Ontology Language OWL 2 3, the current standard
language to represent ontologies, and its profiles. 4 E.g., DL-Lite [2] is the DL
behind the OWL 2 QL profile and is especially aimed at applications that use
very large volumes of instance data, and where query answering is the most
important reasoning task.

On the other hand, it is well-known that “classical” ontology languages are
not appropriate to deal with vague knowledge, which is inherent to several real
world domains [21]. So far, several fuzzy extensions of DLs can be found in the
literature (see the survey in [14]), which includes, among others a fuzzy DL-Lite
like DL [23] which has been implemented in the SoftFacts system [23] 5.

Although a relatively important amount of work has been carried out in the
last years concerning the use of fuzzy DLs as ontology languages, the problem of
automatically managing fuzzy ontologies has received very little attention so far.
In this work, we report our preliminary investigation on this issue by describing

3 http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
4 http://www.w3.org/TR/owl2-profiles/.
5 See, http://www.straccia.info/software/SoftFacts/SoftFacts.html

 Lukasiewicz logic Gödel logic Product logic

a⊗ b max(a+ b− 1, 0) min(a, b) a · b
a⊕ b min(a+ b, 1) max(a, b) a+ b− a · b

a⇒ b min(1− a+ b, 1)

{
1 if a 6 b

b otherwise
min(1, b/a)

	 a 1− a
{

1 if a = 0

0 otherwise

{
1 if a = 0

0 otherwise

Table 1. Combination functions of various fuzzy logics.

a method for inducing inclusion axioms in a fuzzy DL-Lite like DL. The method
follows the machine learning approach known as Inductive Logic Programming
(ILP) by adapting known results in ILP concerning crisp rules to the novel case
of fuzzy DL inclusion axioms.

The paper is structured as follows. Section 2 is devoted to preliminaries on
Mathematical Fuzzy Logic, Fuzzy DLs and ILP. Section 3 describes our pre-
liminary contribution to the problem in hand, also by means of an illustrative
example. Section 4 concludes the paper with final remarks and comparison with
related work.

2 Background

2.1 Mathematical Fuzzy Logic Basics

In Mathematical Fuzzy Logic [7], the convention prescribing that a statement is
either true or false is changed and is a matter of degree measured on an ordered
scale that is no longer {0, 1}, but the [0, 1]. This degree is called degree of truth
(or score) of the logical statement φ in the interpretation I. In this section,
fuzzy statements have the form φ[r], where r∈ [0, 1] (see, e.g. [6,7]) and φ is a
statement, which encode that the degree of truth of φ is greater or equal r.

A fuzzy interpretation I maps each basic statement pi into [0, 1] and is then
extended inductively to all statements: I(φ ∧ ψ) = I(φ) ⊗ I(ψ), I(φ ∨ ψ) =
I(φ) ⊕ I(ψ), I(φ → ψ) = I(φ) ⇒ I(ψ), I(¬φ) = 	I(φ), I(∃x.φ(x)) =
supa∈∆I I(φ(a)), I(∀x.φ(x)) = infa∈∆I I(φ(a)), where ∆I is the domain of I,
and ⊗, ⊕,⇒, and 	 are so-called t-norms, t-conorms, implication functions, and
negation functions, respectively, which extend the Boolean conjunction, disjunc-
tion, implication, and negation, respectively, to the fuzzy case.

One usually distinguishes three different logics, namely Lukasiewicz, Gödel,
and Product logics [7], whose combination functions are reported in Table 1.
The operators for Zadeh logic, namely a ⊗ b = min(a, b), a ⊕ b = max(a, b),
	 a = 1− a and a⇒ b = max(1− a, b), can be expressed in Lukasiewicz logic6.

6 More precisely, min(a, b) = a⊗L (a⇒L b),max(a, b) = 1−min(1− a, 1− b).

58 Francesca Alessandra Lisi, Umberto Straccia

(a) (b) (c) (d)

Fig. 1. (a) Trapezoidal function trz (x; a, b, c, d), (b) triangular function tri(x; a, b, c),
(c) left shoulder function ls(x; a, b), and (d) right shoulder function rs(x; a, b).

A fuzzy set R over a countable crisp set X is a function R : X → [0, 1]. The
trapezoidal (Fig. 1 (a)), the triangular (Fig. 1 (b)), the L-function (left-shoulder
function, Fig. 1 (c)), and the R-function (right-shoulder function, Fig. 1 (d)) are
frequently used to specify membership degrees. In particular, the left-shoulder
function is defined as

ls(x; a, b) =

1 if x 6 a

0 if x > b

(b− x)/(b− a) if x ∈ [a, b]
(1)

The notions of satisfiability and logical consequence are defined in the stan-
dard way. A fuzzy interpretation I satisfies a fuzzy statement φ[r] or I is a
model of φ[r], denoted I |=φ[r] iff I(φ) > r.

2.2 DL-Lite like description logic and its fuzzy extensions

For computational reasons, the logic we adopt is based on a fuzzy extension of
the DL-Lite DL without negation [23]. It supports at the intensional level unary
relations (called concepts) and binary relations (called roles), while supports
n-ary relations (relational tables) at the extensional level.

Formally, a knowledge base K = 〈F ,O,A〉 consists of a facts component F ,
an ontology component O and an abstraction component A, which are defined
as follows (for a detailed account of the semantics, see [22]). Information can be
retrieved from the knowledge base by means of an appropriate query language
discussed later.

Facts Component. The facts component F is a finite set of expressions of the
form

R(c1, . . . , cn)[s] , (2)

where R is an n-ary relation, every ci is a constant, and s is a degree of truth
(or score) in [0, 1] indicating to which extent the tuple 〈c1, . . . , cn〉 is an instance
of relation R.7 Facts are stored in a relational database. We may omit the score
component and in such case the value 1 is assumed.

7 The score s may have been computed by some external tool, such as a classifier, etc.

An Inductive LP Approach to Learning Inclusion Axioms in Fuzzy DLs 59

Ontology Component. The ontology component is used to define the relevant
abstract concepts and relations of the application domain by means of inclusion
axioms. Specifically, O is a finite set of inclusion axioms having the form

Rl1 u . . . uRlm v Rr , (3)

where m > 1, all Rli and Rr have the same arity and each Rli is a so-called
left-hand relation and Rr is a right-hand relation8. We assume that relations oc-
curring in F do not occur in inclusion axioms (so, we do not allow that database
relation names occur in O). Also we recall that from a semantics point of view,
Gödel logic is adopted. The intuition for one such semantics is that if a tuple c
is instance of each relation Rli to degree si then c is instance of Rr to degree
min(s1, . . . , sm).

The exact syntax of the relations appearing on the left-hand and right-hand
side of inclusion axioms is specified below:

Rl −→ A | R[i1, i2]
Rr −→ A | R[i1, i2] | ∃R.A (4)

where A is an atomic concept and R is a role with 1 6 i1, i2 6 2. Here R[i1, i2]
is the projection of the relation R on the columns i1, i2 (the order of the indexes
matters). Hence, R[i1, i2] has arity 2. Additionally, ∃R.A is a so-called quali-
fied existential quantification on roles which corresponds to the FOL formula
∃y.R(x, y) ∧ A(y) where ∧ is interpreted as the t-norm in the Gödel logic (see
Table 1).

Abstraction Component. A (similarly to [3,17]) is a set of “abstraction state-
ments” that allow to connect atomic concepts and roles to physical relational ta-
bles. Essentially, this component is used as a wrapper to the underlying database
and, thus, prevents that relational table names occur in the ontology. Formally,
an abstraction statement is of the form

R 7→ (c1, . . . , cn)[cscore].sql , (5)

where sql is a SQL statement returning n-ary tuples 〈c1, . . . , cn〉 (n 6 2) with
score determined by the cscore column. The tuples have to be ranked in decreas-
ing order of score and, as for the fact component, we assume that there cannot
be two records 〈c, s1〉 and 〈c, s2〉 in the result set of sql with s1 6= s2 (if there are,
then we remove the one with the lower score). The score cscore may be omitted
and in that case the score 1 is assumed for the tuples. We assume that R occurs
in O, while all of the relational tables occurring in the SQL statement occur in
F . Finally, we assume that there is at most one abstraction statement for each
abstract relational symbol R.

8 Note that recursive inclusion axioms are allowed.

60 Francesca Alessandra Lisi, Umberto Straccia

Query Language. The query language enables the formulation of conjunctive
queries with a scoring function to rank the answers. More precisely, a ranking
query [13] is of the form

q(x)[s]← ∃y R1(z1)[s1], . . . , Rl(zl)[sl],
OrderBy(s = f(s1, . . . , sl, p1(z′1), . . . , ph(z′h)), Limit(k) (6)

where

1. q is an n-ary relation, every Ri is a ni-ary relation (1 6 ni 6 2). Ri(zi) may
also be of the form (z 6 v), (z < v), (z > v), (z > v), (z = v), (z 6= v), where
z is a variable, v is a value of the appropriate concrete domain;

2. x are the distinguished variables.
3. y are existentially quantified variables called the non-distinguished variables.

We omit to write ∃y when y is clear from the context;
4. zi, z′j are tuples of constants or variables in x or y;
5. s, s1, . . . , sl are distinct variables and different from those in x and y;
6. pj is an nj-ary fuzzy predicate assigning to each nj-ary tuple cj a score
pj(cj) ∈ [0, 1]. We require that an n-ary fuzzy predicate p is safe, that is,
there is not an m-ary fuzzy predicate p′ such that m < n and p = p′.
Informally, all parameters are needed in the definition of p.

7. f is a scoring function f : ([0, 1])l+h → [0, 1], which combines the scores
of the l relations Ri(c′i) and the n fuzzy predicates pj(c′′j) into an overall
score s to be assigned to q(c). We assume that f is monotone, that is, for
each v,v′ ∈ ([0, 1])l+h such that v 6 v′, it holds f(v) 6 f(v′), where
(v1, . . . , vl+h) 6 (v′1, . . . , v

′
l+h) iff vi 6 v′i for all i. We also assume that the

computational cost of f and all fuzzy predicates pi is bounded by a constant;
8. Limit(k) indicates the number of answers to retrieve and is optional. If omit-

ted, all answers are retrieved.

We call q(x)[s] its head, ∃y.R1(z1)[s1], . . . , Rl(zl)[sl] its body and OrderBy(s =
f(s1, . . . , sl, p1(z′1), . . . , ph(z′h)) the scoring atom. We also allow the scores [s], [s1],
. . . , [sl] and the scoring atom to be omitted. In this case we assume the value 1
for si and s instead. The informal meaning of such a query is: if zi is an instance
of Ri to degree at least or equal to si, then x is an instance of q to degree at
least or equal to s, where s has been determined by the scoring atom.

The answer set ansK(q) over K of a query q is the set of tuples 〈t, s〉 such that
K |= q(t)[s] with s > 0 (informally, t satisfies the query to non-zero degree s)
and the score s is as high as possible, i.e. if 〈t, s〉 ∈ ansK(q) then (i) K 6|= q(t)[s′]
for any s′ > s; and (ii) there cannot be another 〈t, s′〉 ∈ ansK(q) with s > s′.

2.3 Learning rules with ILP

Inductive Logic Programming (ILP) was born at the intersection between Con-
cept Learning and Logic Programming [16].

An Inductive LP Approach to Learning Inclusion Axioms in Fuzzy DLs 61

From Logic Programming it has borrowed the Knowledge Representation
(KR) framework, i.e. the possibility of expressing facts and rules in the form of
Horn clauses. In the following, rules are denoted by

B(x)→ H(x) (7)

where x is the vector of the n variables that appear in the rule, B(x) = B0(x)∧
. . . ∧Bq(x) represents the antecedent (called the body) of the rule, and H(x) is
the consequent (called head) of the rule. The predicate H pertains to the concept
to be learnt (called target). Given an attribute domain D and a vector t ∈ Dn of
n values of the domain, we denote the ground substitution of the variable x with
t by H(t) = σ[x/t]H(x). Then H(t) is true or false in a given interpretation.

From Concept Learning it has inherited the inferential mechanisms for in-
duction, the most prominent of which is generalisation. A distinguishing feature
of ILP with respect to other forms of Concept Learning is the use of prior do-
main knowledge in the background during the induction process. The classical
ILP problem is described by means of two logic programs: (i) the background
theory K which is a set of ground facts and rules; (ii) the training set E which is
a set of ground facts, called examples, pertaining to the predicate to be learnt.
It is often split in E+ and E−, which correspond respectively to positive and
negative examples. If only E+ is given, E− can be deduced by using the Closed
World Assumption (CWA). A rule r covers an example e ∈ E iff K ∪ {r} |= e.
The task of induction is to find, given K and E , a set H of rules such that: (i)
∀e ∈ E+,K ∪ H |= e (completeness of H) and (ii) ∀e ∈ E−,K ∪ H 6|= e (consis-
tency of H). Two further restrictions hold naturally. One is that K 6|= E+ since,
in such a case, H would not be necessary to explain E+. The other is K∪H 6|= ⊥,
which means that K ∪H is a consistent theory. Usually, rule induction fits with
the idea of providing a compression of the information contained in E .

A popular ILP algorithm for learning sets of rules is FOIL [18]. It performs
a greedy search in order to maximise a gain function. The rules are induced
until all examples are covered or no more rules are found that overcome the
threshold. When a rule is induced, the positive examples covered by the rule
are removed from E . This is the sequential covering approach underlying the
function FOIL-Learn-Sets-of-Rules shown in Figure 2. For inducing a rule,
the function FOIL-Learn-One-Rule reported in Figure 3 starts with the most
general clause (> → H(x)) and specialises it step by step by adding literals to
the antecedent. The rule r is accepted when its confidence degree cf(r) (see later
on) overcomes a fixed threshold θ and it does not cover any negative example.

The Gain function is computed by the formula:

Gain(r′, r) = p ∗ (log2(cf(r′))− log2(cf(r))) , (8)

where p is the number of distinct positive examples covered by the rule r that
are still covered by r′. Thus, the gain is positive iff r′ is more informative in the
sense of Shannon’s information theory (i.e. iff the confidence degree increases).
If there are some literals to add which increase the confidence degree, the gain
tends to favor the literals that offer the best compromise between the confidence
degree and the number of examples covered.

62 Francesca Alessandra Lisi, Umberto Straccia

function FOIL-Learn-Sets-of-Rules(H, E+, E−, K): H
begin
1. H ← ∅;
2. while E+ 6= ∅ do
3. r ← FOIL-Learn-One-Rule(H, E+, E−, K);
4. H ← H∪ {r};
5. E+

r ← {e ∈ E+|K ∪ r |= e};
6. E+ ← E+ \ E+

r ;
7. endwhile
8. return H
end

Fig. 2. Algorithm for learning sets of rules in FOIL

Given a Horn clause B(x)→ H(x), the confidence degree is given by:

cf(B(x)→ H(x)) = P (B(x) ∧H(x))/P (B(x)) . (9)

Confidence degrees are computed in the spirit of domain probabilities [8]. Input
data in ILP are supposed to describe one interpretation under CWA. We call
IILP this interpretation. So, given a fact f , we define:

IILP |= f iff K ∪ E |= f . (10)

The domain D is the Herbrand domain described by K and E . We take P as a
uniform probability on D. So the confidence degree in a clause B(x)→ H(x) is:

cf(B(x)→ H(x)) =
|t ∈ Dn | IILP |= B(t) and H(t) ∈ E+|
|t ∈ Dn | IILP |= B(t) and H(t) ∈ E| (11)

where | · | denotes set cardinality. Testing all possible t ∈ Dn is not tractable
in practice. However, we can equivalently restrict the computation to the sub-
stitutions that map variables to constants in their specific domains. In fact,
this computation is equivalent to a database query and thus, we can also use
some optimization strategy such as indexing or query ordering. This makes the
computation tractable although it remains costly.

3 Towards Learning Fuzzy DL-Lite like Inclusion Axioms

In this section we consider a learning problem where:

– the target concept H is a DL-Lite atomic concept;
– the background theory K is a DL-Lite like knowledge base 〈F ,O,A〉 of the

form described in Section 2.2;
– the training set E is a collection of fuzzy DL-Lite like facts of the form (2)

and labeled as either positive or negative examples for H. We assume that
F ∩ E = ∅;

An Inductive LP Approach to Learning Inclusion Axioms in Fuzzy DLs 63

function FOIL-Learn-One-Rule(H, E+, E−, K): r
begin
1. B(x)← >;
2. r ← {B(x)→ H(x)};
3. E−r ← E−;
4. while cf(r) < θ and E−r 6= ∅ do
5. Bbest(x)← B(x);
6. maxgain← 0;
7. foreach l ∈ K do
8. gain← Gain(B(x) ∧ l(x)→ H(x), B(x)→ H(x));
9. if gain > maxgain then
10. maxgain← gain;
11. Bbest(x)← B(x) ∧ l(x);
12. endif
13. endforeach
14. r ← {Bbest(x)→ H(x)};
15. E−r ← E−r \ {e ∈ E−|K ∪ r |= e};
16. endwhile
17. return r
end

Fig. 3. Algorithm for learning one rule in FOIL

– the target theory H is a set of inclusion axioms of the form

B v H (12)

where H is an atomic concept, B = C1 u . . . uCm, and each concept Ci has
syntax

C −→ A | ∃R.A | ∃R.> . (13)

Note that the language of hypotheses LH differs from the language of the
background theory LK as for the form of axioms. Yet the alphabet underlying LH
is a subset of the alphabet for LK. Note also that H, in order to be acceptable,
must be complete and consistent w.r.t. E , i.e. it must cover all the positive
examples and none of the negative examples.

3.1 The FOIL-like algorithm

We now show how we may learn inclusion axioms of the form (12). To this aim,
we adapt (10) to our case and define for C 6= H

IILP |= C(t) iff K ∪ E |= C(t)[s] and s > 0 . (14)

That is, we write IILP |= C(t) iff it can be inferred from K and E that t is an
instance of concept C to a non-zero degree. Note that E is split into E+ and E−. In
order to distinguish between the two sets while using a uniform representation

64 Francesca Alessandra Lisi, Umberto Straccia

with K, we introduce two additional concepts, H+ and H−, whose intension
coincide with the sets E+ and E−, respectively, as well as the axioms H+ v H
and H− v H. We call K′ the background theory augmented with the training
set represented this way, i.e. K′ = K ∪ E .

Now, in order to account for multiple fuzzy instantiations of fuzzy predicates
occurring in the inclusion axioms of interest to us, we customise (11) into the
following formula for computing the confidence degree:

cf(B v H) =
∑
t∈P B(t)⇒ H(t)

|D| (15)

where

– P = {t | IILP |= Ci(t) and H(t)[s] ∈ E+}, i.e. P is the set of instances for
which the implication covers a positive example;

– D = {t | IILP |= Ci(t) and H(t)[s] ∈ E}, i.e. D is the set of instances for
which the implication covers an example (either positive or negative);

– B(t)⇒ H(t) denotes the degree to which the implication holds for a certain
instance t;

– B(t) = min(s1, . . . , sn), with K ∪ E |= Ci(t)[si];
– H(t) = s with H(t)[s] ∈ E .

Clearly, the more positive instances supporting the inclusion axiom, the higher
the confidence degree of the axiom.

Note that the confidence score can be determined easily by submitting appro-
priate queries via the query language described in Section 2.2. More precisely,
proving the fuzzy entailment in (14) for each Ci is equivalent to answering a
unique ranking query whose body is the conjunction of the relations Rl result-
ing from the transformation of Ci’s into FOL predicates and whose score s is
given by the minimum between sl’s.

From an algorithm point of view, it suffices to change FOIL-Learn-One-Rule
at step 7., where now l may be of any of the forms allowed in (13). More precisely,
in line with the tradition in ILP and in conformance with the search direction
in FOIL, we devise a specialization operator, i.e. an operator for traversing the
hypotheses space top down, with the following refinement rules:

1. Add atomic concept (A)
2. Add complex concept by existential role restriction (∃R.>)
3. Add complex concept by qualified existential role restriction (∃R.A)
4. Replace atomic concept (A replaced by A′ if A′ v A)
5. Replace complex concept (∃R.A replaced by ∃R.A′ if A′ v A)

The rules are numbered according to an order of precedence, e.g. the addition of
an atomic concept has priority over the addition of a complex concept obtained
by existential role restriction. A rule can be applied when the preceding one in
the list can not be applied anymore. Concept and role names in the alphabet
underlying LH are themselves ordered. This implies that, e.g., the addition of
an atomic concept is not possible anymore when all the atomic concepts in the
alphabet have been already used in preceding applications of the rule.

An Inductive LP Approach to Learning Inclusion Axioms in Fuzzy DLs 65

3.2 An illustrative example

For illustrative purposes we consider the following case involving the classifica-
tion of hotels as good ones. We assume to have a background theory K with
a relational database F (reported in Figure 4), an ontology O 9 (illustrated in
Figure 5) which encompasses the following inclusion axioms

Park v Attraction
Tower v Attraction
Attraction v Site
Hotel v Site

and the following set A of abstraction statements:

Hotel 7→ (h.id).SELECT h.id
FROM HotelTable h

hasRank 7→ (h.id, h.rank).SELECT h.id, h.rank
FROM HotelTable h

cheapPrice 7→ (h.id, r.price)[score].SELECT h.id, r.price, cheap(r.price) AS score
FROM HotelTable h, RoomTable r
WHERE h.id = r.hotel
ORDER BY score

closeTo 7→ (from, to)[score].SELECT d.from, d.to closedistance(d.time) AS score
FROM DistanceTable d
ORDER BY score

where cheap(p) is a function determining how cheap a hotel room is given its
price, modelled as e.g. a so-called left-shoulder function cheap(p) = ls(p; 50, 100),
while closedistance(d) = ls(d; 5, 25).

Assume now that:

– H = GoodHotel;
– E+ = {GoodHotel(h1)[0.6], GoodHotel(h2)[0.8]};
– E− = {GoodHotel(h3)[0.4]}.

In order to have a uniform representation of the examples w.r.t. the background
theory, we transform E as follows:

GoodHotel+ v GoodHotel
GoodHotel− v GoodHotel
GoodHotel+(h1)[0.6]
GoodHotel+(h2)[0.8]
GoodHotel−(h3)[0.4]

9 http://donghee.info/research/SHSS/ObjectiveConceptsOntology(OCO).html

66 Francesca Alessandra Lisi, Umberto Straccia

HotelTable
id rank noRooms

h1 3 21

h2 5 123

h3 4 95

RoomTable
id price roomType hotel

r1 60 single h1

r2 90 double h1

r3 80 single h2

r4 120 double h2

r5 70 single h3

r6 90 double h3

Tower
id

t1

Park
id

p1

p2

DistanceTable
id from to time

d1 h1 t1 10

d2 h2 p1 15

d3 h3 p2 5

Fig. 4. Hotel database

and call K′ the background theory augmented with the training set represented
this way.

The following inclusion axioms:

r0 : > v GoodHotel
r1 : Hotel v GoodHotel
r2 : Hotel u ∃cheapPrice.> v GoodHotel
r3 : Hotel u ∃cheapPrice.> u ∃closeTo.Attraction v GoodHotel
r4 : Hotel u ∃cheapPrice.> u ∃closeTo.Park v GoodHotel
r5 : Hotel u ∃cheapPrice.> u ∃closeTo.Tower v GoodHotel

belong to LH = {r|Ci ∈ {>, Hotel,∃cheapPrice,∃closeTo}} ⊂ LK. They can
be read as:

r0 : Everything is a good hotel
r1 : Every hotel is a good hotel
r2 : Hotels having a cheap price are good hotels
r3 : Hotels having a cheap price and close to an attraction are good hotels
r4 : Hotels having a cheap price and close to a park are good hotels
r5 : Hotels having a cheap price and close to a tower are good hotels

thus highlighting the possibility of generating “extreme” hypotheses about good
hotels such as r0 and r1. Of course, some of them will be discarded on the basis
of their confidence degree.

Before showing how hypotheses evaluation is performed in our adaptation of
FOIL, we illustrate the computation of the confidence degree for r3. It can be
verified that for K′

1. The query
qP (h)[s]← GoodHotel+(h),

cheapPrice(h, p)[s1],
closeTo(h, a)[s2], Attraction(a),
s = min(s1, s2)

has answer set ansK′(qP) = {〈h1, 0.75〉, 〈h2, 0.4〉} over K′;

An Inductive LP Approach to Learning Inclusion Axioms in Fuzzy DLs 67

Fig. 5. Hotel ontology.

2. The query
qD(h)[s]← GoodHotel(h),

cheapPrice(h, p)[s1],
closeTo(h, a)[s2], Attraction(a),
s = min(s1, s2)

has answer set ansK′(qD) = {〈h1, 0.75〉, 〈h2, 0.4〉, 〈h3, 0.6〉} over K′;
3. Therefore, according to (15), P = {h1, h2}, while D = {h1, h2, h3};
4. As a consequence,

cf(r3) =
0.75⇒ 0.6 + 0.4⇒ 0.8

3
=

0.6 + 1.0
3

= 0.5333 .

Note that in qP the literals Hotel(h) and GoodHotel(h) are removed from the
body in favour of GoodHotel+(h) because the concepts Hotel and GoodHotel
subsume GoodHotel (due to a derived axiom) and GoodHotel+ (due to an as-
serted axiom) respectively. Analogously, in qD, the literal Hotel(h) is superseded
by GoodHotel(h).

Analogously, we can obtain:

cf(r2) =
0.8⇒ 0.6 + 0.4⇒ 0.8

3
=

0.6 + 0.4
3

= 0.3333 .

cf(r4) =
0.4⇒ 0.8

2
=

0.4
2

= 0.2 .

68 Francesca Alessandra Lisi, Umberto Straccia

cf(r5) =
0.8⇒ 0.6

2
=

0.6
2

= 0.3 .

The function FOIL-Learn-One-Rule starts from r0 which is then spe-
cialized into r1 by applying the refinement rule which adds an atomic concept,
Hotel, to the left-hand side of the axiom. As aforementioned, r0 and r1 are trivial
hypotheses, therefore we can skip the computation steps for them and go ahead.
In particular, the algorithm generates r2 from r1 by adding a complex concept
obtained as existential restriction of the role cheapPrice. This hypothesis is not
consistent with the training set, therefore it must be specialized in order not
to cover the negative example. Considering that r3, r4 and r5 are both possible
specializations of r2, we can now compute the information gain for each of them
according to (8):

Gain(r3, r2) = 2∗(log2(0.5333)−log2(0.3333)) = 2∗(−0.907+1.5851) = 1.3562 ,

Gain(r4, r2) = 1 ∗ (log2(0.2)− log2(0.3333)) = (−2.3219 + 1.5851) = −0.7368 ,

Gain(r5, r2) = 1 ∗ (log2(0.3)− log2(0.3333)) = (−1.7369 + 1.5851) = −0.1518 ,

The algorithm will prefer r3. Yet r3 still covers the negative example, there-
fore it must be further refined, e.g. by strengthening the qualified restriction of
closeTo. The algorithm then generates once again the axioms r4 and r5 which
have the following values of information gain over r3:

Gain(r4, r3) = 1 ∗ (log2(0.2)− log2(0.5333)) = (−2.3219 + 0.907) = −1.4149 ,

Gain(r5, r3) = 1 ∗ (log2(0.3)− log2(0.5333)) = (−1.7369 + 0.907) = −0.8299 ,

The axiom r5 is more informative than r4, therefore it is preferred to r4. Also
it does not cover the negative example. Indeed, the literal ∃closeTo.Tower is
a discriminant feature. Therefore, r5 becomes part of the target theory. Since
one positive example is still uncovered, the computation continues within the
function FOIL-Learn-Sets-of-Rules aiming at finding a complete theory,
i.e. a theory which explains all the positive examples.

4 Final remarks

In this paper we have proposed a method for inducing ontology inclusion axioms
within the KR framework of a fuzzy DL-Lite like DL where vagueness is dealt
with the Gödel logic. The method extends FOIL, a popular ILP algorithm for
learning sets of crisp rules, in a twofold direction: from crisp to fuzzy and from
rules to inclusion axioms. Indeed, related FOIL-like algorithms are reported in
the literature [20,5,19] but they can only learn fuzzy rules. Another relevant work
is the formal study of fuzzy ILP contributed by [10]. Yet, it is less promising than
our proposal from the practical side. Close to our application domain, [9] faces
the problem of inducing equivalence axioms in a fragment of OWL corresponding
to the ALC DL. Last, the work reported in [11] is based on an ad-hoc translation

An Inductive LP Approach to Learning Inclusion Axioms in Fuzzy DLs 69

of fuzzy Lukasiewicz ALC DL constructs into LP and then uses a conventional
ILP method to lean rules. The method is not sound as it has been recently shown
that the traduction from fuzzy DLs to LP is incomplete [15] and entailment in
 Lukasiewicz ALC is undecidable [4].

For the future we intend to study more formally the proposed specialization
operator for the fuzzy DL being considered. Also we would like to investigate
in depth the impact of Open World Assumption (holding in DLs) on the pro-
posed ILP setting, and implement and experiment our method. Finally, it can
be interesting to analyze the effect of the different implication functions on the
learning process.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data
complexity of query answering in description logics. In P. Doherty, J. Mylopoulos,
and C. A. Welty, editors, Proc. of the Tenth Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR-06), pages 260–270, 2006.

3. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, and
M. Ruzzi. Data integration through DL-Litea ontologies. In K.-D. Schewe and
B. Thalheim, editors, Semantics in Data and Knowledge Bases, number 4925 in
Lecture Notes in Computer Science, pages 26–47. Springer Verlag, 2008.

4. M. Cerami and U. Straccia. On the Undecidability of Fuzzy Description Logics with
GCIs with Lukasiewicz t-norm. Technical report, Computing Research Repository,
2011. Available as CoRR technical report at http://arxiv.org/abs/1107.4212.

5. M. Drobics, U. Bodenhofer, and E.-P. Klement. FS-FOIL: an inductive learn-
ing method for extracting interpretable fuzzy descriptions. Int. J. Approximate
Reasoning, 32(2-3):131–152, 2003.

6. R. Hähnle. Advanced many-valued logics. In D. M. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, 2nd Edition, volume 2. Kluwer, 2001.

7. P. Hájek. Metamathematics of Fuzzy Logic. Kluwer, 1998.
8. J.Y. Halpern. An Analysis of First-Order Logics of Probability. Artificial Intelli-

gence, 46(3):311–350, 1990.
9. S. Hellmann, J. Lehmann, and S. Auer. Learning of OWL Class Descriptions

on Very Large Knowledge Bases. International Journal on Semantic Web and
Information Systems, 5(2):25–48, 2009.

10. T. Horváth and P. Vojtás. Induction of fuzzy and annotated logic programs. In
S. Muggleton, R. P. Otero, and A. Tamaddoni-Nezhad, editors, Inductive Logic
Programming, volume 4455 of Lecture Notes in Computer Science, pages 260–274.
Springer, 2007.

11. S. Konstantopoulos and A. Charalambidis. Formulating description logic learning
as an inductive logic programming task. In Proceedings of the 19th IEEE Interna-
tional Conference on Fuzzy Systems (FUZZ-IEEE 2010), pages 1–7. IEEE Press,
2010.

12. G.J. Klir and Bo Yuan. Fuzzy sets and fuzzy logic: theory and applications.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995.

70 Francesca Alessandra Lisi, Umberto Straccia

13. T. Lukasiewicz and U. Straccia. Top-k retrieval in description logic programs under
vagueness for the semantic web. In H. Prade, V.S. Subrahmanian, editors, Scalable
Uncertainty Management, number 4772 in Lecture Notes in Computer Science,
pages 16–30. Springer Verlag, 2007.

14. T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in description
logics for the semantic web. Journal of Web Semantics, 6:291–308, 2008.

15. B. Motik and R. Rosati. A faithful integration of description logics with logic
programming. In M.M. Veloso, editor, IJCAI 2007, Proc. of the 20th Int. Joint
Conf. on Artificial Intelligence, pages 477–482, 2007.

16. S.-H. Nienhuys-Cheng and R. de Wolf. Foundations of Inductive Logic Program-
ming, volume 1228 of Lecture Notes in Artificial Intelligence. Springer, 1997.

17. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. Journal of Data Semantics, 10:133–173, 2008.

18. J. R. Quinlan. Learning logical definitions from relations. Machine Learning,
5:239–266, 1990.

19. M. Serrurier and H. Prade. Improving expressivity of inductive logic programming
by learning different kinds of fuzzy rules. Soft Computing, 11(5):459–466, 2007.

20. D. Shibata, N. Inuzuka, S. Kato, T. Matsui, and H. Itoh. An induction algorithm
based on fuzzy logic programming. In N. Zhong and L. Zhou, editors, Methodolo-
gies for Knowledge Discovery and Data Mining, volume 1574 of Lecture Notes in
Computer Science, pages 268–273. Springer, 1999.

21. U. Straccia. Reasoning within fuzzy description logics. Journal of Artificial Intel-
ligence Research, 14:137–166, 2001.

22. U. Straccia. Softfacts: a top-k retrieval engine for a tractable description logic
accessing relational databases. Technical report, 2009.

23. U. Straccia. Softfacts: A top-k retrieval engine for ontology mediated access to
relational databases. In Proceedings of the 2010 IEEE International Conference
on Systems, Man and Cybernetics (SMC-10), pages 4115–4122. IEEE Press, 2010.

An Inductive LP Approach to Learning Inclusion Axioms in Fuzzy DLs 71

On the satisfiability problem for a 4-level

quantified syllogistic and some applications to
modal logic

Domenico Cantone and Marianna Nicolosi Asmundo

Dipartimento di Matematica e Informatica, Università di Catania
Viale A. Doria 6, I-95125 Catania, Italy

e-mail: cantone@dmi.unict.it, nicolosi@dmi.unict.it

Abstract. We introduce a fragment of multi-sorted stratified syllogistic,
called 4LQSR, admitting variables of four sorts and a restricted form of
quantification, and prove that it has a solvable satisfiability problem
by showing that it enjoys a small model property. Then, we consider
the sublanguage (4LQSR)k of 4LQSR, where the length of quantifier
prefixes (over variables of sort 1) is bounded by k ≥ 0, and prove that its
satisfiability problem is NP-complete. Finally we show that modal logics
S5 and K45 can be expressed in (4LQSR)1.

1 Introduction

Most of the decidability results in computable set theory concern one-sorted
multi-level syllogistics, namely collections of formulae admitting variables of one
sort only, which range over the von Neumann universe of sets (see [6, 8] for a
thorough account of the state-of-art until 2001). Only a few stratified syllogistics,
where variables of several sorts are allowed, have been investigated, despite the
fact that in many fields of computer science and mathematics often one has
to deal with multi-sorted languages. For instance, in modal logics, one has to
consider entities of different types, namely worlds, formulae, and accessibility
relations.

In [10] an efficient decision procedure was presented for the satisfiability of
the Two-Level Syllogistic language (2LS). 2LS has variables of two sorts and
admits propositional connectives together with the basic set-theoretic operators
∪,∩, \, and the predicates =,∈, and ⊆. Then, in [2], it was shown that the ex-
tension of 2LS with the singleton operator and the Cartesian product operator
is decidable. Tarski’s and Presburger’s arithmetics extended with sets have been
analyzed in [4]. Subsequently, in [3], a three-sorted language 3LSSPU (Three-
Level Syllogistic with Singleton, Powerset and general Union) has been proved
decidable. Recently, in [7], it was shown that the Three-Level Quantified Syllo-
gistic with Restricted quantifiers language (3LQSR) is decidable. 3LQSR admits
variables of three sorts and a restricted form of quantification. Its vocabulary
contains only the predicate symbols = and ∈. In spite of that, 3LQSR allows to
express several constructs of set theory. Among them, the most comprehensive

one is the set former, which in turn enables one to express other operators like
the powerset operator, the singleton operator, and so on.

In this paper we present a decidability result for the satisfiability problem
of the set-theoretic language 4LQSR (Four-Level Quantified Syllogistic with Re-
stricted quantifiers). 4LQSR is an extension of 3LQSR which admits variables
of four sorts and a restricted form of quantification over variables of the first
three sorts. Its vocabulary contains the pairing operator 〈·, ·〉 and the predicate
symbols = and ∈.

We will prove that 4LQSR enjoys a small model property by showing how
one can extract, out of a given model satisfying a 4LQSR-formula ψ, another
model of ψ but of bounded finite cardinality. The construction of the finite
model extends the decision algorithm described in [7]. Concerning complexity
issues, we will show that the satisfiability problem for each of the sublanguages
(4LQSR)k of 4LQSR, whose formulae are restricted to have quantifier prefixes
over variables of sort 1 of length at most k ≥ 0, is NP-complete.

Clearly, 4LQSR can express all the set-theoretical constructs which are al-
ready expressible by 3LQSR. In addition, in 4LQSR one can plainly formalize
several properties of binary relations also needed to define accessibility relations
of well-known modal logics. 4LQSR can also express Boolean operations over
relations and the inverse operation over binary relations. Finally, we will show
that the modal logics S5 and K45 can be easily formalized in the (4LQSR)1 lan-
guage. Since the satisfiability problems for S5 and K45 are NP-complete, in terms
of computational complexity the algorithm we present here can be considered
optimal for both logics.

2 The language 4LQSR

Before defining the language 4LQSR, in Section 2.1 we present the syntax and
the semantics of a more general four-level quantified fragment, denoted 4LQS .
Then, in Section 2.2, we introduce some restrictions over the quantified formulae
of 4LQS which characterize 4LQSR-formulae.

2.1 The more general language 4LQS

Syntax of 4LQS . The four-level quantified language 4LQS involves four col-
lections V0, V1, V2, and V3 of variables.

(i) V0 contains variables of sort 0, denoted by x, y, z, . . .;
(ii) V1 contains variables of sort 1, denoted by X1, Y 1, Z1, . . .;
(iii) V2 contains variables of sort 2, denoted by X2, Y 2, Z2, . . .;
(iv) V3 contains variables of sort 3, denoted by X3, Y 3, Z3,

4LQS quantifier-free atomic formulae are classified as:

level 0: x = y, x ∈ X1, for x, y ∈ V0, X
1 ∈ V1;

level 1: X1 = Y 1, X1 ∈ X2, for X1, Y 1 ∈ V1, X
2 ∈ V2;

74 Domenico Cantone, Marianna Nicolosi Asmundo

level 2: X2 = Y 2, 〈x, y〉 = X2, 〈x, y〉 ∈ X3, X2 ∈ X3, for X2, Y 2 ∈ V2,
x, y ∈ V0, X3 ∈ V3.

4LQS quantified atomic formulae are classified as:

level 1: (∀z1) . . . (∀zn)ϕ0, with ϕ0 any propositional combination of quantifier-
free atomic formulae, and z1, . . . , zn variables of sort 0;

level 2: (∀Z1
1) . . . (∀Z1

m)ϕ1, where Z1
1 , . . . , Z

1
m are variables of sort 1, and ϕ1

is any propositional combination of quantifier-free atomic formulae and of
quantified atomic formulae of level 1;

level 3: (∀Z2
1) . . . (∀Z2

p)ϕ2, with ϕ2 any propositional combination of quantifier-
free atomic formulae and of quantified atomic formulae of levels 1 and 2, and
Z2

1 , . . . , Z
2
p variables of sort 2.

Finally, the formulae of 4LQS are all the propositional combinations of quantifier-
free atomic formulae of levels 0, 1, 2, and of quantified atomic formulae of levels
1, 2, 3.

Semantics of 4LQS . A 4LQS-interpretation is a pair M = (D,M), where D
is any nonempty collection of objects, called the domain or universe of M, and
M is an assignment over the variables of 4LQS such that

– Mx ∈ D, for each x ∈ V0;
– MX1 ∈ pow(D), for each X1 ∈ V1;
– MX2 ∈ pow(pow(D)), for all X2 ∈ V2;
– MX3 ∈ pow(pow(pow(D))), for all X3 ∈ V3.1

Moreover we put M〈x, y〉 = {{Mx}, {Mx,My}}. Let

- M = (D,M) be a 4LQS -interpretation,
- x1, . . . , xn ∈ V0,
- X1

1 , . . . , X
1
m ∈ V1,

- X2
1 , . . . , X

2
p ∈ V2,

- u1, . . . , un ∈ D,
- U1

1 , . . . , U
1
m ∈ pow(D),

- U2
1 , . . . , U

2
p ∈ pow(pow(D)).

By M[x1/u1, . . . , xn/un, X
1
1/U

1
1 , . . . , X

1
m/U

1
m, X

2
1/U

2
1 , . . . , X

2
p/U

2
p] , we denote

the interpretation M′ = (D,M ′) such that M ′xi = ui, for i = 1, . . . , n, M ′X1
j =

U1
j , for j = 1, . . . ,m, M ′X2

k = U2
k , for k = 1, . . . , p, and which otherwise co-

incides with M on all remaining variables. Throughout the paper we use the
abbreviations: Mz for M[z1/u1, . . . , zn/un], MZ1

for M[Z1
1/U

1
1 , . . . , Z

1
m/U

1
m],

and MZ2
for M[Z2

1/U
2
1 , . . . , Z

2
p/U

2
p].

Let ϕ be a 4LQS -formula and let M = (D,M) be a 4LQS -interpretation.
The notion of satisfiability of ϕ by M (denoted by M |= ϕ) is defined inductively
over the structure of the formula. Quantifier-free atomic formulae are interpreted
in the standard way according to the usual meaning of the predicates ‘=’ and
‘∈’, and quantified atomic formulae are evaluated as follows:
1 We recall that, for any set s, pow(s) denotes the powerset of s, i.e., the collection of

all subsets of s.

On the satisfiability problem for a 4-level quantified syllogistic 75

1. M |= (∀z1) . . . (∀zn)ϕ0 iff M[z1/u1, . . . , zn/un] |= ϕ0, for all u1, . . . , un ∈
D;

2. M |= (∀Z1
1) . . . (∀Z1

m)ϕ1 iff M[Z1
1/U

1
1 , . . . , Z

1
m/U

1
m] |= ϕ1, for all U1

1 , . . . , U
1
m

∈ pow(D);
3. M |= (∀Z2

1) . . . (∀Z2
p)ϕ2 iff M[Z2

1/U
2
1 , . . . , Z

2
p/U

2
p] |= ϕ2, for all U2

1 , . . . , U
2
p ∈

pow(pow(D)).

Finally, evaluation of compound formulae plainly follows the standard rules of
propositional logic. Let ψ be a 4LQS -formula, if M |= ψ, i.e. M satisfies ψ, then
M is said to be a 4LQS -model for ψ. A 4LQS -formula is said to be satisfiable
if it has a 4LQS -model. A 4LQS -formula is valid if it is satisfied by all 4LQS -
interpretations.

2.2 Characterizing 4LQSR

4LQSR is the subcollection of the formulae ψ of 4LQS for which the following
restrictions hold.

I. For every atomic formula (∀Z1
1), . . . , (∀Z1

m)ϕ1 of level 2 occurring in ψ and
every level 1 atomic formula of the form (∀z1) . . . (∀zn)ϕ0 occurring in ϕ1,
ϕ0 is a propositional combination of level 0 atoms and the condition

¬ϕ0 →
n∧

i=1

m∨

j=1

zi ∈ Z1
j (1)

is a valid 4LQS -formula (in this case we say that the atom (∀z1) . . . (∀zn)ϕ0

is linked to the variables Z1
1 , . . . , Z

1
m).

II. Every atomic formula of level 3 in ψ is either of type (∀Z2
1), . . . , (∀Z2

p)ϕ2,
where ϕ2 is a propositional combination of quantifier-free atomic formulae,
or of type (∀Z2)(Z2 ∈ X3 ↔ ¬(∀z1)(∀z2)¬(〈z1, z2〉 = Z2).

Restriction (I) is similar to the one described in [7]. In particular, following [7],
we recall that condition (1) guarantees that if a given interpretation assigns to
z1, . . . , zn elements of the domain that make ϕ0 false, then such elements must
be contained in at least one of the sets assigned to Z1

1 , . . . , Z
1
m. This fact is

needed in the proof of statement (ii) of Lemma 5 to make sure that satisfiability
is preserved in a suitable finite submodel (details, however, are not reported here
and can be found in [7]).

Through several examples, in [7] it is argued that condition (1) is not particu-
larly restrictive. Indeed, to establish whether a given 4LQS -formula is a 4LQSR-
formula, since condition (1) is a 2LS-formula, its validity can be checked using
the decision procedure in [10], as 4LQS is a conservative extension of 2LS. In
addition, in many cases of interest, condition (1) is just an instance of the simple
propositional tautology ¬(A→ B) → A, and thus its validity can be established
just by inspection.

76 Domenico Cantone, Marianna Nicolosi Asmundo

Restriction (II) has been introduced to be able to express binary relations
and several operations on relations keeping low, at the same time, the complexity
of the decision procedure of Section 3.2.

Finally, we observe that though the semantics of 4LQSR plainly coincides
with the one given above for 4LQS -formulae, in what follows we prefer to refer
to 4LQS -interpretations of 4LQSR-formulae as 4LQSR-interpretations.

3 The satisfiability problem for 4LQSR-formulae

We will solve the satisfiability problem for 4LQSR, i.e. the problem of establish-
ing for any given formula of 4LQSR whether it is satisfiable or not, as follows:

(i) firstly, we will show how to reduce effectively the satisfiability problem
for 4LQSR-formulae to the satisfiability problem for normalized 4LQSR-
conjunctions (these will be defined below);

(ii) secondly, we will prove that normalized 4LQSR-conjunctions enjoy a small
model property.

From (i) and (ii), the solvability of the satisfiability problem for 4LQSR follows
immediately. Additionally, by further elaborating on point (i), it could easily be
shown that indeed the whole collection of 4LQSR-formulae enjoys a small model
property.

3.1 Normalized 4LQSR-conjunctions

Let ψ be a formula of 4LQSR and let ψDNF be a disjunctive normal form of
ψ. Then ψ is satisfiable if and only if at least one of the disjuncts of ψDNF
is satisfiable. We recall that the disjuncts of ψDNF are conjunctions of literals,
namely atomic formulae or their negation. In view of the previous observations,
without loss of generality, we can suppose that our formula ψ is a conjunction
of level 0, 1, 2 quantifier-free literals and of level 1, 2, 3 quantified literals. In
addition, we can also assume that no variable occurs both bound and free in ψ
and that distinct occurrences of quantifiers bind distinct variables.

For decidability purposes, negative quantified conjuncts occurring in ψ can be
removed as follows. Let M = (D,M) be a model for ψ, and let ¬(∀z1) . . . (∀zn)ϕ0

be a negative quantified literal of level 1 in ψ. Since M |= ¬(∀z1) . . . (∀zn)ϕ0 if
and only if M[z1/u1, . . . , zn/un] |= ¬ϕ0, for some u1, . . . , un ∈ D, we can replace
¬(∀z1) . . . (∀zn)ϕ0 in ψ by ¬(ϕ0)

z1,...,zn

z′
1,...,z

′
n
, where z′1, . . . , z

′
n are newly introduced

variables of sort 0. Negative quantified literals of levels 2 and 3 can be dealt with
much in the same way and hence, we can further assume that ψ is a conjunction
of literals of the following types:

(1) quantifier-free literals of any level;
(2) quantified atomic formulae of level 1;
(3) quantified atomic formulae of levels 2 and 3 satisfying the restrictions given

in Section 2.2.

We call these formulae normalized 4LQSR-conjunctions.

On the satisfiability problem for a 4-level quantified syllogistic 77

3.2 A small model property for normalized 4LQSR-conjunctions

In view of the above reductions, we can limit ourselves to consider the satisfia-
bility problem for normalized 4LQSR-conjunctions only.

Thus, let ψ be a normalized 4LQSR-conjunction and assume that M =
(D,M) is a model for ψ.

We show how to construct, out of M, a finite 4LQSR-interpretation M∗ =
(D∗,M∗) which is a model of ψ and such that the size of D∗ depends solely on
the size of ψ. We will proceed as follows. First we outline a procedure for the
construction of a suitable nonempty finite universe D∗ ⊆ D. Then we show how
to relativize M to D∗ according to Definition 1 below, thus defining a finite
4LQSR-interpretation M∗ = (D∗,M∗). Finally, we prove that M∗ satisfies ψ.

Construction of the universe D∗. Let us denote by V ′0, V ′1, and V ′2 the
collections of variables of sort 0, 1, and 2 occurring free in ψ, respectively. Then
we construct D∗ according to the following steps:

Step 1: Let F = F1 ∪ F2, where
– F1 ‘distinguishes’ the set S = {MX2 : X2 ∈ V ′2}, in the sense that
K ∩ F1 �= K ′ ∩ F1 for every distinct K,K ′ ∈ S. Such a set F1 can be
constructed by the procedure Distinguish described in [5]. As shown in
[5], we can also assume that |F1| ≤ |S| − 1.

– F2 satisfies |MX2 ∩ F2| ≥ min(3, |MX2|), for every X2 ∈ V ′2. Plainly,
we can also assume that |F2| ≤ 3 · |V ′2|.

Step 2: Let {F1, . . . , Fk} = F\{MX1 : X1 ∈ V ′1} and let VF1 = {X1
1 , . . . , X

1
k} ⊆

V1 be such that VF1 ∩V ′1 = ∅ and VF1 ∩VB1 = ∅, where VB1 is the collection of
bound variables in ψ. Let M be the interpretation M[X1

1/F1, . . . , X
1
k/Fk].

Since the variables in VF1 do not occur in ψ (neither free nor bound), their
evaluation is immaterial for ψ and therefore, from now on, we identify M
and M.

Step 3: Let ∆ = ∆1 ∪∆2, where
– ∆1 distinguishes the set T = {MX1 : X1 ∈ (V ′1∪VF1)} and |∆1| ≤ |T |−1

holds (cf. Step 1 above).
– ∆2 satisfies |J ∩ ∆2| ≥ min(3, |J |), for every J ∈ {MX1 : X1 ∈ (V ′1 ∪
VF1)}. Plainly, we can assume that |∆2| ≤ 3 · |V ′1 ∪ VF1 |.
We then initialize D∗ by putting

D∗ := {Mx : x in V ′0} ∪∆.

Step 4: Let ψ1, . . . , ψr be the conjuncts of ψ. To each conjunct ψi of the form
(∀Z1

i,h1
) . . . (∀Z1

i,hmi
)ϕi we associate the collection ϕi,k1 , . . . , ϕi,k�i

of atomic
formulae of the form (∀z1) . . . (∀zn)ϕ0 present in the matrix of ψi, and call
the variables Z1

i,h1
, . . . , Z1

i,hmi
the arguments of ϕi,k1 , . . . , ϕi,k�i

. Let us put

Φ = {ϕi,kj : 1 ≤ j ≤ �i and 1 ≤ i ≤ r}.

78 Domenico Cantone, Marianna Nicolosi Asmundo

Then, for each ϕ ∈ Φ of the form (∀z1) . . . (∀zn)ϕ0 having Z1
1 , . . . , Z

1
m as

arguments, and for each ordered m-tuple (X1
h1
, . . . , X1

hm
) of variables in V ′1∪

VF1 , if M(ϕ0)
Z1

1 ,..., Z1
m

X1
h1
,...,X1

hm

= false we insert in D∗ elements u1, . . . , un ∈ D

such that
M [z1/u1, . . . , zn/un](ϕ0)

Z1
1 ,..., Z1

m

X1
h1
,...,X1

hm

= false ,

otherwise we leave D∗ unchanged.

Relativized interpretations. We introduce the notion of relativized interpre-
tation, to be used together with the domain D∗ constructed above, to define,
out of a model M = (D,M) for a 4LQSR-formula ψ, a finite interpretation
M∗ = (D∗,M∗) of bounded size satisfying ψ as well.

Definition 1. Let M = (D,M) be a 4LQSR-interpretation. Let D∗, V ′1,VF1 ,
and V ′2 be as above, and let d∗ ∈ D∗. The relativized interpretation of M with
respect to D∗, d∗, V ′1, VF1 , and V ′2, Rel(M, D∗, d∗,V ′1,VF1 ,V ′2) = (D∗,M∗), is
the interpretation such that

M∗x =
{
Mx , if Mx ∈ D∗

d∗ , otherwise ,

M∗X1 = MX1 ∩D∗ ,

M∗X2 = ((MX2 ∩ pow(D∗)) \ {M∗X1 : X1 ∈ (V ′1 ∪ VF1)})
∪{M∗X1 : X1 ∈ (V ′1 ∪ VF1), MX1 ∈MX2} ,

M∗〈x, y〉 = {{M∗x}, {M∗x,M∗y}} ,
M∗X3 = ((MX3 ∩ pow(pow(D∗))) \ {M∗X2 : X2 ∈ V ′2}) ,

∪{M∗X2 : X2 ∈ V ′2, MX2 ∈MX3} .

Concerning M∗X2 and M∗X3, we observe that they have been defined in such
a way that all the membership relations between variables of ψ of sorts 2 and 3
are the same in both the interpretations M and M∗. This fact will be proved
in the next section.

For ease of notation, we will often omit the reference to the element d∗ ∈ D∗

and write simply Rel(M, D∗,V ′1,VF1 ,V ′2) in place of Rel(M, D∗, d∗,V ′1,VF1 ,V ′2),
when d∗ is clear from the context.

The following useful properties are immediate consequences of the construc-
tion of D∗:

(A) if MX1 �= MY 1, then (MX1 �MY 1) ∩D∗ �= ∅,2
(B) if MX2 �= MY 2, there is a J ∈ (MX2�MY 2)∩ {MX1 : X1 ∈ (V ′1 ∪V ′F)}

such that J ∩D∗ �= ∅,
(C) if M〈x, y〉 �= MX2, there is a J ∈ (MX2 � M〈x, y〉) ∩ {MX1 : X1 ∈

(V ′1 ∪ V ′F)} such that J ∩D∗ �= ∅, and if J ∈ MX2, J ∩D∗ �= {Mx} and
J ∩D∗ �= {Mx,My},

2 We recall that for any sets s and t, s� t denotes the symmetric difference of s and
of t, namely the set (s \ t) ∪ (t \ s).

On the satisfiability problem for a 4-level quantified syllogistic 79

for any x, y ∈ V ′0, X1, Y 1 ∈ V ′1, and X2, Y 2 ∈ V ′2.

3.3 Soundness of the relativization

Let M = (D,M) be a 4LQSR-interpretation satisfying a given 4LQSR-formula
ψ, and let D∗, V ′1, VF1 , V ′2, and M∗ be defined as above. The main result of this
section is Theorem 1 which states that if M satisfies ψ, then M∗ satisfies ψ as
well. The proof of Theorem 1 exploits the technical Lemmas 1, 2, 3, 4, and 5
below. In particular, Lemma 1 states that M satisfies a quantifier-free atomic
formula ϕ fulfilling conditions (A), (B), and (C), if and only if M∗ satisfies ϕ
too. Lemmas 2, 3, and 4 claim that suitably constructed variants of M∗ and
the small models resulting by applying the construction of Section 3.2 to the
corresponding variants of M can be considered identical. Finally, Lemma 5,
stating that if M satisfies a quantified conjunction of ψ, then M∗ satisfies it as
well, is proved by applying Lemmas 1, 2, 3, and 4.

Proofs of Lemmas 1, 2, 3, and 4 are routine and can be found in Appendices
A.1, A.2, A.3, and A.4, respectively.

Lemma 1. The following statements hold:

(a) M∗ |= x = y iff M |= x = y, for all x, y ∈ V0 such that Mx,My ∈ D∗;
(b) M∗ |= x ∈ X1 iff M |= x ∈ X1, for all X1 ∈ V1 and x ∈ V0 such that

Mx ∈ D∗;
(c) M∗ |= X1 = Y 1 iff M |= X1 = Y 1, for all X1, Y 1 ∈ V1 such that condition

(A) holds;
(d) M∗ |= X1 ∈ X2 iff M |= X1 ∈ X2, for all X1 ∈ (V ′1 ∪ V ′F), X2 ∈ V2;
(e) M∗ |= X2 = Y 2 iff M |= X2 = Y 2, for all X2, Y 2 ∈ V2 such that condition

(B) holds;
(f) M∗ |= 〈x, y〉 = X2 iff M |= 〈x, y〉 = X2, for all x, y ∈ V0 such that

Mx,My ∈ D∗ and X2 ∈ V2 such that condition (C) holds;
(g) M∗ |= 〈x, y〉 ∈ X3 iff M |= 〈x, y〉 ∈ X3, for all x, y ∈ V0 such that

Mx,My ∈ D∗ and X2 ∈ V2 such that condition (C) holds;
(h) M∗ |= X2 ∈ X3 iff M |= X2 ∈ X3, for all x, y ∈ V0 such that Mx,My ∈

D∗ and X2 ∈ V2 such that conditions (B) and (C) hold. �

In view of the next technical lemmas, we introduce the following notations.
Let u1, . . . , un ∈ D∗, U1

1 , . . . , U
1
m ∈ pow(D∗), and U2

1 , . . . , U
2
p ∈ pow(pow(D∗)).

Then we put

M∗,z = M∗[z1/u1, . . . , zn/un],

M∗,Z1
= M∗[Z1

1/U
1
1 , . . . , Z

1
m/U

1
m],

M∗,Z2
= M∗[Z2

1/U
2
1 , . . . , Z

2
p/U

2
p],

and

Mz,∗ = Rel(Mz, D∗,V ′1,VF1 ,V ′2),
MZ1,∗ = Rel(MZ1

, D∗,V ′1 ∪ {Z1
1 , . . . , Z

1
m},VF1 ,V ′2),

MZ2,∗ = Rel(MZ2
, D∗,F∗,V ′1,VF1 ,V ′2 ∪ {Z2

1 , . . . , Z
2
p}).

80 Domenico Cantone, Marianna Nicolosi Asmundo

The next three lemmas claim that, under certain conditions, the following pairs
of 4LQSR-interpretations M∗,z and Mz,∗, M∗,Z1

and MZ1,∗, M∗,Z2
and

MZ2,∗ can be identified.

Lemma 2. Let u1, . . . , un ∈ D∗, and let z1, . . . , zn ∈ V0. Then, for every x, y ∈
V0, X1 ∈ V1, X2 ∈ V2, X3 ∈ V3, we have:

(i) M∗,zx = Mz,∗x,
(ii) M∗,zX1 = Mz,∗X1,
(iii) M∗,zX2 = Mz,∗X2,
(iv) M∗,zX3 = Mz,∗X3. �

Lemma 3. Let Z1
1 , . . . , Z

1
m ∈ V1 \ (V ′1 ∪ VF1) and U1

1 , . . . , U
1
m ∈ pow(D∗) \

{M∗X1 : X1 ∈ (V ′1∪VF1)}. Then, the 4LQSR-interpretations M∗,Z1
and MZ1,∗

coincide. �

Lemma 4. Let Z2
1 , . . . , Z

2
p ∈ V2\V ′2 and U2

1 , . . . , U
2
p ∈ pow(pow(D∗))\{M∗X2 :

X2 ∈ V ′2}. Then the 4LQSR-interpretations M∗,Z2
and MZ2,∗ coincide. �

The following lemma proves that satisfiability is preserved in the case of quan-
tified atomic formulae.

Lemma 5. Let (∀z1) . . . (∀zn)ϕ0, (∀Z1
1) . . . (∀Z1

m)ϕ1, (∀Z2
1) . . . (∀Z2

p)ϕ2, and
(∀Z2)(Z2 ∈ X3 ↔ ¬(∀z1, z2)¬(〈z1, z2〉 = Z2)) be conjuncts of ψ. Then

(i) if M |= (∀z1) . . . (∀zn)ϕ0, then M∗ |= (∀z1) . . . (∀zn)ϕ0;
(ii) if M |= (∀Z1) . . . (∀Zm)ϕ1, then M∗ |= (∀Z1) . . . (∀Zm)ϕ1;
(iii) if M |= (∀Z2

1) . . . (∀Z2
p)ϕ2, then M∗ |= (∀Z2

1) . . . (∀Z2
p)ϕ2;

(iv) if M |= (∀Z2)(Z2 ∈ X3 ↔ ¬(∀z1, z2)¬(〈z1, z2〉 = Z2)), then M∗ |=
(∀Z2)(Z2 ∈ X3 ↔ ¬(∀z1, z2)¬(〈z1, z2〉 = Z2)).

Proof. (i) Assume by contradiction that there exist u1, . . . , un ∈ D∗ such that
M∗,z �|= ϕ0. Then, there must be an atomic formula ϕ′0 in ϕ0 that is inter-
preted differently in M∗,z and in Mz . Recalling that ϕ0 is a propositional
combination of quantifier-free atomic formulae of any level, we can suppose
that ϕ′0 is X2 = Y 2 and, without loss of generality, assume that M∗,z �|=
X2 = Y 2. Then M∗,zX2 �= M∗,zY 2, so that, by Lemma 2, Mz,∗X2 �=
Mz,∗Y 2. Then, Lemma 1 yields MzX2 �= MzY 2, a contradiction. The other
cases are proved in an analogous way.

(ii) This case can proved much along the same lines as the proof of case (ii) of
Lemma 4 in [7]. Here, one has only to take care of the fact that the collection
of relevant variables of sort 1 for ψ are not just the variables occurring free in
ψ, namely the ones in V ′1, but also the variables in VF1 , introduced to denote
the elements distinguishing the sets M∗X2, for X2 ∈ V ′2.

(iii) The proof is carried out as in case (ii).

On the satisfiability problem for a 4-level quantified syllogistic 81

(iv) Assume by contradiction that there exists a U ∈ pow(pow(D∗)) such that
M∗,Z2 �|= (Z2 ∈ X3 ↔ ¬(∀z1, z2)¬(〈z1, z2〉 = Z2)). We can distinguish two
cases:
1. If there is a X2 ∈ V ′2 such that M∗X2 = U , then M∗ �|= (X2 ∈ X3 ↔
¬(∀z1, z2)¬(〈z1, z2〉 = X2)) and eitherX2 ∈ X3 or ¬(∀z1, z2)¬(〈z1, z2〉 =
X2) must be interpreted differently in M∗ and in M.
By Lemma 1, X2 ∈ X3 is interpreted in the same way in M∗ and in
M. By case (i) of this lemma, if M∗ |= ¬(∀z1, z2)¬(〈z1, z2〉 = X2)
then M |= ¬(∀z1, z2)¬(〈z1, z2〉 = X2). Thus, the only case to be con-
sidered is when M∗ |= (∀z1, z2)¬(〈z1, z2〉 = X2). Assume that M |=
¬(∀z1, z2)¬(〈z1, z2〉 = X2). Then MX2 must be a pair {{u}, {u, v}}, for
some u, v ∈ D. But then by the construction of the universe D∗, we have
u, v ∈ D∗, contradicting the hypothesis that M∗ |= (∀z1, z2)¬(〈z1, z2〉 =
X2).

2. If U �= M∗X2, for everyX2 ∈ V ′2, either Z2 ∈ X3 or ¬(∀z1, z2)¬(〈z1, z2〉 =
Z2) has to be interpreted in a different way in M∗,Z2

and in MZ2
.

By Lemmas 4 and 1, and by case (i) of this lemma, Z2 ∈ X3 has the same
evaluation in M∗,Z2

and in MZ2
, and if M∗,Z2 |= ¬(∀z1, z2)¬(〈z1, z2〉 =

Z2) then MZ2 |= ¬(∀z1, z2)¬(〈z1, z2〉 = Z2). The only case that still
has to be analyzed is when M∗,Z2 |= (∀z1, z2)¬(〈z1, z2〉 = Z2). By
Lemma 4, MZ2,∗ |= (∀z1, z2)¬(〈z1, z2〉 = Z2). Let us assume that
MZ2 �|= (∀z1, z2)¬(〈z1, z2〉 = Z2). Then U must be a pair {{u}, {u, v}},
u, v ∈ D. Since U ∈ pow(pow(D∗)), then u, v ∈ D∗, contradicting that
MZ2,∗ |= (∀z1, z2)¬(〈z1, z2〉 = Z2).

Next, we can state our main result.

Theorem 1. Let M be a 4LQSR-interpretation satisfying ψ. Then M∗ |= ψ.

Proof. We have to prove that M∗ |= ψ′ for each literal ψ′ occurring in ψ. Each
ψ′ must be of one of the types introduced in Section 3.1. By applying Lemmas
1 or 5 to every ψ′ (according to its type) we obtain the thesis.

From the above reduction and relativization steps, it is not hard to derive the
following result:

Corollary 1. The fragment 4LQSR enjoys a small model property (and there-
fore its satisfiability problem is solvable). �

3.4 Complexity issues

Let (4LQSR)k be the sublanguage of 4LQSR in which the quantifier prefixes
of quantified atoms of level 2 have length not exceeding k. Then the following
result holds.

82 Domenico Cantone, Marianna Nicolosi Asmundo

Lemma 6. The satisfiability problem for (4LQSR)k is NP-complete, for any
k ∈ N.

Proof. NP-hardness is trivially proved by reducing an instance of the satisfiabil-
ity problem of propositional logic to our problem.

To prove that our problem is in NP, we reason as follows. Let ϕ be a satisfiable
(4LQSR)k-formula. Let ϕDNF be a disjunctive normal form of ϕ. Then there is a
disjunct ψ of ϕDNF that is satisfied by a (4LQSR)k-interpretation M = (D,M).
After the normalization step, ψ is a normalized (4LQSR)k-conjunction satisfied
by M and, according to the procedure of Section 3.2, we can construct a small
interpretation M∗ = (D∗,M∗) satisfying ψ and such that |D∗| is polynomial
in the size of ψ. This can be shown by recalling that |F1| ≤ |S| − 1 ≤ |V ′2| − 1
and that |F2| ≤ 3|V ′2| (cf. Step 1 of the procedure in Section 3.2). Thus, clearly,
|F| ≤ 4|V ′2| − 1. Analogously, from Step 3, |∆| ≤ 4(|V ′1| + (4|V ′2| − 1)) − 1, and
|D∗| (in the initialization phase) is bounded by |V ′0|+4|V ′1|+16|V ′2|− 5. Finally,
after Step 4, if we let Ln denote the maximal length of the quantifier prefix of
ϕ = (∀z1) . . . (∀zn)ϕ0, with ϕ varying in Φ, then |D∗| ≤ |V ′0| + 4|V ′1| + 16|V ′2| −
5+ ((|V ′1|+4|V ′2|− 1)kLn)|Φ|. Thus the size of D∗ is polynomial in the size of ψ.
Since M∗ |= ψ can be verified in polynomial time and the size of ψ is polynomial
w.r.t. the size of ϕ, it results that the satisfiability problem for (4LQSR)k is in
NP, and therefore it is NP-complete.

4 Expressiveness of the language 4LQSR

As discussed in [7], 4LQSR can express a restricted variant of the set former,
which in turn allows to express other significant set operators such as binary
union, intersection, set difference, the singleton operator, the powerset operator
(over subsets of the universe only), etc. More specifically, atomic formulae of type
X1 = {z : ϕ(z)} or X i = {X i−1 : ϕ(X i−1)}, for i ∈ {2, 3}, can be expressed in
4LQSR by the formulae

(∀z)(z ∈ X1 ↔ ϕ(z)) (2)

(∀X i−1)(X i−1 ∈ X i ↔ ϕ(X i−1)) (3)

provided that they satisfy the syntactic constraints of 4LQSR.
Since 4LQSR is a superlanguage of 3LQSR, as shown in [7] 4LQSR can ex-

press the stratified syllogistic 2LS and the sublanguage 3LSSP of 3LSSPU not
involving the set-theoretic construct of general union. We recall that 3LSSPU
admits variables of three sorts and, besides the usual set-theoretical constructs,
it involves the ‘singleton set’ operator {·}, the powerset operator pow, and the
general union operator Un.

3LSSP can plainly be decided by the decision procedure presented in [3] for
the whole 3LSSPU .

Other constructs of set theory which are expressible in the 4LQSR formalism,
as shown in [7], are:

On the satisfiability problem for a 4-level quantified syllogistic 83

Binary relation (∀Z2)(Z2 ∈ R3 ↔ ¬(∀z1, z2)¬(〈z1, z2〉 = Z2))
Reflexive (∀z1)(〈z1, z1〉 ∈ R3)
Symmetric (∀z1, z2)(〈z1, z2〉 ∈ R3 → 〈z2, z1〉 ∈ R3)
Transitive (∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z2, z3〉 ∈ R3) → 〈z1, z3〉 ∈ R3)
Euclidean (∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z1, z3〉 ∈ R3) → 〈z2, z3〉 ∈ R3)
Weakly-connected (∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z1, z3〉 ∈ R3)

→ (〈z2, z3〉 ∈ R3 ∨ z2 = z3 ∨ 〈z3, z2〉 ∈ R3))
Irreflexive (∀z1)¬(〈z1, z1〉 ∈ R3)
Intransitive (∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z2, z3〉 ∈ R3) → ¬〈z1, z3〉 ∈ R3)
Antisymmetric (∀z1, z2)((〈z1, z2〉 ∈ R3 ∧ 〈z2, z1〉 ∈ R3) → (z1 = z2))
Asymmetric (∀z1, z2)(〈z1, z2〉 ∈ R3 → ¬(〈z2, z1〉 ∈ R3))

Table 1. 4LQSR formalization of conditions of accessibility relations

Intersection R3 = R3
1 ∩R3

2 (∀Z2)(Z2 ∈ R3 ↔ (Z2 ∈ R3
1 ∧ Z2 ∈ R3

2))
Union R3 = R3

1 ∪R3
2 (∀Z2)(Z2 ∈ R3 ↔ (Z2 ∈ R3

1 ∨ Z2 ∈ R3
2))

Complement R3
1 = R3

2 (∀Z2)(Z2 ∈ R3
1 ↔ ¬(Z2 ∈ R3

2))
Set difference R3 = R3

1 \R3
2 (∀Z2)(Z2 ∈ R3 ↔ (Z2 ∈ R3

1 ∧ ¬(Z2 ∈ R3
2)))

Set inclusion R3
1 ⊆ R3

2 (∀Z2)(Z2 ∈ R3
1 → Z2 ∈ R3

2)
Table 2. 4LQSR formalization of Boolean operations over relations

– the literal X2 = pow≤h(X
1), where pow≤h(X

1) denotes the collection of all
the subsets of X1 having at most h elements;

– the literal X2 = pow=h(X1), where pow=h(X1) denotes the collection of
subsets of X1 with exactly h elements;

– the unordered Cartesian product X2 = X1
1 ⊗ . . .⊗X1

n;
– the literal A = pow∗(X1

1 , . . . , X
1
n), where pow∗(X1

1 , . . . , X
1
n) is a variant of

the powerset which denotes the collection

{Z : Z ⊆
n⋃

i=1

X1
i and Z ∩X1

i �= ∅, for all 1 ≤ i ≤ n}

introduced in [1].

4.1 Other applications of 4LQSR

Within the 4LQSR language it is also possible to define binary relations over
elements of a domain together with several conditions on them which character-
ize accessibility relations of well-known modal logics. These formalizations are
illustrated in Table 1.

Usual Boolean operations over relations can be defined as shown in Table
2. Within the 4LQSR fragment it is also possible to define the inverse of a
given binary relation R3

1, namely R3
2 = (R3

1)−1, by means of the 4LQSR-formula
(∀z1, z2)(〈z1, z2〉 ∈ R3

1 ↔ 〈z2, z1〉 ∈ R3
2).

84 Domenico Cantone, Marianna Nicolosi Asmundo

In the next section we will show how the 4LQSR fragment can be used to
formalize some normal modal logics.

4.2 Some normal modal logics expressible in 4LQSR

The modal language LM is based on a countably infinite set of propositional
letters P = {p1, p2, . . .}, the classical propositional connectives ‘¬’, ‘∧’ , and ‘∨’,
the modal operators ‘�’, ‘♦’ (and the parentheses). LM is the smallest set such
that P ⊆ LM , and such that if ϕ, ψ ∈ LM , then ¬ϕ, ϕ∧ψ, ϕ∨ψ, �ϕ, ♦ϕ ∈ LM .
Lower case letters like p denote elements of P and Greek letters like ϕ and ψ
represent formulae of LM . Given a formula ϕ of LM , we indicate with SubF (ϕ)
the set of the subformulae of ϕ. The modal depth of a formula ϕ is the maximum
nesting depth of modalities occurring in ϕ.

A normal modal logic is any subset of LM which contains all the tautologies
and the axiom

K : �(p1 → p2) → (�p1 → �p2) ,
and which is closed with respect to modus ponens, substitution, and necessitation
(the reader may consult a text on modal logic like [9] for more details).

A Kripke frame is a pair 〈W,R〉 such that W is a nonempty set of possible
worlds and R is a binary relation on W called accessibility relation. If R(w, u)
holds, we say that the world u is accessible from the world w. A Kripke model is
a triple 〈W,R, h〉, where 〈W,R〉 is a Kripke frame and h is a function mapping
propositional letters into subsets of W . Thus, h(p) is the set of all the worlds
where p is true.

Let K = 〈W,R, h〉 be a Kripke model and let w be a world in K . Then, for
every p ∈ P and for every ϕ, ψ ∈ LM , the relation of satisfaction |= is defined as
follows:
– K , w |= p iff w ∈ h(p);
– K , w |= ϕ ∨ ψ iff K , w |= ϕ or K , w |= ψ;
– K , w |= ϕ ∧ ψ iff K , w |= ϕ and K , w |= ψ;
– K , w |= ¬ϕ iff K , w �|= ϕ;
– K , w |= �ϕ iff K , w′ |= ϕ, for every w′ ∈ W such that (w,w′) ∈ R;
– K , w |= ♦ϕ iff there is a w′ ∈ W such that (w,w′) ∈ R and K , w′ |= ϕ.

A formula ϕ is said to be satisfied at w in K if K , w |= ϕ; ϕ is said to be valid
in K (and we write K |= ϕ), if K , w |= ϕ, for every w ∈W .

The smallest normal modal logic is K, which contains only the modal axiom K
and whose accessibility relation R can be any binary relation. The other normal
modal logics admit together with K other modal axioms drawn from the ones in
Table 3.

Translation of a normal modal logic into the 4LQSR language is based on
the semantics of propositional and modal operators. For any normal modal logic,
the formalization of the semantics of modal operators depends on the axioms
that characterize the logic. In the case of the logics S5 and K45, proved to be
NP-complete in [11], and introduced next, the 4LQSR formalization of the modal
formulae �ϕ and ♦ϕ turns out to be straightforward and thus these logics can be
entirely translated into the 4LQSR language. This is illustrated in what follows.

On the satisfiability problem for a 4-level quantified syllogistic 85

Axiom Schema Condition on R (see Table 1)
T �p→ p Reflexive
5 ♦p→ �♦p Euclidean
B p→ �♦p Symmetric
4 �p→ ��p Transitive
D �p→ ♦p Serial: (∀w)(∃u)R(w, u)

Table 3. Axioms of normal modal logics

The logic S5. Modal logic S5 is the strongest normal modal system. It can
be obtained from the logic K in several ways. One of them consists in adding
axioms T and 5 from Table 3 to the logic K. Given a formula ϕ, a Kripke model
K = 〈W,R, h〉, and a world w ∈ W , the semantics of the modal operators can
be defined as follows:

– K , w |= �ϕ iff K , v |= ϕ, for every v ∈W ,
– K , w |= ♦ϕ iff K , v |= ϕ, for some v ∈ W .

This makes it possible to translate a formula ϕ of S5 into the 4LQSR language.
For the purpose of simplifying the definition of the translation function τS5

given below, the concept of “empty formula” is introduced, to be denoted by Λ,
and not interpreted in any particular way. The only requirement on Λ needed
for the definition given next is that Λ ∧ ψ and ψ ∧ Λ are to be considered as
syntactic variations of ψ, for any 4LQSR-formula ψ.

For every propositional letter p, let τ1
S5(p) = X1

p , where X1
p ∈ V1, and let

τ2
S5 : S5 → 4LQSR be the function defined recursively as follows:

– τ2
S5(p) = Λ,

– τ2
S5(¬ϕ) = (∀z)(z ∈ X1

¬ϕ ↔ ¬(z ∈ X1
ϕ)) ∧ τ2

S5(ϕ),

– τ2
S5(ϕ1 ∧ϕ2) = (∀z)(z ∈ X1

ϕ1∧ϕ2
↔ (z ∈ X1

ϕ1
∧ z ∈ X1

ϕ2
))∧ τ2

S5(ϕ1)∧ τ2
S5(ϕ2),

– τ2
S5(ϕ1 ∨ϕ2) = (∀z)(z ∈ X1

ϕ1∨ϕ2
↔ (z ∈ X1

ϕ1
∨ z ∈ X1

ϕ2
))∧ τ2

S5(ϕ1)∧ τ2
S5(ϕ2),

– τ2
S5(�ϕ) =

(∀z)(z ∈ X1
ϕ) → (∀z)(z ∈ X1

�ϕ) ∧ ¬(∀z)(z ∈ X1
ϕ) → (∀z)¬(z ∈

X1
�ϕ) ∧ τ2

S5(ϕ),

– τ2
S5(♦ϕ) =

¬(∀z)¬(z ∈ X1
ϕ) → (∀z)(z ∈ X1

♦ϕ) ∧ (∀z)¬(z ∈ X1
ϕ) → (∀z)¬(z ∈

X1
♦ϕ) ∧ τ2

S5(ϕ),

where Λ is the empty formula and X1
¬ϕ, X

1
ϕ, X

1
ϕ1∧ϕ2

, X1
ϕ1∨ϕ2

, X1
ϕ1
, X1

ϕ2
∈ V1.

Finally, for every ϕ in S5, if ϕ is a propositional letter in P we put τS5(ϕ) =
τ1
S5(ϕ), otherwise τS5(ϕ) = τ2

S5(ϕ).

86 Domenico Cantone, Marianna Nicolosi Asmundo

Even though the accessibility relation R is not used in the translation, we
can give its formalization in the 4LQSR fragment. Let U be defined so that
(∀z)(z ∈ U), then R can be defined in the following two ways:

1. as a variable of sort 2, R2, such that
(∀Z1)(Z1 ∈ R2 ↔ (Z1 ∈ pow=1(U) ∨ Z1 ∈ pow=2(U))) ,

2. as a variable of sort 3, R3, such that
(∀Z2)(Z2 ∈ R3 ↔ ¬(∀z1, z2)¬(〈z1, z2〉 = Z2)) ∧ (∀z1)(〈z1, z1〉 ∈ R3)

∧(∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z1, z3〉 ∈ R3) → 〈z2, z3〉 ∈ R3).

Correctness of the above translation is guaranteed by the following lemma, whose
proof can be found in Appendix A.5.

Lemma 7. For every formula ϕ of the logic S5, ϕ is satisfiable in a model
K = 〈W,R, h〉 iff there is a 4LQSR-interpretation satisfying x ∈ Xϕ. �

It can be checked that τS5(ϕ) is polynomial in the size of ϕ and that its sat-
isfiability can be verified in nondeterministic polynomial time since it belongs
to (4LQSR)1. Consequently, the decision algorithm presented in this paper to-
gether with the translation function introduced above can be considered an op-
timal procedure (in terms of its computational complexity class) to decide the
satisfiability of any formula ϕ of S5. Moreover, it can be noticed that if we apply
the first definition of R, S5 can be expressed by the language 3LQSR presented
in [7].

The logic K45. The normal modal logic K45 is obtained from the logic K
by adding axioms 4 and 5 described in Table 3 to K. Semantics of the modal
operators � and ♦ for the logic K45 can be described as follows. Given a formula
ϕ of K45 and a Kripke model K = 〈W,R, h〉,

– K |= �ϕ iff K , v |= ϕ, for every v ∈ W s.t. there is a w′ ∈ W with (w′, v) ∈ R,
– K |= ♦ϕ iff K , v |= ϕ, for some v ∈ W s.t. there is a w′ ∈W with (w′, v) ∈ R.

It is convenient, before translating K45 into the 4LQSR fragment, to introduce
the 4LQSR-formula which describes the semantics of the accessibility relation R
of the logic K45:

(∀Z2)(Z2 ∈ R3 ↔ ¬(∀z1)(∀z2)¬(〈z1, z2〉 = Z2))
∧(∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z2, z3〉 ∈ R3) → 〈z1, z3〉 ∈ R3)

∧(∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z1, z3〉 ∈ R3) → 〈z2, z3〉 ∈ R3).

The transformation function τK45 : K45 → 4LQSR is constructed as for S5.
For every ϕ ∈ K45 we put τK45(ϕ) = τ1

K45(ϕ), if ϕ is a propositional letter and
τK45(ϕ) = τ2

K45(ϕ) otherwise. τ1
K45(p) = X1

p , withX1
p ∈ V1, for every propositional

letter p, and τ2
K45(ϕ) is defined inductively over the structure of ϕ. We report

the definition of τ2
K45(ϕ) only when ϕ = �ψ and ϕ = ♦ψ, as the other cases are

identical to τ2
S5(ϕ), defined in the previous section:

On the satisfiability problem for a 4-level quantified syllogistic 87

– τ2
K45(�ψ) = (∀z1)((¬(∀z2)¬(〈z2, z1〉 ∈ R3)) → z1 ∈ X1

ψ) → (∀z)(z ∈ X1
�ψ)

∧¬(∀z1)¬((¬(∀z2)¬(〈z2, z1〉 ∈ R3)) ∧ ¬(z1 ∈ X1
ψ)) → (∀z)¬(z ∈

X1
�ψ) ∧ τ2

K45(ψ);

– τ2
K45(♦ψ) = ¬(∀z1)¬((¬(∀z2)¬(〈z2, z1〉 ∈ R3)) ∧ z1 ∈ X1

ψ) → (∀z)(z ∈ X1
♦ψ)

∧(∀z1)(((∀z2)¬(〈z2, z1〉 ∈ R3))∨¬(z1 ∈ X1
ψ))) → (∀z)¬(z ∈ X1

♦ψ)∧ τ2
K45(ψ).

The following lemma, proved in Appendix A.6, shows the correctness of the
translation.

Lemma 8. For every formula ϕ of the logic τK45, ϕ is satisfiable in a model
K = 〈W,R, h〉 iff there is a 4LQSR-interpretation satisfying x ∈ Xϕ. �

As for S5, it can be checked that τK45(ϕ) is polynomial in the size of ϕ and
that its satisfiability can be verified in nondeterministic polynomial time since it
belongs to the sublanguage (4LQSR)1 of 4LQSR. Thus, the decision algorithm
we have presented and the translation function introduced above represent an
optimal procedure (in terms of its computational complexity class) to decide
satisfiability of any formula ϕ of K45.

5 Conclusions

We have presented a decidability result for the satisfiability problem for the
fragment 4LQSR of multi-sorted stratified syllogistic embodying variables of
four sorts and a restricted form of quantification. As the semantics of the modal
formulae �ϕ and ♦ϕ in the modal logics S5 and K45 can be easily formalized in
4LQSR, it follows that 4LQSR can express both logics S5 and K45.

Currently, in the case of modal logics characterized by having a liberal ac-
cessibility relation like K, we are not able to translate the modal formulae �ϕ
and ♦ϕ in 4LQSR. The same problem concerns also the composition operation
on binary relations and the set-theoretical operation of general union. We intend
to investigate such a question more in depth and verify whether a formalization
of these constructs is still possible in 4LQSR or if an extension of the language
4LQSR is required. In the same direction, we aim at finding a characterization
of the conditions that an accessibility relation has to fulfil in order for a modal
logic to be formalized in 4LQSR. We also intend to find classes of modal formulae
with bounded modal nesting and multi-modal logics that can be embedded in
the 4LQSR framework. Finally, since 4LQSR is able to express Boolean opera-
tions on relations, we plan to investigate the possibility of translating fragments
of Boolean modal logics into 4LQSR.

References

1. D. Cantone. Decision procedures for elementary sublanguages of set theory: X.
Multilevel syllogistic extended by the singleton and powerset operators. Journal
of Automated Reasoning, volume 7, number 2, pages 193–230, Kluwer Academic
Publishers, Hingham, MA, USA, 1991.

88 Domenico Cantone, Marianna Nicolosi Asmundo

2. D. Cantone and V. Cutello. A decidable fragment of the elementary theory of
relations and some applications. In ISSAC ’90: Proceedings of the international
symposium on Symbolic and algebraic computation, pages 24–29, New York, NY,
USA, 1990. ACM Press.

3. D. Cantone and V. Cutello. Decision procedures for stratified set-theoretic syllo-
gistics. In Manuel Bronstein, editor, Proceedings of the 1993 International Sym-
posium on Symbolic and Algebraic Computation, ISSAC’93 (Kiev, Ukraine, July
6-8, 1993), pages 105–110, New York, 1993. ACM Press.

4. D. Cantone, V. Cutello, and J. T. Schwartz. Decision problems for Tarski and
Presburger arithmetics extended with sets. In CSL ’90: Proceedings of the 4th
Workshop on Computer Science Logic, pages 95–109, London, UK, 1991. Springer-
Verlag.

5. D. Cantone and A. Ferro Techniques of computable set theory with applications
to proof verification. Comm. Pure Appl. Math., pages 901–945, vol. XLVIII, 1995.
Wiley.

6. D. Cantone, A. Ferro, and E. Omodeo. Computable set theory. Clarendon Press,
New York, NY, USA, 1989.

7. D. Cantone and M. Nicolosi Asmundo. On the satisfiability problem for a 3-level
quantified syllogistic. In Proceedings of CEDAR’08”. Sydney, Australia, 11 August,
2008.

8. D. Cantone, E. Omodeo, and A.Policriti. Set Theory for Computing - From deci-
sion procedures to declarative programming with sets. Springer-Verlag, Texts and
Monographs in Computer Science, 2001.

9. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, Cambridge Tracts in Theoretical Computer Science, 2001.

10. A. Ferro and E.G. Omodeo. An efficient validity test for formulae in extensional
two-level syllogistic. Le Matematiche, 33:130–137, 1978.

11. R. Ladner. The computational complexity of provability in systems of modal
propositional logic. SIAM Journal of Computing, 6: 467-480, 1977.

On the satisfiability problem for a 4-level quantified syllogistic 89

A Proofs of some lemmas

A.1 Proof of Lemma 1

Lemma 1. The following statements hold:

(a) M∗ |= x = y iff M |= x = y, for all x, y ∈ V0 such that Mx,My ∈ D∗;
(b) M∗ |= x ∈ X1 iff M |= x ∈ X1, for all X1 ∈ V1 and x ∈ V0 such that

Mx ∈ D∗;
(c) M∗ |= X1 = Y 1 iff M |= X1 = Y 1, for all X1, Y 1 ∈ V1 such that condition

(A) holds;
(d) M∗ |= X1 ∈ X2 iff M |= X1 ∈ X2, for all X1 ∈ (V ′1 ∪ V ′F), X2 ∈ V2;
(e) M∗ |= X2 = Y 2 iff M |= X2 = Y 2, for all X2, Y 2 ∈ V2 such that condition

(B) holds;
(f) M∗ |= 〈x, y〉 = X2 iff M |= 〈x, y〉 = X2, for all x, y ∈ V0 such that

Mx,My ∈ D∗ and X2 ∈ V2 such that condition (C) holds;
(g) M∗ |= 〈x, y〉 ∈ X3 iff M |= 〈x, y〉 ∈ X3, for all x, y ∈ V0 such that

Mx,My ∈ D∗ and X2 ∈ V2 such that condition (C) holds;
(h) M∗ |= X2 ∈ X3 iff M |= X2 ∈ X3, for all x, y ∈ V0 such that Mx,My ∈

D∗ and X2 ∈ V2 such that conditions (B) and (C) hold.

Proof. (a) Let x, y ∈ V0 be such that Mx,My ∈ D∗. Then M∗x = Mx and
M∗y = My, so we have immediately that M∗ |= x = y iff M |= x = y.

(b) Let X1 ∈ V1 and let x ∈ V0 be such that Mx ∈ D∗. Then M∗x = Mx, so
that M∗x ∈M∗X1 iff Mx ∈MX1 ∩D∗ iff Mx ∈MX1.

(c) IfMX1 = MY 1, then plainlyM∗X1 = M∗Y 1. On the other hand, ifMX1 �=
MY 1, then, by condition (A), (MX1 �MY 1) ∩D∗ �= ∅ and thus M∗X1 �=
M∗Y 1.

(d) If MX1 ∈ MX2, then M∗X1 ∈ M∗X2. On the other hand, suppose by
contradiction that MX1 /∈ MX2 and M∗X1 ∈ M∗X2. Then, there must
necessarily be a Z1 ∈ (V ′1 ∪ VF1) with MZ1 ∈ MX2, MZ1 �= MX1, and
M∗X1 = M∗Z1. Since MZ1 �= MX1 and (MZ1 � MX1) ∩ D∗ �= ∅, by
condition (A), we have M∗X1 �= M∗Z1, which is a contradiction.

(e) If MX2 = MY 2, then M∗X2 = M∗Y 2. On the other hand, if MX2 �= MY 2,
by condition (B), there is a J ∈ (MX2�MY 2) ∩ {MX1 : X1 ∈ (V ′1 ∪VF1)}
such that J ∩D∗ �= ∅. Let J = MX1, for some X1 ∈ (V ′1∪VF1), and suppose
without loss of generality that MX1 ∈ MX2 and MX1 /∈ MY 2. Then, by
(d), M∗X1 ∈M∗X2 and M∗X1 /∈M∗Y 2 and hence M∗X2 �= M∗Y 2.

(f) If M〈x, y〉 = MX2, then M∗〈x, y〉 = M∗X2. If M〈x, y〉 �= MX2, then
there is a J ∈ (MX2 �M〈x, y〉) ∩ {MX1 : X1 ∈ (V ′1 ∪ VF1)} satisfying the
constraints of condition (C). Let J = MX1, for some X1 ∈ (V ′1 ∪ VF1), and
suppose that MX1 ∈ MX2 and MX1 /∈ M〈x, y〉. Then M∗X1 ∈ M∗X2

and since M∗X1 �= {Mx} and M∗X1 �= {Mx,My}, it follows that M∗X1 /∈
M∗〈x, y〉. On the other hand, if MX1 ∈ M〈x, y〉 and MX1 /∈ MX2, then
either MX1 = {Mx} or MX1 = {Mx,My}. In both cases MX1 = M∗X1

and thus if MX1 /∈MX2, it plainly follows that M∗X1 /∈M∗X2.

90 Domenico Cantone, Marianna Nicolosi Asmundo

(g) Let x, y ∈ V0 and X3 ∈ V3 be such that M〈x, y〉 ∈ MX3. Then M∗〈x, y〉 ∈
M∗X3. On the other hand, suppose by contradiction that M〈x, y〉 /∈ MX3

and M∗〈x, y〉 ∈M∗X3. Then, there must be an X2 ∈ V ′2 such that M∗X2 ∈
M∗X3, M∗X2 = M∗〈x, y〉, and MX2 �= M〈x, y〉. But this is impossible by
(f).

(h) If MX2 ∈ MX3 then M∗X2 ∈ M∗X3. Now suppose by contradiction that
MX2 /∈ MX3 and that M∗X2 ∈ M∗X3. Then, either there is a Y 2 ∈ V ′2
such that MX2 �= MY 2 and M∗X2 = M∗Y 2, which is not possible by (e),
or there is a 〈x, y〉, with x, y ∈ V0, Mx,My ∈ D∗, such that MX2 �= M〈x, y〉
and M∗X2 = M∗〈x, y〉, but this is absurd by (f).

A.2 Proof of Lemma 2

Lemma 2. Let u1, . . . , un ∈ D∗, and let z1, . . . , zn ∈ V0. Then, for every x, y ∈
V0, X1 ∈ V1, X2 ∈ V2, X3 ∈ V3, we have:

(i) M∗,zx = Mz,∗x,
(ii) M∗,zX1 = Mz,∗X1,
(iii) M∗,zX2 = Mz,∗X2,
(iv) M∗,zX3 = Mz,∗X3.

Proof. (i) Since u1, . . . , un ∈ D∗, the thesis follows immediately.
(ii) LetX1 ∈ V1, thenM∗,zX1 = M∗X1 = MX1∩D∗ = MzX1∩D∗ = Mz,∗X1.
(iii) Let X2 ∈ V2, then we have the following equalities:

M∗,zX2 = M∗X2 = ((MX2 ∩ pow(D∗)) \ {M∗X1 : X1 ∈ (V ′1 ∪ VF1)})
∪ {M∗X1 : X1 ∈ (V ′1 ∪ VF1), MX1 ∈MX2} ,

= ((MzX2 ∩ pow(D∗)) \ {Mz,∗X1 : X1 ∈ (V ′1 ∪ VF1)})
∪ {Mz,∗X1 : X1 ∈ (V ′1 ∪ VF1),MzX1 ∈MzX2}

= Mz,∗X2 .

(iv) Let X3 ∈ V3, then the following holds:

M∗,zX3 = M∗X3 = ((MX3 ∩ pow(pow(D∗))) \ {M∗X2 : X2 ∈ V ′2})
∪ {M∗X2 : X2 ∈ V ′2,MX2 ∈MX3} ,

= ((MzX3 ∩ pow(pow(D∗))) \ {Mz,∗X2 : X2 ∈ V ′2})
∪ {Mz,∗X2 : X2 ∈ V ′2,MzX2 ∈MzX3}

= Mz,∗X3 .

On the satisfiability problem for a 4-level quantified syllogistic 91

A.3 Proof of Lemma 3

Lemma 3. Let Z1
1 , . . . , Z

1
m ∈ V1 \ (V ′1 ∪ VF1) and U1

1 , . . . , U
1
m ∈ pow(D∗) \

{M∗X1 : X1 ∈ (V ′1∪VF1)}. Then, the 4LQSR-interpretations M∗,Z1
and MZ1,∗

coincide.

Proof. We prove the lemma by showing that M∗,Z1
and MZ1,∗ agree over vari-

ables of all sorts.

1. Clearly M∗,Z1
x = M∗x = MZ1,∗x, for all individual variables x ∈ V0.

2. Let X1 ∈ V1. If X1 /∈ {Z1
1 , . . . , Z

1
m}, then

MZ1,∗X1 = MZ1
X1 ∩D∗ = MX1 ∩D∗ = M∗X1 = M∗,Z1

X1 .

On the other hand, if X1 = Z1
j for some j ∈ {1, . . . ,m}, we have

MZ1,∗Z1
j = MZ1

Z1
j ∩D∗ = U1

j ∩D∗ = U1
j = M∗,Z1

Z1
j .

3. Let X2 ∈ V2. Then we have

M∗,Z1
X2 = M∗X2 = ((MX2 ∩ pow(D∗)) \ {M∗X1 : X1 ∈ (V ′1 ∪ VF1)})

∪ {M∗X1 : X1 ∈ (V ′1 ∪ VF1), MX1 ∈MX2} ,

MZ1,∗X2 = ((MZ1
X2 ∩ pow(D∗))

\{MZ1,∗X1 : X1 ∈ ((V ′1 ∪ VF1) ∪ {Z1
1 , . . . , Z

1
m})})

∪{MZ1,∗X1 : X1 ∈ ((V ′1 ∪ VF1) ∪ {Z1
1 , . . . , Z

1
m}),

MZ1
X1 ∈MZ1

X2}
= ((MX2 ∩ pow(D∗))

\({M∗X1 : X1 ∈ (V ′1 ∪ VF1)} ∪ {Uj : j = 1, . . . ,m}))
∪({M∗X1 : X1 ∈ (V ′1 ∪ VF1), MX1 ∈MX2}
∪({Uj : j = 1, . . . ,m} ∩MX2)) .

By putting

P1 = MX2 ∩ pow(D∗),
P2 = {M∗X1 : X1 ∈ (V ′1 ∪ VF1)},
P3 = {Uj : j = 1, . . . ,m},
P4 = {M∗X1 : X1 ∈ (V ′1 ∪ VF1), MX1 ∈MX2},
P5 = {Uj : j = 1, . . . ,m} ∩MX2,

the above relations can be rewritten as

M∗,Z1
X2 = (P1 \ P2) ∪ P4

MZ1,∗X2 = (P1 \ (P2 ∪ P3)) ∪ P4 ∪ P5 .

92 Domenico Cantone, Marianna Nicolosi Asmundo

Moreover, it is easy to verify that the following relations hold:

P2 ∩ P3 = ∅
P5 = P1 ∩ P3

P4 ⊆ P2 .

Therefore we have

(P1 \ P2) ∪ P4 = (P1 \ (P2 ∪ P3)) ∪ P4 ∪ (P1 ∩ P3)
= (P1 \ (P2 ∪ P3)) ∪ P4 ∪ P5

i.e., we have M∗,Z1
X2 = MZ1,∗X2.

4. Let X3 ∈ V3, then M∗,Z1
X3 = M∗[Z1

1/U
1
1 , . . . , Z

1
m/U

1
m]X3 = M∗X3 and

MZ1,∗X3 = ((MZ1
X3 ∩ pow(pow(D∗))) \ {MZ1,∗X2 : X2 ∈ V ′2})

∪{MZ1,∗X2 : X2 ∈ V ′2,MZ1
X2 ∈MZ1

X3}
= ((MX3 ∩ pow(pow(D∗))) \ {M∗X2 : X2 ∈ V ′2})

∪{M∗X2 : X2 ∈ V ′2,MX2 ∈MX3}
= M∗X3 .

Since M∗,Z1
X3 = MZ1,∗X3 the thesis follows.

A.4 Proof of Lemma 4

Lemma 4. Let Z2
1 , . . . , Z

2
p ∈ V2\V ′2 and U2

1 , . . . , U
2
p ∈ pow(pow(D∗))\{M∗X2 :

X2 ∈ V ′2}. Then the 4LQSR-interpretations M∗,Z2
and MZ2,∗ coincide.

Proof. We show that M∗,Z2
and MZ2,∗ coincide by proving that they agree over

variables of all sorts.

1. Plainly M∗,Z2
x = M∗x = MZ2,∗x, for every x ∈ V0.

2. Let X1 ∈ V1, then M∗,Z2
X1 = M∗X1 = MZ2,∗X1.

3. Let X2 ∈ V2 such that X2 /∈ {Z2
1 , . . . , Z

2
p}, then

M∗,Z2
X2 = M∗[Z2

1/U
2
1 , . . . , Z

2
p/U

2
p]X2 = M∗X2,

and

MZ2,∗X2 = ((MZ2
X2 ∩ pow(D∗)) \ {MZ2,∗X1 : X1 ∈ (V ′1 ∪ VF1)})

∪{MZ2,∗X1 : X1 ∈ (V ′1 ∪ VF1),MZ2
X1 ∈MZ2

X2}
= ((MX2 ∩ pow(D∗)) \ {M∗X1 : X1 ∈ (V ′1 ∪ VF1)})

∪{M∗X1 : X1 ∈ (V ′1 ∪ VF1),MX1 ∈MX2}
= M∗X2 .

On the satisfiability problem for a 4-level quantified syllogistic 93

Since M∗,Z2
X2 = MZ2,∗X2 the thesis follows. On the other hand, if X2 ∈

{Z2
1 , . . . , Z

2
p}, say X2 = Z2

j , then M∗,Z2
X2 = U2

j , and

MZ2,∗X2 = ((MZ2
X2 ∩ pow(D∗)) \ {MZ2,∗X1 : X1 ∈ (V ′1 ∪ VF1)})

∪{MZ2,∗X1 : X1 ∈ (V ′1 ∪ VF1),MZ2
X1 ∈MZ2

X2}
= (U2

j \ {M∗X1 : X1 ∈ (V ′1 ∪ VF1)})
∪({M∗X1 : X1 ∈ (V ′1 ∪ VF1),MX1 ∈ U2

j })
= U2

j .

Clearly the thesis follows also in this case.
4. Let X3 ∈ V3. Then we have

M∗,Z2
X3 = M∗X3 = ((MX3 ∩ pow(pow(D∗))) \ {M∗X2 : X2 ∈ V ′2})

∪ {M∗X2 : X2 ∈ V ′2, MX2 ∈MX3}
MZ2,∗X3 = ((MZ2

X3 ∩ pow(pow(D∗)))

\ {MZ2,∗X2 : X2 ∈ V ′2 ∪ {Z2
1 , . . . , Z

2
p}})

∪{MZ2,∗X2 : X2 ∈ V ′2 ∪ {Z2
1 , . . . , Z

2
p}, MZ2

X2 ∈MZ2
X3}

= ((MX3 ∩ pow(pow(D∗)))
\ ({M∗X2 : X2 ∈ V ′2} ∪ {U2

j : j = 1, . . . , p}))
∪{M∗X2 : X2 ∈ V ′2, MX2 ∈MX3}
∪({U2

j : j = 1, . . . , p} ∩MX3) .

By putting
P1 = MX3 ∩ pow(pow(D∗))
P2 = {M∗X2 : X2 ∈ V ′2}
P3 = {U2

j : j = 1, . . . , p}
P4 = {M∗X2 : X2 ∈ V ′2, MX2 ∈MX3}
P5 = {U2

j : j = 1, . . . , p} ∩MX3

then the above relations can be rewritten as

M∗,Z2
X3 = (P1 \ P2) ∪ P4

MZ2,∗X3 = (P1 \ (P2 ∪ P3)) ∪ P4 ∪ P5 .

Moreover, it is easy to verify that the following relations hold:

P2 ∩ P3 = ∅
P5 = P1 ∩ P3

P4 ⊆ P2 .

Therefore we have

(P1 \ P2) ∪ P4 = (P1 \ (P2 ∪ P3)) ∪ P4 ∪ (P1 ∩ P3)
= (P1 \ (P2 ∪ P3)) ∪ P4 ∪ P5

i.e., we have M∗,Z2
X3 = MZ2,∗X3.

94 Domenico Cantone, Marianna Nicolosi Asmundo

A.5 Proof of Lemma 7

Lemma 7. For every formula ϕ of the logic S5, ϕ is satisfiable in a model
K = 〈W,R, h〉 iff there is a 4LQSR-interpretation satisfying x ∈ Xϕ.

Proof. Let w̄ be a world in W . We construct a 4LQSR-interpretation M =
(W,M) as follows:

– Mx = w̄,
– MX1

p = h(p), where p is a propositional letter and X1
p = τS5(p),

– MτS5(ψ) = true, for every ψ ∈ SubF (ϕ), where ψ is not a propositional
letter.

To prove the lemma, it would be enough to show that K , w̄ |= ϕ iff M |= x ∈ X1
ϕ.

However, it is more convenient to prove the following more general property:

Given a w ∈W , if y ∈ V0 is such that My = w, then

K , w |= ϕ iff M |= y ∈ X1
ϕ,

which we do by structural induction on ϕ.

Base case: If ϕ is a propositional letter, by definition, K , w |= ϕ iff w ∈ h(ϕ).
But this holds iff My ∈MX1

ϕ, which is equivalent to M |= y ∈ X1
ϕ.

Inductive step: We consider only the cases in which ϕ = �ψ and ϕ = ♦ψ, as
the other cases can be dealt with similarly.
– If ϕ = �ψ, assume first that K , w |= �ψ. Then K , w |= ψ and, by induc-

tive hypothesis, M |= y ∈ X1
ψ. Since M |= τS5(�ψ), it holds that M |=

(∀z1)(z1 ∈ X1
ψ) → (∀z2)(z2 ∈ X1

�ψ). Then we have M [z1/w, z2/w] |=
(z1 ∈ X1

ψ) → (z2 ∈ X1
�ψ) and, since My = w, we have also that

M |= (y ∈ X1
ψ) → (y ∈ X1

�ψ). By the inductive hypothesis and by
modus ponens we obtain M |= y ∈ X1

�ψ, as required.
On the other hand, if K , w �|= �ψ, then K , w �|= ψ and, by inductive
hypothesis, M �|= y ∈ X1

ψ. Since M |= τS5(�ψ), then M |= ¬(∀z1)(z1 ∈
X1
ψ) → (∀z2)¬(z2 ∈ X1

�ψ). By the inductive hypothesis and some predi-
cate logic manipulations, we have M |= ¬(y ∈ X1

ψ) → ¬(y ∈ X1
�ψ), and

by modus ponens we infer M |= ¬(y ∈ X1
�ψ), as we wished to prove.

– Let ϕ = ♦ψ and, to begin with, assume that K , w |= ♦ψ. Then, there
is a w′ such that K , w′ |= ψ, and a y′ ∈ V0 such that My′ = w′. Thus,
by inductive hypothesis, we have M |= y′ ∈ X1

ψ and, by predicate logic,
M |= ¬(∀z1)¬(z1 ∈ X1

ψ). By the very definition of M , M |= τS5(♦ψ)
and thus M |= ¬(∀z1)¬(z1 ∈ X1

ψ) → (∀z2)(z2 ∈ X1
♦ψ). Then, by modus

ponens we obtain M |= (∀z2)(z2 ∈ X1
♦ψ) and finally, by predicate logic,

M |= y ∈ X1
♦ψ.

On the other hand, if K , w �|= ♦ψ, then K , w′ �|= ψ, for any w′ ∈ W and,
since w′ = My′ for any y′ ∈ V0, it holds that M �|= y′ ∈ X1

ψ and thus,
by predicate logic, M |= (∀z1)¬(z1 ∈ X1

ψ).

On the satisfiability problem for a 4-level quantified syllogistic 95

Reasoning as above, M |= (∀z1)¬(z1 ∈ X1
ψ) → (∀z2)¬(z2 ∈ X1

♦ψ) and,
by modus ponens, M |= (∀z2)¬(z2 ∈ X1

♦ψ). Finally, by predicate logic,
M �|= y ∈ X1

♦ψ, as required.

A.6 Proof of Lemma 8

Lemma 8. For every formula ϕ of the logic τK45, ϕ is satisfiable in a model
K = 〈W,R, h〉 iff there is a 4LQSR-interpretation satisfying x ∈ Xϕ.

Proof. We proceed as in the proof of Lemma 7, by constructing a 4LQSR-
interpretation M = (W,M) which has the following property:

Given a w ∈W and a y ∈ V0 such that My = w, it holds that

K , w |= ϕ iff M |= y ∈ X1
ϕ.

We proceed by structural induction on ϕ. As with Lemma 7, we consider only
the cases in which ϕ = �ψ and ϕ = ♦ψ.

– Let ϕ = �ψ and assume that K , w |= �ψ. Let v be a world of W such that
there is a u ∈ W with 〈u, v〉 ∈ R3, and let x1, x2 ∈ V0 be such that v =
Mx1 and u = Mx2. We have that K , v |= ψ and, by inductive hypothesis,
M |= x1 ∈ X1

ψ. Since M |= τK45(�ψ), then M |= (∀z1)((¬(∀z2)¬(〈z2, z1〉 ∈
R3)) → z1 ∈ X1

ψ) → (∀z)(z ∈ X1
�ψ). Hence M [z1/v, z2/u, z/w] |= (〈z2, z1〉 ∈

R3 → z1 ∈ X1
ψ) → z ∈ X1

�ψ and thus M |= (〈x2, x1〉 ∈ R3 → x1 ∈ X1
ψ) →

y ∈ X1
�ψ. Since M |= 〈x2, x1〉 ∈ R3 → x1 ∈ X1

ψ, by modus ponens we have
the thesis. The thesis follows also in the case in which there is no u such that
〈u, v〉 ∈ R3. In fact, in that case M |= 〈x2, x1〉 ∈ R3 → x1 ∈ X1

ψ holds for
any x2 ∈ V0.
Consider next the case in which K , w �|= �ψ. Then, there must be a v ∈ W
such that there is a u with 〈u, v〉 ∈ R3 and K , v �|= ψ. Let x1, x2 ∈ V0 be such
that Mx1 = v and Mx2 = u. Then, by inductive hypothesis, M �|= x1 ∈ X1

ψ.
By definition ofM , we have M |= ¬(∀z1)¬((¬(∀z2)¬(〈z2, z1〉 ∈ R3))∧¬(z1 ∈
X1
ψ)) → (∀z)¬(z ∈ X1

�ψ). By the above instantiations and by the hypothe-
ses, we have that M |= ((〈x2, x1〉 ∈ R3) ∧ ¬(x1 ∈ X1

ψ)) → ¬(y ∈ X1
�ψ) and

M |= (〈x2, x1〉 ∈ R3) ∧ ¬(x1 ∈ X1
ψ). Thus, by modus ponens, we obtain the

thesis.
– Let ϕ = ♦ψ and assume that K , w |= ♦ψ. Then there are u, v ∈ W such

that 〈u, v〉 ∈ R and K , v |= ψ. Let x1, x2 ∈ V0 be such that Mx1 = v
and Mx2 = u. Then, by inductive hypothesis, M |= x1 ∈ X1

ψ. Since M |=
τK45(♦ψ), it follows that M |= ¬(∀z1)¬((¬(∀z2)¬(〈z2, z1〉 ∈ R3)) ∧ z1 ∈
X1
ψ) → (∀z)(z ∈ X1

♦ψ). By the hypotheses and the variable instantiations
above it follows that M |= ((〈x2, x1〉 ∈ R3) ∧ x1 ∈ X1

ψ) → y ∈ X1
♦ψ and

M |= (〈x2, x1〉 ∈ R3)∧ x1 ∈ X1
ψ. Finally, by an application of modus ponens

the thesis follows.

96 Domenico Cantone, Marianna Nicolosi Asmundo

On the other hand, if K , w �|= ♦ψ, then for every v ∈ W , either there is no
u ∈ W such that 〈u, v〉 ∈ R, or K , v �|= ψ. Let x1, x2 ∈ V0 be such that
Mx1 = v and Mx2 = u. If K , v �|= ψ, by inductive hypothesis, we have that
M �|= y ∈ X1

ψ.
Since M |= (∀z1)(((∀z2)¬(〈z2, z1〉 ∈ R3)) ∨ ¬(z1 ∈ X1

ψ)) → (∀z)¬(z ∈ X1
♦ψ),

by the hypotheses and by the variable instantiations above we get M |=
(¬(〈x2, x1〉 ∈ R3) ∨ ¬(x1 ∈ X1

ψ)) → ¬(y ∈ X1
♦ψ) and M |= (¬(〈x2, x1〉 ∈

R3) ∨ ¬(x1 ∈ X1
ψ)). Finally, by modus ponens we infer the thesis.

On the satisfiability problem for a 4-level quantified syllogistic 97

The Birth of a WASP:
Preliminary Report on a New ASP Solver⋆

Carmine Dodaro, Mario Alviano, Wolfgang Faber, Nicola Leone,
Francesco Ricca, and Marco Sirianni

Dipartimento di Matematica, Università della Calabria, 87030 Rende, Italy
carminedodaro@gmail.com,

{alviano,faber,leone,ricca,sirianni}@mat.unical.it

Abstract. We present a new ASP solver for ground ASP programs that builds
upon related techniques, originally introduced for SAT solving, which have been
extended to cope with disjunctive logic programs under the stable model seman-
tics. We describe the key components of this solving strategy, namely: learning,
restarts, heuristics based on look-back concepts, and backjumping. At the same
time, we introduce a new heuristics based on a mixed approach between look-
back and look-ahead techniques. Moreover, we present the results of preliminary
experiments that we conducted in order to assess the impact of these techniques
on both random and structured instances (used also in the last ASP Competition
2011). In particular, we compared our system with both DLV and ClaspD.

1 Introduction

Answer Set Programming (ASP) [1] is a declarative programming paradigm which has
been proposed in the area of non-monotonic reasoning and logic programming. The
idea of ASP is to represent a given computational problem by alogic program whose
answer sets correspond to solutions, and then use a solver tofind them [2].

The ASP language considered here allows disjunction in ruleheads and nonmono-
tonic negation in rule bodies. These features make ASP very expressive; all problems in
the second level of the polynomial hierarchy are indeed expressible in ASP [3]. There-
fore, ASP is strictly more expressive than SAT (unlessP = NP). Despite the intrinsic
complexity of the evaluation of ASP, after twenty years of research many efficient ASP
systems have been developed (e.g. [4–11]). The availability of robust implementations
made ASP a powerful tool for developing advanced applications in the areas of Arti-
ficial Intelligence, Information Integration, or Knowledge Management; for example,
ASP has been used in applications for team-building [12], semantic-based information
extraction [13], and e-tourism [14]. These applications ofASP have confirmed the via-
bility of the use of ASP. Nonetheless, the interest in developing more effective and faster
systems is still a crucial and challenging research topic, as witnessed by the results of
the ASP Contests series [15–17].

⋆ Partly supported by Regione Calabria and EU under POR Calabria FESR 2007-2013 and
within the PIA project of DLVSYSTEM s.r.l., and by MIUR under the PRINproject LoDeN.
We also thank the anonymous reviewers for their valuable comments.

This paper provides a contribution in the aforementioned context. In particular, we
provide a preliminary report on the development of a new ASP solver for propositional
programs calledwasp. The new system is inspired by several techniques that were orig-
inally introduced for SAT solving, like the Davis-Putnam-Logemann-Loveland (DPLL)
backtracking search algorithm [18],clause learning[19, 20], backjumping[21, 22],
restarts [23], and conflict-driven heuristics[24] in the style of Berkmin [25]. The
mentioned SAT-solving methods have been adapted and combined with state-of-the-art
pruning techniques adopted by modern native disjunctive ASP systems [4]. In particu-
lar, the role of Boolean Constraint Propagation in SAT-solvers (based on the simpleunit
propagationinference rule) is taken by a procedure combining a set of inference rules.
Those rules combine an extension of the well-founded operator for disjunctive programs
with a number of techniques based on ASP program properties (see, e.g., [26]). More-
over,wasp uses a new branching heuristics tailored for ASP programs, which is based
on a mixed approach between Berkmin-like heuristics and look-ahead, which takes into
account minimality of answer sets (a requirement not present in SAT solving). Finally,
stable model checking, which is a co-NP-complete problem for disjunctive logic pro-
grams, is efficiently implemented relying on the rewriting method of [27], by calling
Minisat [28] as suggested by [29].

In the following, after briefly introducing ASP, we describethe new systemwasp.
We start from the solving strategy and present the design choices regarding propagation,
constraint learning, restarts, and the new heuristics. Moreover, we present the results
of some experiments conducted for assessing the impact of these techniques, on both
random and structured instances; some of these instances had been used in the last
ASP Competition [17]. In particular, we compared our systemwith both DLV and
ClaspD. The obtained results are encouraging: the new prototype system is already
competitive with state-of-the-art solvers, even if there is still room for improvements in
both the implementation (e.g., through the optimization and tuning of data structures
and heuristic parameters), and in the supported language features (notably aggregates
and weak constraints).

2 Preliminaries

In this paper we consider propositional programs, so an atomp is a member of a count-
able setA. A literal is either an atomp (a positive literal), or an atom preceded by the
negation as failuresymbolnot (a negative literal). Arule r is of the form

p1 ∨ · · · ∨ pn :- q1, . . . , qj , not qj+1, . . . , not qm (1)

wherep1, . . . , pn, q1, . . . , qm are atoms andn ≥ 0, m ≥ j ≥ 0. The disjunctionp1 ∨
· · · ∨ pn is theheadof r, while the conjunctionq1, . . . , qj , not qj+1, . . . , not qm is
thebodyof r. Moreover,H(r) denotes the set of head atoms, whileB(r) denotes the set
of body literals. We also useB+(r) andB−(r) for denoting the set of atoms appearing
in positive and negative body literals, respectively, andAt(r) for the setH(r)∪B+(r)∪
B−(r). A rule r is normal (or disjunction-free) if|H(r)| ≤ 1, positive (or negation-
free) if B−(r) = ∅, a fact if both B(r) = ∅ and|H(r)| = 1, aconstraintif |H(r)| = 0.

100 C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, M. Sirianni

A programP is a finite set of rules; if all rules in it are positive (resp. normal), thenP
is a positive (resp. normal) program.

Let L denote the complement of a literalL, i.e.,a = not a andnot a = a for an
atoma. We extend this to sets of literals and will useS for denoting{L | L ∈ S}. An
interpretationI is a subset ofA∪A. An interpretationI is total if for eacha ∈ A either
a ∈ I or not a ∈ I; otherwise,I is partial. An interpretationI is inconsistent if there
existsa ∈ A such that{a, not a} ⊆ I; otherwise,I is consistent. An interpretation thus
associates each ASP structure (atom, literal, head or body)with a truth value in the set
{T ,F ,U}, which extends toH(r) andB(r) in the standard way.

An interpretationI satisfiesa ruler ∈ P if H(r) is true w.r.t.I wheneverB(r) is
true w.r.t.I, while I violatesr if H(r) is false butB(r) is true. A total interpretationI
is amodelof a programP if I satisfies all the rules inP. Given an interpretationI for
a programP, the reduct ofP w.r.t. I, denoted byPI , is obtained by deleting fromP
all the rulesr with B−(r) ∩ I 6= ∅, and then by removing all the negative literals from
the remaining rules. The semantics of a programP is given by the setAS(P) of the
answer sets (or stable models) ofP, where a total interpretationM is an answer set (or
stable model) forP if and only if M is a subset-minimal model ofPM .

3 Model Generator

In this section we sketch the main model generator function MG (cf. Fig. 1), which
is able to perform learning and restart techniques. MG is similar to the Davis-Putnam
procedure in SAT solvers. For reasons of presentation, we have considerably simplified
the procedure in order to focus on its main ideas. For example, the version described
here computes only one answer set, but modifying it to compute all orn stable models
is straightforward.

In the sequel,P will refer to the input program. Initially, the MG function is invoked
with I = ∅, andbj level = −1 (but it will become 0 immediately), and the global
variable numberOfConflicts is set to 0. MG returns true if theprogramP has an answer
set, and setsI to the computed answer set; otherwise it returns false.

MG first calls a function Propagate, which extendsI with those literals that can be
deterministically inferred, and keeps track of the reason of each inference by building a
representation of the so-called implication graph [24]. Propagate is similar to unit prop-
agation as employed by SAT solvers, but exploits the peculiarities of ASP for making
further inferences (e.g., it uses the knowledge that every answer set is a minimal model).
Propagate, described in more detail in Section 3.1, returnsfalse if an inconsistency (or
conflict) is detected (i.e., the complement of a true literalis inferred to be true), true
otherwise.

If Propagate returns true and no undefined atom is left inI, MG invokes CheckModel
to verify that the current total interpretation is also an answer set; the CheckModel func-
tion implements the techniques described in [27]. If the stability check succeeds, MG
returns true.1 If Propagate returned true butI is still partial, an undefined literalL is
selected according to a heuristic criterion and MG is recursively called. The atomL
corresponds to abranching variablein SAT solvers.

1 This is a co-NP-complete task in case of general disjunctive ASP programs.

The Birth of a WASP: Preliminary Report on a New ASP Solver 101

If Propagate returns false, function ResolveConflict is called, which calculates the
Unique Implication Point (UIP) of the implication graph (see Section 3.1), and exploits
it to learn a constraint representing the inconsistency (see Section 3.2), which is added
to the input program. As a by-product, ResolveConflict returns the recursion level to go
back to (backjumping) in order to continue the search in the first branch of the search
that is free of the just-detected conflict.

After a certain number of conflicts, ResolveConflict may decide to restart the entire
search, if the total number of conflicts found during the search reached a certain thresh-
old. It is important to note that after each restart MG works on a program composed
of the original input program and the learned constraints. Our restart policy is based on
the sequence of thresholds (32, 32, 64, 32, 32, 64, 128, . . .) introduced in [30].

If the recursive call returned true, MG just returns true as well. If it returned false,
the corresponding branch is inconsistent,bj level is set to the recursion level to back-
track or backjump to. Now, ifbj level is less than the current level, this indicates a
backjump, and we return. If not, then we have reached the level to go to, and the search
continues.

bool MG (Interpretation& I, int& bj level)
int curr level = ++ bj level;

if (! Propagate(I))
bj level = ResolveConflict();
return false;

if (“no atom is undefined in I”)
if (CheckModel(I))return true;
else

bj level = ResolveConflict();
return false;

Select an undefined atomA using a heuristic;

if (MG(I ∪ {A}, bj level)) return true;
if (bj level< curr level) return false;

if (MG(I ∪ {not A}, bj level)) return true;
if (bj level< curr level) return false;

return false;

int ResolveConflict()
int level = calculateFirstUIP();
learning();
if(inRestartSequence(numberOfConflict))return 0;
return level;

Fig. 1. Computation of answer sets

102 C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, M. Sirianni

3.1 Propagation

WASP implements a number of deterministic inference rules for pruning the search
space during the computation of stable models. These inference rules are namedfor-
ward inference, Kripke-Kleene negation, contraposition for true heads, contraposition
for false headsandwell-founded negation. All of these inference rules are briefly de-
scribed in this section.

During the propagation of deterministic inferences, implication relationships among
atoms are stored in a graphG named Implication Graph. This graph has a node〈a, t〉
for each atoma and truth valuet such thata has been assignedt. Each node of the
graph is associated with adecision level, which is set to the level of the backtracking
tree whent is assigned toa. Moreover,G has a directed arc connecting a node〈a, t〉
to a node〈a′, t′〉 whenever〈a, t〉 is one of the reasons that lead to the derivation of the
truth valuet′ for the atoma′. Note thatG will contain at most one node for each atom
of the program, unless a conflict is derived. The way of buildingG is described below.

Forward Inference. This is essentially modus ponens. When the body of a ruler is
true w.r.t. the current partial interpretation, and all butone of the head atoms ofr are
false and the remaining one is undefined, then there is only one way to satisfyr, by
deriving the remaining head atom as true.

Concerning the Implication GraphG, it is updated as follows. Letr be of the form
(1) and letpi be the undefined atom inH(r). The following elements are added to
G: a node〈pi, T 〉; arcs(〈qk, T 〉, 〈pi, T 〉) (k = 1, . . . , j); arcs(〈qk,F〉, 〈pi, T 〉) (k =
j + 1, . . . , m); arcs(〈pk,F〉, 〈pi, T 〉) (k = 1, . . . , n andk 6= i).

Kripke-Kleene Negation. This derives negative information by using supportedness,
the fact that each atoma which is true in a stable modelM must occur in at least one
ruler such thatB(r) is true w.r.t.M anda is the only atom inH(r) which is true w.r.t.
M . Hence, atoms with no candidate supporting rules can be derived to be false. So, if
all of the rulesr such thata ∈ H(r) are satisfied because of a false body literal or
because of a true head atom different froma, atoma is inferred as false.

ConcerningG, a node〈a,F〉 is introduced. Moreover, for each ruler with a ∈
H(r), let L be the first literal (in chronological order of derivation) that satisfiedr. If
L ∈ B+(r), an arc(〈L,F〉, 〈a,F〉) is added toG; otherwise, ifL ∈ H(r), an arc
(〈L, T 〉, 〈a,F〉) is added toG; otherwise,L ∈ B−(r) and thus an arc(〈L, T 〉, 〈a,F〉)
is added toG.

Contraposition for True Heads. Supportedness is also used by this inference rule:
If an atoma that has been derived as true has only one candidate supporting ruler,
the truth of all literals inB(r) and the falsity of all atoms inH(r) different froma are
inferred.

ConcerningG, the following new nodes and arcs are introduced:〈b, T 〉 (for each
b ∈ B+(r)); 〈b,F〉 (for eachb ∈ B−(r) ∪ H(r) \ {a}); for each new node〈b, v〉
an arc(〈a, T 〉, 〈b, v〉). Moreover, for each ruler′ such thata ∈ H(r′), let L be the
first literal (in chronological order of derivation) that satisfied r′. If L ∈ B+(r′), an
arc (〈L,F〉, 〈b, v〉) is added toG, otherwise, ifL ∈ B−(r′) ∪ H(r′) \ {a}, an arc
(〈L, T 〉, 〈b, v〉) is added toG; this is done for each new node〈b, v〉 introduced by the
application of the inference rule forr.

The Birth of a WASP: Preliminary Report on a New ASP Solver 103

Contraposition for False Heads. This inference rule is essentially modus tollens.
When for a ruler all head atoms are false, the only way to satisfyr is by having a false
body. In case all but one body literals ofr are true, falsity of the remainingL is inferred.

ConcerningG, a node〈a, v〉 is added, wherea is the atom inL andv = F if L = a
or v = T if L = not a. Moreover, the following arcs are added toG: (〈b,F〉, 〈a, v〉)
(for eachb ∈ H(r) ∪B−(r) \ {a}; (〈b, T 〉, 〈a, v〉) (for eachb ∈ B+(r) \ {a}).

Well-founded Negation. Unfounded sets are sets of unsupported or self-supporting
atoms, that is, atoms that can have supporting rules only if their own truth is assumed.
It is well-known that unfounded sets are disjoint from stable models, which allows for
assuming the falsity of all the atoms that belong to some unfounded set. Hence, after the
propagation process has been carried out,wasp determines the setX of all the atoms
belonging to some unfounded set and derives the falsity of these atoms; if this set is
empty, the rule does not apply.

In order to model such a lack of external supporting rules, a number of nodes and
arcs is added toG. For eacha ∈ X, a node〈a,F〉 is added. Arcs are introduced ac-
cording to the following schema: LetC be the set of atoms inX that were previously
derived as true, and letc be a randomly selected atom inC. For eacha ∈ X \C, an arc
(〈a,F〉, 〈c,F〉) is added toG. Moreover, for eachb ∈ C \ {c} and for each ruler such
thatb ∈ H(r), letL be the first literal (in chronological order of derivation) that satisfied
r. If L ∈ B+(r), an arc(〈L,F〉, 〈c,F〉) is added toG; otherwise, ifL ∈ H(r), an arc
(〈L, T 〉, 〈c,F〉) is added toG; otherwise,L ∈ B−(r) and thus an arc(〈L, T 〉, 〈c,F〉)
is added toG.

3.2 Constraint Learning

Constraint learning means acquiring information that avoids arriving again at a conflict
that was already encountered during the search. Our learning schema is based on the
concept of the first Unique Implication Point (UIP) [24]. A noden in the Implication
Graph is a UIP for a decision leveld iff all paths from the literal chosen at the leveld
to a conflict atom pass throughn. Intuitively, a UIP is the most concise reason for the
conflict of a certain decision level. We calculate the first UIP only for the decision level
of the conflict. By definition the chosen literal is always a UIP, but since several UIPs
may exist, we calculate the UIP closest to the conflict, the first UIP. After each conflict
at the decision leveld, a constraint is learned that contains the first UIP and all atoms
of lower levels that are connected to a node between the first UIP and the conflict.

Since the number of learned constraints may become exponential in the size of the
program, we adopt the standard technique of expiring learned constraints. Our policy
is similar to Minisat’s [28]: Each learned constraint has anactivity value, measuring
how much it is involved in conflicts. If a learned constraint has recently been used for
propagation, we do not delete it. If the number of learned constraints is greater than one
third of the input program, then we delete half of the learnedconstraints. Moreover, we
also delete all learned constraints with an activity value lower than a threshold value.

104 C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, M. Sirianni

4 Heuristics

Clearly, a crucial issue in the Model Generator function in Fig. 1 is the selection of a
literal when all inferences have been made and there are still undefined atoms. It is clear
that the correctness of the algorithm reported in Fig. 1 doesnot depend on the strategy
in which this selection is made, but making a “good” choice isvery important for prac-
tical efficiency. However, strategies which perform very well on some domains may
perform very bad for other domains, and of course an optimal strategy seems unlikely
to be found. For this reason, some heuristic must be adopted;the quality of the adopted
heuristic can often only be assessed empirically.

Heuristics can be classified in two main classes,look-aheadbased andlook-back
based. Look-ahead heuristics estimate the effects of assigning a specific truth value to a
given undefined atom, for any truth value and for a set of undefined atoms (which might
also be the set of all undefined atoms). Once the effects of allcandidate assumptions
have been estimated, a look-ahead heuristic selects the most promising undefined atom
and truth value according to some function. Look-back heuristics, instead, rely on the
information on conflicts derived in the computation so far.

The heuristic implemented inwasp is based on a mixed approach. In fact, a look-
back approach is used for selecting an undefined atom and, in some cases, a look-ahead
step is performed for choosing the truth value for the selected atom. More specifically,
statistics on previously detected conflicts are analyzed and atoms that have caused most
conflicts are preferred. Also the “age” of conflicts is taken into account in the selection
process, and more recent conflicts are given greater importance. This approach has
already been adopted in the context of SAT, for example in theBerkMin solver [31]. In
this sense, our heuristic could be seen as an extension of theheuristic implemented in
BerkMin to the framework of ASP.

In the remainder of this section, we will provide a few additional details on the
strategy adopted bywasp for selecting undefined atoms and truth values to be assumed
during the computation of stable models.

A countercl(L) is associated with each literalL. Initially, all of these counters are
set to zero. When a new constraint is learned, counters for allliterals occurring in the
constraint are increased by one. In this way,wasp keeps track of those literals occurring
more frequently in learned constraints. Moreover, counters are also updated during the
computation of the First UIP: If a literalL is traversed in the implication graph, the
associated countercl(L) is increased by one. In this way, those literals that mainly
caused the derivation of a conflict are identified. Finally, every 100 conflicts, all these
counters are divided by 4 (this is an experimentally determined parameter), which gives
more importance to recently active literals. Our heuristicwill first select an atom and
then a truthvalue for this atom. To this end, we will usecv(a) := cl(a) + cl(not a), for
each propositional atoma.

Learned constraints are stored in chronological order. Theatom selection is first
restricted to those undefined atoms that occur in the first (ifany) learned constraintr
with undefined body. Among those, the atom with the highestcv(·) value is chosen.
In case of ties, the atom removing the highest number of supporting rules is selected2.

2 An atom removes a supporting rule if it makes the body ofr false or the head ofr true

The Birth of a WASP: Preliminary Report on a New ASP Solver 105

If two or more atoms remove the same number of supporting rules, the first processed
atom is chosen. In this way, the chances of achieving a conflict increases, and this
may help the learning process. If no learned constraints with undefined body exist,
the undefined atom with the highestcv(·) value is selected. In case of ties, the first
processed atom is selected. If there are no learned constraints, e.g. in the beginning of
the solving process, the atom occurring in most rules is picked.

After selecting an atoma according to the strategy described above,wasp chooses
a truth value fora. For this purpose, we only distinguish two cases, namely whether a
learned constraintr with undefined body exists or not. If a learned constraintr with un-
defined body exists, additional counters are considered forchoosing a truth value fora.
In particular, a countergcl(L) is associated with each literalL for estimating the global
contribution ofL to all of the conflicts derived during the computation. For each literal
L, gcl(L) is initially set to zero and increased whenevercl(L) is increased. The differ-
ence tocl(L) is thatgcl(L) is never decreased, that is,gcl(L) is unchanged whencl(L)
is divided by 4. Thus, in this casewasp assumes the truth ofa if gcl(a) > gcl(not a);
otherwise, ifgcl(a) ≤ gcl(not a), the falsity ofa is assumed. It is important to em-
phasize that this counter is not used when the atom removing the highest number of
supporting rules was chosen. In fact, in this case the literal removing the highest num-
ber of supporting rules is picked. In the other case, that is,if all learned constraints have
false bodies, a look-ahead step is performed and botha andnot a are propagated (i.e.,
the function Propagate is invoked). The literal appearing in more rules is propagated
before the other one. During these propagations,wasp estimates the impact of the two
assumptions on the computation of answer sets. In particular, wasp counts the number
of inferred atoms and the number of rules that have been satisfied by the two propaga-
tions. The truth ofa is then assumed if the impact of the propagation ofa is greater than
the impact of the propagation ofnot a, whilea is assumed to be false in other case, that
is, if the impact of the propagation ofnot a is greater than the impact of the propaga-
tion of a. If the impact is equal thena is assumed to be false. It is important to note that
when a conflict is derived in one of the two propagations, a deterministic inference is
determined. That is, if a conflict is derived during the propagation ofa, the falsity ofa
is determined, while the truth ofa is determined whenever a conflict is derived during
the propagation ofnot a.

Example 1.We will now provide an example of the way our heuristic works.In the ex-
ample, we will consider the following rulesr1–r4 and learned constraintsc1–c2 (listed
in chronological order):

r1 : a :- c. r3 : a ∨ c :- e. c1 : :- a, b.
r2 : a ∨ b :- d. r4 : e ∨ b :- c. c2 : :- a, not c, d.

Moreover, let us assume a partial interpretationI1 = {a, not b} and the following
counter values:cl(a) = 2, cl(not a) = 2, cl(b) = 1, cl(not b) = 0, cl(c) = 1,
cl(not c) = 2, cl(d) = 3 andcl(not d) = 0.

Note that constraintc1 is satisfied becauseb is false. Thus, the first learned constraint
(according to the chronological order) which is not satisfied isc2. Indeed, two undefined
literals occur in the body ofc2, namelynot c andd. We then consider the counters

106 C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, M. Sirianni

cv(c) = cl(c) + cl(not c) andcv(d) = cl(d) + cl(not d), which are both equal to 3.
The heuristics then examines the removal of supporting rules:

Two supporting rules would be removed (r1 and r4) by settingc false, and one
supporting rule (r3) would be removed by settingc true, for a total of 3 supporting
rules removed. Concerningd, one supporting rule (r2) would be removed by settingd
false, and no rules would be removed by settingd true, for a total of 1 supporting rule
removed. Thereforec removes more supporting rules thand, and therefore our heuristic
will choosec and it first will be set to false.

5 Experiments

In this section we report the results of an experimental analysis we carried out in order
to assess the performance ofwasp. As a comparison, we also ran the suite of our bench-
marks on two state-of-the-art ASP solvers, namely DLV and ClaspD;3 a discussion on
the difference betweenwasp and these two systems is provided in Section 6.

The machine used for the experiments is a two-processor Intel Xeon “Woodcrest”
(quad core) 3GHz machine with 4MB of L2 Cache and 4GB of RAM, running Debian
GNU Linux 4.0. As our ASP system focuses on the Model Generation phase, only
the time for evaluating ground programs (previously produced by the DLV instantiator
from the original non-ground instances) have been considered. In the following, we
briefly describe both benchmark problems and data.

5.1 Benchmark Problems and Data

In our experiments, we considered problems from the most recent ASP Competition
[17] and other problems which have already been employed forassessing performance
of the ASP solver DLV [4]. Our experiments consist of 36 instances in 15 different
domains. The instances and encodings are those that were used in the competitions
or in the other publicly available suites. In the following we describe the benchmark
problems.

Labyrinth. Ravensburger’s Labyrinth game deals with guiding an avatarthrough a
dynamically changing labyrinth to certain fields. A solution is represented by pushes of
the labyrinth’s rows and columns such that the avatar can reach the goal field (which
changes its location when pushed) from its starting field (which also changes its location
when pushed) by a move along some path after each push.

Knight-tour. Given a chessboard, the problem is to find a tour for a knight piece that
starts at any square, travels all squares, and comes back to the origin, following the
knight move rules of chess.

Graph coloring. Given an undirected graph and a set ofn colors, we are interested in
checking whether there is an assignment of colors to nodes such that no adjacent nodes
share the same color.

3 Winners of the disjunctive tracks in the last ASP Competitions [15–17].

The Birth of a WASP: Preliminary Report on a New ASP Solver 107

Maze-Generation. A maze is anm × n grid, in which each cell is empty or a wall
and two distinct cells on the edges are indicated as entranceand exit, satisfying the
following conditions: (1) each cell on the edge of the grid isa wall, except entrance
and exit that are empty; (2) there is no2 × 2 square of empty cells or walls; (3) if two
walls are on a diagonal of a2× 2 square, then not both of their common neighbors are
empty; (4) no wall is completely surrounded by empty cells; (5) there is a path from the
entrance to every empty cell. The problem has been proved to be NP-complete in [32].

Strategic Companies. Strategic companies is a well-knownNPNP -complete prob-
lem that has often been used for system comparisons, also in the previous ASP Compe-
titions. In the Strategic Companies problem, a collectionC = c1, . . . , cm of companies
is given, for somem ≥ 1. Each company produces some goods in a setG, and each
companyci in C is possibly controlled by a set of owner companiesOi (whereOi is
a subset ofC, for eachi = 1, . . . , m). In this context, a setC ′ of companies (i.e., a
subset ofC) is astrategic setif it is minimal among all the sets satisfying the following
conditions: (i) Companies in C’ produce all goods in G; (ii) if Oi is a subset ofC ′, the
associated companyci must belong toC ′ (for eachi = 1, . . . , m). We considered a
random instance having 7500 companies and 22500 products.

2-QBF. The problem consists of checking the validity of a quantifiedboolean formula
Φ = ∃X∀Y φ, whereX andY are disjoint sets of propositional variables andφ = C1∨
. . .∨Ck is a DNF on variablesX andY . In our benchmark, we used the transformation
from 2-QBF to ASP presented in [4], which is based on a reduction presented in [33].
The instance considered has 1000 universal variables, 20 existential variables, 10000
clauses, and is a 5-DNF.

Prime Implicants. In Boolean logic, an implicant is a ”covering” (sum term or product
term) of one or more minterms (a product term in which each of the n variables appears
once) in a sum of products, or, maxterms (a sum term in which each of the n variables
appears once) in a product of sums, of a boolean function. Formally, a product termP
in a sum of products is an implicant of the Boolean functionF if P impliesF . A prime
implicant of a function is an implicant that cannot be covered by a more general (more
reduced - meaning with fewer literals) implicant. The instance we considered consists
of 180 variables and 774 clauses.

3-Colorability. This well-known problem asks for an assignment of three colors to the
nodes of a graph, in such a way that adjacent nodes always havedifferent colors. One
simplex graph was generated with the Stanford GraphBase library [34], by using the
functionsimplex(600, 600,−2, 0, 0, 0, 0). Another ladder graph was generated having
11998 edges, and8000 nodes.

Hamiltonian Cycle. A classical NP-complete problem in graph theory, which can
be expressed as follows: given a directed graphG = (V, E) and a nodea ∈ V of
this graph, does there exist a path inG starting ata and passing through each node
in V exactly once? One random graph was generated with the Stanford GraphBase li-
brary [34], by using the functionrandom graph(85, 700, 0, 0, 0, 0, 0, 1, 1, 33), having
700 edges and85 nodes; the other instances has been generating using the function
random graph(80, 456, 0, 0, 0, 0, 0, 1, 1, 33), having456 edges and80 nodes.

108 C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, M. Sirianni

Blocks World. Blocks world is one of the most famous planning domains in artificial
intelligence. We have a set of cubes (blocks) sitting on a table. The goal is to build
one or more vertical stacks of blocks. The catch is that only one block may be moved
at a time: it may either be placed on the table or placed atop another block. Because
of this, any blocks that are, at a given time, under another block cannot be moved.
The four instances considered are by Esra Erdem and taken from the ccalc homepage
(http://www.cs.utexas.edu/users/tag/cc/).

3SAT. The satisfiability problem (SAT) is a decision problem, whose instance is a
propositional formula. The question is: given the formula,is there some assignment of
T andF values to the variables that will make the entire expressiontrue? SAT is the
best-known NP-complete problem. 3-satisfiability is a special case of SAT, where each
formula is a CNF in which each clause contains exactly three literals. We considered
two random instances with 280 variables and 1204 clauses.

Towers of Hanoi. The Towers of Hanoi (ToH) problem has three pegs and n disks.
Initially, all n disks are on the left-most peg. The goal is tomove all n disks to the right-
most peg with the help of the middle peg. The rules are: (1) move one disk at a time;
(2) only the top disk on a peg can be moved; (3) a larger disk cannot be placed on top
of a smaller one. The instance we considered has 6 disks, and we check whether a plan
of length 64 exists.

Ramsey Numbers. The Ramsey numberramsey(k, m) is the least integern such
that, no matter how the edges of the complete undirected graph (clique) withn nodes
are colored using two colors, say red and blue, there is a red clique with k nodes (a
red k-clique) or a blue clique withm nodes (a bluem-clique).The encoding of this
problem consists of one rule and two constraints. For the experiments, the problem was
considered of deciding whether, fork = 3, m = 7, n = 21, and fork = 4, m = 6,
n = 26, n is the Ramsey numberramsey(k, m).

n-Queens. The 8-queens puzzle is the problem of putting eight chess queens on an
8x8 chessboard such that none of them is able to capture any otherusing the standard
chess queen’s moves. Then-queens puzzle is the more general problem of placingn
queens on annxn chessboard (n ≥ 4). The instance considered is forn = 23.

Timetabling. The problem is determining a timetable for some university lectures that
have to be given in one week to some groups of students. The timetable must respect a
number of given constraints concerning availability of rooms, teachers, and other issues
related to the overall organization of the lectures.

5.2 Experimental Results

The results of our experiment are summarized in Table 1, reporting, for each consid-
ered instance the execution times in seconds elapsed by eachconsidered system. For
each instance of the benchmark problems, we allowed a maximum of 600 seconds of
execution time. Timeouts are indicated by means of the word TIME in Table 1. In the
last rows we report, for each system, the total number of solved instances, the average
execution time for solving all the 36 considered instances (timeouts are counted 600s
each), and the number of instances in which each solver resulted to be the fastest.

The Birth of a WASP: Preliminary Report on a New ASP Solver 109

Table 1. Benchmark Results on ASP competition suite

Problem wasp DLV ClaspD

LABYRINTH-1 0,39 0,02 0,03
LABYRINTH-2 299,74 3,17 65,84
LABYRINTH-3 415,14 56,19 113,04
LABYRINTH-4 TIME 25,76 561,93
LABYRINTH-5 14,47 29,15 490,04
KNIGHT-TOUR-1 0,07 0,21 0,15
KNIGHT-TOUR-2 0,14 1,64 0,34
KNIGHT-TOUR-3 0,65 14,45 2,84
KNIGHT-TOUR-4 0,67 56,31 10,56
KNIGHT-TOUR-5 7,44 TIME 179,48
GRAPH-COLOURING-1153,67 TIME 3,05
GRAPH-COLOURING-2 TIME TIME TIME
MAZE-GENERATION-1 0,28 0,93 0,79
MAZE-GENERATION-2 46,84 104,47 1,76
MAZE-GENERATION-3 47,37 261,57 3,94
MAZE-GENERATION-4 94,17 TIME 9,64
MAZE-GENERATION-5 123,40 TIME 23,49
STRATCOMP 179,06 2,33 5,71
2QBF 0,11 3,31 0,92

Problem wasp DLV ClaspD

PRIMEIMPL 3,24 1,33 0,21
3COL-SIMPLEX 23,02 33,58 TIME
3COL-LADDER 2,29 91,24 34,08
HAMCYCLE-RANDOM 5,29 1,50 2,52
HAMCYCLE-FREE 106,89 31,37 0,47
BLOCKS-WORLD-1 224,09 6,48 1,92
BLOCKS-WORLD-2 340,84 11,84 1,75
BLOCKS-WORLD-3 0,76 8,87 1,67
BLOCKS-WORLD-4 129,28 11,05 0,83
3SAT-1 78,31 9,59 65,84
3SAT-2 31,07 5,43 0,06
TOWERS-OF-HANOI 3,81 8,46 437,55
RAMSEY-1 3,03 9,84 24,01
RAMSEY-2 4,87 15,74 40,28
23-QUEENS 0,10 41,10 0,54
SCHOOL-TIMETABLING 7,45 61,09 224,93

TOTAL SOLVED 34 31 34
WEIGHTED AVERAGE 98,08 108,87 98,17
WINS 15 9 15

Overall, the results of the preliminary experimental analysis are encouraging: the
performance ofwasp is comparable to ClaspD (same number of wins and cumulative
average time), and it is often faster than DLV (only 9 wins vs 15 of wasp and ClaspD).
In more detail, for the Labyrinth problemwasp was able to solve four instances out
of five in the allowed time, while the other systems solved allfive instances; the sys-
tem is always outperformed by the competitors, except for one instance in which it is
the best performer. Regarding the Knight Tour problem,wasp always outperforms the
competitor systems, solving the hardest instance (on whichDLV timed out) in only
7, 44 seconds compared to179, 48 seconds for ClaspD. Concerning the Graph Color-
ing problem,wasp was slower than ClaspD, but solved one instance more than DLV.
Also for the Maze Generation benchmarks,wasp was slightly slower than ClaspD, but
always outperformed DLV. Considering the other benchmarks, wasp outperformed the
other two ASP solvers on 2QBF, Ramsey Numbers, N-Queens, School Timetabling,
3Colorability, and Towers of Hanoi. In the remaining benchmarks, the system remains
competitive, with the single exception of Strategic Companies. For this, we hypothesize
that a reason might be thatwasp does not implement yet a model-checking-driven back-
jumping technique, which proved to be very effective on thisparticular benchmark [35].

6 Related Work and Conclusion

In this paper we provided a preliminary report on a new ASP solver for propositional
programs calledwasp. The new system is inspired by several techniques that were orig-
inally introduced for SAT solving, like the Davis-Putnam-Logemann-Loveland (DPLL)
backtracking search algorithm [18],clause learning[19, 20], backjumping[21, 22],
restarts[23], andconflict-driven heuristics[24] in the style of Berkmin [25]. Actually,
some of the techniques adopted inwasp, includingbackjumpingandlook back heuris-
tics were first introduced for Constraint Satisfaction [21, 22, 36] and successively suc-
cessfully applied in SAT [37, 38, 25, 24] and QBF solving [39–42]. Some of these tech-

110 C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, M. Sirianni

niques were already adapted in modern non-disjunctive ASP solvers like Smodelscc [43,
44], Clasp [8], and solvers supporting disjunction like CModels3 [10], GnT [45], and
DLV [46, 47].

Concerning other ASP solvers, we differ from non-native solvers like Cmodels3 [10],
in the sense that we do not rely on a rewriting into a propositional formula and an ex-
ternal SAT solver, but use native ASP techniques. Among native solvers, similarities
with DLV [4] can be found in the propagation rules, in the computation of the great-
est unfounded set, and in the model checking technique. However, we clearly differ
from DLV as it does not implement many of the look-back techniques borrowed from
CP and SAT. The prototypical version of DLV presented in [46]and extended in [47],
implements backjumping and some forms of look back heuristics, but it does not in-
clude clause learning, restarts, and does not use an implication graph for determining
the reasons of the conflicts. Similar considerations hold for GnT [45], which, as DLV,
implements a systematic backtracking without learning andlook-ahead heuristics.

Comparing our system with ClaspD (a disjunction-supporting version built upon
Clasp) more similarities can be found, as it includes similar techniques, e.g. backjump-
ing, clause learning, restarts, and look-back heuristics.There are nonetheless several
differences withwasp. First of all,wasp performs the unfounded set checking by means
of the well-founded operator, while ClaspD relies on the computation of loop formulas.
Moreover, ClaspD implements an alternative version of the implication graph that is
more similar to SAT solvers, since it relies on unit propagation of nogoods (minimality
is handled via loop formula learning). Furthermore, ClaspD, aswasp, adopts a branch-
ing heuristics based on Berkmin [25]; however,wasp extends the original Berkmin
heuristics by exploiting a lookahaed technique in place of the “two” function calcu-
lating the number of binary clauses in the neighborhood of literal L, together with an
additional criterion based on minimality of answer sets. Inparticular, to deal with the
case of two atoms with the same heuristic value,wasp chooses the atom that introduces
the maximum number of unsatisfied supporting rules.

It is worth pointing out that the implementation ofwasp is still in a preliminary
phase, yet the results obtained up to now are encouraging. Our system is able to compete
with the state-of-the-art solvers, and even outperform them in some of the considered
benchmarks.

Concerning future work, we plan to extend the prototypical system by introducing
new language constructs such as aggregates [48, 49] and weakconstraints [50], which
are currently missing fromwasp. Moreover, the current implementation can be im-
proved in several respects: parameter tuning of the heuristics, fine tuning of the source
code, a model-checking-driven backjumping [35] as well as support for multi-threading
are also planned.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs andDisjunctive Databases.
NGC 9 (1991) 365–385

2. Lifschitz, V.: Answer Set Planning. In: ICLP’99, Las Cruces, New Mexico, USA, The MIT
Press (1999) 23–37

3. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS22 (1997) 364–418

The Birth of a WASP: Preliminary Report on a New ASP Solver 111

4. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL7 (2006) 499–562

5. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. AI 138 (2002) 181–234

6. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In:
AAAI-2002, Edmonton, Alberta, Canada, AAAI Press / MIT Press (2002)

7. Babovich, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced to non-tight
programs.http://www.cs.utexas.edu/users/tag/cmodels.html (2003)

8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In: IJCAI 2007,(2007) 386–392

9. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-
junctions in Stable Model Semantics. ACM TOCL7 (2006) 1–37

10. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: LPNMR’05. LNCS
3662, (2005) 447–451

11. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-Driven Disjunctive Answer Set Solving. In: Proc. of KR 2008, Sydney, Australia,
AAAI Press (2008) 422–432

12. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano,S., Leone, N.: Team-building
with Answer Set Programming in the Gioia-Tauro Seaport. TPLP.CUP (2011) To appear.

13. Manna, M., Ruffolo, M., Oro, E., Alviano, M., Leone, N.: The HiLeX System for Semantic
Information Extraction. Transactions on Large-Scale Data and Knowledge-Centered Sys-
tems.Berlin/Heidelberg(2011) To appear.

14. Ricca, F., Alviano, M., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone,
N.: A Logic-Based System for e-Tourism. FI.IOS Press105 (2010) 35–55

15. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczýnski, M.: The first
answer set programming system competition. In: LPNMR’07. LNCS 4483, (2007) 3–17

16. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer
set programming competition. In: Proc. of LPNMR ’09, Berlin, Heidelberg, (2009) 637–654

17. Calimeri, F., Ianni, G., Ricca, F., Alviano, M., Bria, A., Catalano,G., Cozza, S., Faber, W.,
Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, C., Perri, S., Reale, K., Santoro,
M.C., Sirianni, M., Terracina, G., Veltri, P.: The Third Answer Set Programming Competi-
tion: Preliminary Report of the System Competition Track. In: Proc. of LPNMR11., LNCS
(2003) 388–403

18. Davis, M., Logemann, G., Loveland, D.: A Machine Program forTheorem Proving. Com-
munications of the ACM5 (1962) 394–397

19. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient Conflict Driven Learning
in Boolean Satisfiability Solver. In: ICCAD 2001. (2001) 279–285

20. Pipatsrisawat, K., Darwiche, A.: On Modern Clause-Learning Satisfiability Solvers. JAIR
44 (2010) 277–301

21. Gaschnig, J.: Performance measurement and analysis of certain search algorithms. PhD
thesis, CMU (1979) Tech. Report CMU-CS-79-124.

22. Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Computational
Intelligence9 (1993) 268–299

23. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting Combinatorial Search Through Random-
ization. In: Proceedings of AAAI/IAAI 1998, AAAI Press (1998) 431–437

24. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: DAC 2001 (2001) 530–535

25. Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust Sat-Solver. In: Design, Automation
and Test in Europe Conference and Exposition (DATE 2002), Paris, France, IEEE Computer
Society (2002) 142–149

112 C. Dodaro, M. Alviano, W. Faber, N. Leone, F. Ricca, M. Sirianni

26. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In: LP-
NMR’99. LNCS 1730, (1999) 177–191

27. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. AI15 (2003) 177–212

28. Éen, N., S̈orensson, N.: An Extensible SAT-solver. In: Theory and Applicationsof Satisfia-
bility Testing, 6th International Conference, SAT 2003., LNCS (2003) 502–518

29. Maratea, M., Ricca, F., Veltri, P.: DLVC: Enhanced Model Checking in DLV. In: Proceedings
of Logics in Artificial Intelligence, JELIA 2010. (2010) 365–368

30. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. Inf. Pro-
cess. Lett.47 (1993) 173–180

31. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. Discrete Appl. Math.155
(2007) 1549–1561

32. Alviano, M.: The Maze Generation Problem is NP-complete. In: Proc. of ICTCS ’09. (2009)
33. Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propo-

sitional Case. AMAI15 (1995) 289–323
34. Knuth, D.E.: The Stanford GraphBase : A Platform for Combinatorial Computing. ACM

Press, New York (1994)
35. Pfeifer, G.: Improving the Model Generation/Checking Interplay toEnhance the Evaluation

of Disjunctive Programs. In: LPNMR-7. LNCS 2923, (2004) 220–233
36. Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction problems.

AI 136 (2002) 147–188
37. Bayardo, R., Schrag, R.: Using CSP Look-back Techniques to Solve Real-world SAT In-

stances. In: Proceedings of the 15th National Conference on ArtificialIntelligence (AAAI-
97). (1997) 203–208

38. Silva, J.P.M., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Satisfiability.
IEEE Transaction on Computers48 (1999) 506–521

39. Zhang, L., Malik, S.: Conflict Driven Learning in a Quantified Boolean Satisfiability Solver.
In: Proc. of ICCAD 2002. (2002) 442–449

40. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts in Quan-
tified Boolean Formula Evaluation. In: CP 2002. NY, USA, (2002) 200–215

41. Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for Quantified Boolean Logic
Satisfiability. AI145 (2003) 99–120

42. Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean For-
mulas. In: TABLEAUX 2002. Denmark, (2002) 160–175

43. Ward, J., Schlipf, J.S.: Answer Set Programming with Clause Learning. In: LPNMR-7.
LNCS 2923, (2004) 302–313

44. Ward, J.: Answer Set Programming with Clause Learning. PhD thesis, Ohio State University,
Cincinnati, Ohio, USA (2004)

45. Janhunen, T., Niemelä, I.: Gnt - a solver for disjunctive logic programs. In: LPNMR-7.
LNCS 2923, Fort Lauderdale, Florida, USA, (2004) 331–335

46. Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Program-
ming. AI Communications19 (2006) 155–172

47. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in dlv: Im-
plementation, evaluation and comparison to qbf solvers. Journal of Algorithms in Cognition,
Informatics and Logics63 (2008) 70–89

48. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and Stable Semantics of Logic
Programs with Aggregates. TPLP7 (2007) 301–353

49. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in an-
swer set programming. AI175 (2011) 278–298 Special Issue: John McCarthy’s Legacy.

50. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
TKDE 12 (2000) 845–860

The Birth of a WASP: Preliminary Report on a New ASP Solver 113

Testing ASP programs in ASPIDE

Onofrio Febbraro1, Kristian Reale2, and Francesco Ricca2

1 DLVSystem s.r.l. - P.zza Vermicelli, Polo Tecnologico, 87036 Rende, Italy
febbraro@dlvsystem.com

2Dipartimento di Matematica, Università della Calabria, 87030 Rende, Italy
{reale,ricca}@mat.unical.it

Abstract. Answer Set Programming (ASP) is a declarative logic programming
formalism, which nowadays counts several advanced real-world applications, and
has stimulated some interest also in industry. Although some environments for
ASP-program development have been proposed in the last few years, the crucial
task of testing ASP programs received less attention, and is an Achilles’ heel of
the available programming environments.
In this paper we present a new language for specifying and running unit tests on
ASP programs. The testing language has been implemented in ASPIDE, a com-
prehensive IDE for ASP, which supports the entire life-cycle of ASP development
with a collection of user-friendly graphical tools for program composition, test-
ing, debugging, profiling, solver execution configuration, and output-handling.

1 Introduction

Answer Set Programming (ASP) [1] is an expressive [2] logic programming paradigm
proposed in the area of non-monotonic reasoning. ASP allows one to declaratively spec-
ify a complex computational problem by a logic program whose answer sets correspond
to solutions and then use a solver to find such a solution [3]. The high expressive power
of ASP has been profitably exploited for developing advanced applications belonging
to several fields, from Artificial Intelligence [4–10] to Information Integration [11],
and Knowledge Management [12–14]. Interestingly, these applications of ASP recently
have stimulated some interest also in industry [15].

On the one hand, the effective application of ASP in real-world scenarios was made
possible by the availability of efficient ASP systems [4, 16–26]. On the other hand,
the adoption of ASP can be further boosted by offering effective programming tools
capable of supporting the programmers in managing large and complex projects [27].

In the last few years, a number of tools for developing ASP programs have been
proposed, including editors and debuggers [28–38]. Among them, ASPIDE [38] –which
stands for Answer Set Programming Integrated Development Environment– is one of
the most complete development tools1 and it integrates a cutting-edge editing tool (fea-
turing dynamic syntax highlighting, on-line syntax correction, autocompletion, code-
templates, quick-fixes, refactoring, etc.) with a collection of user-friendly graphical

1 For an exaustive feature-wise comparison with existing environments for developing logic
programs we refer the reader to [38].

tools for program composition, debugging, profiling, DBMS access, solver execution
configuration and output-handling.

Although so many tools for developing ASP programs have been proposed up to
now, the crucial task of testing ASP programs received less attention [39], and is an
Achilles’ heel of the available programming environments. Indeed, the majority of
available graphic programming environments for ASP does not provide the user with
a testing tool (see [38]), and also the one present in the first versions of ASPIDE is far
from being effective.

In this paper we present a pragmatic solution for testing ASP programs. In particu-
lar, we present a new language for specifying and running unit tests on ASP programs.
The testing language presented in this paper is inspired to the JUnit framework [40]:
the developer can specify the rules composing one or several units, specify one or more
inputs and assert a number of conditions on the expected outputs. The obtained test
case specification can be run by exploiting an ASP solver, and the assertions are auto-
matically verified by analyzing the output of the chosen ASP solver. Note that test case
specification is applicable independently of the used ASP solver. The testing language
was implemented in ASPIDE, which also provides the user with some graphic tools that
make the development of test cases simpler. The testing tool described in this work ex-
tends significantly the one formerly available in ASPIDE, and enriches its collection of
user-friendly graphical tools for program composition, debugging, profiling, database
management, solver execution configuration, and output-handling.

As far as related work is concerned, the task of testing ASP programs was ap-
proached for the first time, to the best of our knowledge, in [39] where the notion of
structural testing for ground normal ASP programs is defined and a method for au-
tomatically generating tests is introduced. The results presented in [39] are, somehow,
orthogonal to the contribution of this paper. Indeed, no language/implementation is pro-
posed in [39] for specifying/automatically-running the produced test cases; whereas,
the language presented in this paper can be used for encoding the output of a test case
generator based on the methods proposed in [39]. Finally, it is worth noting that, test-
ing approaches developed for other logic languages, like prolog [41–43], cannot be
straightforwardly ported to ASP because of the differences between the languages.

The remainder of this paper is organized as follows: in Section 2 we overview AS-
PIDE; in section 3 we introduce a language for specifying unit tests for ASP programs;
in Section 4 we describe the user interface components of ASPIDE conceived for creat-
ing and running tests; finally, in Section 5 we draw the conclusion.

2 ASPIDE: Integrated Development Environment for ASP

ASPIDE is an Integrated Development Environment (IDE) for ASP, which features a
rich editing tool with a collection of user-friendly graphical tools for ASP program
development. In this section we first summarize the main features of the system and then
we overview the main components of the ASPIDE user interface. For a more detailed
description of ASPIDE, as well as for a complete comparison with competing tools,
we refer the reader to [38] and to the online manual published in the system web site
http://www.mat.unical.it/ricca/aspide.

116 Onofrio Febbraro, Kristian Reale, Francesco Ricca

System Features. ASPIDE is inspired to Eclipse, one of the most diffused programming
environments. The main features of ASPIDE are the following:

– Workspace management. The system allows one to organize ASP programs in
projects, which are collected in a special directory (called workspace).

– Advanced text editor. The editing of ASP files is simplified by an advanced text
editor. Currently, the system is able to load and store ASP programs in the syntax
of the ASP system DLV [16], and supports the ASPCore language profile em-
ployed in the ASP System Competition 2011 [44]. ASPIDE can also manage TYP
files specifying a mapping between program predicates and database tables in the
DLVDB syntax [45]. Besides the core functionality that basic text editors offer (like
code line numbering, find/replace, undo/redo, copy/paste, etc.), ASPIDE offers oth-
ers advanced functionalities, like: Automatic completion, Dynamic code templates,
Quick fix, and Refactoring. Indeed, the system is able to complete (on request)
predicate names, as well as variable names. Predicate names are both learned while
writing, and extracted from the files belonging to the same project; variables are
suggested by taking into account the rule we are currently writing. When several
possible alternatives for completion are available the system shows a pop-up dia-
log. Moreover, the writing of repeated programming patterns (like transitive clo-
sure or disjunctive rules for guessing the search space) is assisted by advanced
auto-completion with code templates, which can generate several rules at once ac-
cording to a known pattern. Note that code templates can be also user defined by
writing DLT [46] files. The refactoring tool allows one to modify in a guided way,
among others, predicate names and variables (e.g., variable renaming in a rule is
done by considering bindings of variables, so that variables/predicates/strings oc-
curring in other expressions remain unchanged). Reported errors or warnings can
be automatically fixed by selecting (on request) one of the system’s suggested quick
fixes, which automatically change the affected part of code.

– Outline navigation. ASPIDE creates an outline view which graphically represents
program elements. Each item in the outline can be used to quickly access the corre-
sponding line of code (a very useful feature when dealing with long files), and also
provides a graphical support for building rules in the visual editor (see below).

– Dynamic code checking and errors highlighting. Syntax errors and relevant condi-
tions (like safety) are checked while typing programs: portions of code containing
errors or warnings are immediately highlighted. Note that the checker considers the
entire project, and warns the user by indicating e.g., that atoms with the same pred-
icate name have different arity in several files. This condition is usually revealed
only when programs divided in multiple files are run together.

– Dependency graph. The system is able to display several variants of the depen-
dency graph associated to a program (e.g., depending on whether both positive and
negative dependencies are considered).

– Debugger and Profiler. Semantic errors detection as well as code optimization can
be done by exploiting graphic tools. In particular, we developed a graphical user
interface for embedding in ASPIDE the debugging tool spock [30] (we have also
adapted spock for dealing with the syntax of the DLV system). Regarding the pro-
filer, we have fully embedded the graphical interface presented in [47].

Testing ASP programs in ASPIDE 117

Fig. 1. The ASPIDE graphical user interface.

– Unit Testing. The user can define unit tests and verify the behavior of programs
units. The language for specifying unit tests, as well as the graphical tools of AS-
PIDE assisting the development of tests, are described in detail in the following
sections.

– Configuration of the execution. This feature allows one to configure and manage
input programs and execution options (called run configurations).

– Presentation of results. The outputs of the program (either answer sets, or query
results) are visualized in a tabular representation or in a text-based console. The
result of the execution can be also saved in text files for subsequent analysis.

– Visual Editor. The users can draw logic programs by exploiting a full graphical
environment that offers a QBE-like tool for building logic rules [48]. The user can
switch, every time he needs, from the text editor to the visual one (and vice-versa)
thanks to a reverse-rengineering mechanism from text to graphical format.

– Interaction with databases. Interaction with external databases is useful in several
applications (e.g., [11, 15, 8]). ASPIDE provides a fully graphical import/export
tool that automatically generates mappings by following the DLVDB Typ files spec-
ifications [45]. Text editing of Typ mappings is also assisted by syntax coloring and
auto-completion. Database oriented applications can be run by setting DLVDB as
solver in a run configuration.

Interface Overview The system interface of ASPIDE is depicted in Figure 1. The most
common operations can be quickly executed through a toolbar present in the upper part

118 Onofrio Febbraro, Kristian Reale, Francesco Ricca

of the ASPIDE interface (zone 1). From left to right there are buttons allowing one to:
save files, undo/redo, copy & paste, find & replace, switch between visual to text editor,
run the solver/profiler/debugger. The main editing area (zone 4) is organized in a multi-
tabbed panel possibly collecting several open files. On the left there is the explorer
panel (zone 2) which allows one to browse the workspace; and the error console (zone
3). The explorer panel lists projects and files included in the workspace, while the error
console organizes errors and warnings according to the project and files where they are
localized. On the right, there are the outline panel (zone 5) and the sources panel (zone
6). The first shows an outline of the currently edited file, while the latter reports a list
of the database sources connected with the current project. Note that the layout of the
system can be customized by the user, indeed panels can be moved and rearranged as
the user likes.

ASPIDE is written in Java and runs on the most diffused operating systems (Mi-
crosoft Windows, Linux, and Mac OS) and can connect to any database supporting
Java DataBase Connectivity (JDBC).

3 A language for testing ASP programs

Software testing [49] is an activity aimed at evaluating the behavior of a program by
verifying whether it produces the required output for a particular input. The goal of
testing is not to provide a mean for establishing whether the program is totally correct;
conversely testing is a pragmatic and cheap way of finding errors by executing some
test. A test case is the specification of some input I and corresponding expected out-
puts O. A test case fails when the outputs produced by running the program do not
correspond to O, it passes otherwise.

One of the most diffused white-box2 testing techniques is unit testing. The idea
of unit testing is to asses an entire software by testing its subparts called units (and
corresponding to small testable parts of a program). In a software implemented by using
imperative object-oriented languages, unit testing corresponds to assessing separately
portions of the code like class methods. The same idea can be applied to ASP, once the
notion of unit is given. We intend as unit of an ASP program P any subset of the rules of
P corresponding to a splitting set [50] (actually the system exploits a generalization of
the splitting theorem by Lifschitz and Turner [50] to the non-ground case [51]). In this
way, the behavior of units can be verified (by avoiding unwanted behavioral changes
due to cycles) both when they run isolated from the original program as well as when
they are left immersed in (part of) the original program.

In the following, we present a pragmatic solution for testing ASP programs, which
is a new language, inspired to the JUnit framework [40], for specifying and running
unit tests. The developer, given an ASP program, can select the rules composing an
unit, specify one or more inputs, and assert a number of conditions on the expected
output. The obtained test case specification can be run, and the assertions automatically

2 A test conceived for verifying some functionality of an application without knowing the code
internals is said to be a black-box test. A test conceived for verifying the behavior of a specific
part of a program is called white-box test. White box testing is an activity usually carried out
by developers and is a key component of agile software development [49].

Testing ASP programs in ASPIDE 119

verified by calling an ASP solver and checking its output. In particular, we allow three
test execution modes:

– Execution of selected rules. The selected rules will be executed separated from the
original program on the specified inputs.

– Execution of split program. The program corresponding to the splitting set contain-
ing the atoms of the selected rules is run and tested. In this way, the ”interface”
between two splitting sets can be tested (e.g. one can assert some expected proper-
ties on the candidates produced by the guessing part of a program by excluding the
effect of some constraints in the checking part).

– Execution in the whole program. The original program is run and specific assertions
regarding predicates contained in the unit are checked. This corresponds to filter test
results on the atoms contained in the selected rules.

Testing Language. A test file can be written according to the following grammar:3

1 : invocation("invocationName" [,"solverPath", "options"]?);
2 : [[input("program");] | [inputFile("file");]]*
3 : [
4 : testCaseName([SELECTED RULES | SPLIT PROGRAM | PROGRAM]?)
5 : {
6 : [newOptions("options");]?
7 : [[input("program");] | [inputFile("file");]]*
8 : [[excludeInput("program");]
9 : | [excludeInputFile("file");]]*
10 : [
11 : [filter | pfilter | nfilter]
12 : [[(predicateName [,predicateName]*)]
13 : | [SELECTED RULES]] ;
14 :]?
15 : [selectRule(ruleName);]*
16 : [assertName([intnumber,]? "program");]*
17 : }
18 :]*
19 : [assertName([intnumber,]? "program");]*

A test file might contain a single test or a test suite (a set of tests) including several
test cases. Each test case includes one or more assertions on the execution results.

The invocation statement (line 1) sets the global invocation settings, that are applied
to all tests specified in the same file (name, solver, and execution options). In the imple-
mentation, the invocation name might correspond to an ASPIDE run configuration, and
the solver path and options are not mandatory.

The user can specify one or more global inputs by writing some input and inputFile
statements (line 2). The first kind of statement allows for writing the input of the test in
the form of ASP rules or simply facts; the second statement indicates a file that contains
some input in ASP format.

3 Non-terminals are in bold face; token specifications are omitted for simplicity.

120 Onofrio Febbraro, Kristian Reale, Francesco Ricca

A test case declaration (line 4) is composed by a name and an optional parameter
that allows one to choose if the execution will be done on the entire program, on a
subset of rules, or considering program corresponding to the splitting set containing the
selected rules.

The user can specify specific solver options (line 6), as well as specific inputs (line
7) which are valid in a given test case. Moreover, global inputs of the test suite can be
excluded by exploiting excludeInput and excludeInputFile statements (lines 8 and 9).

The optional statements filter, pfilter and nfilter (lines 11, 12 and 13) are used to
filter out output predicates from the test results predicates, specified as parameter, on
the execution result when assertions will be executed.4

The statement selectRule (line 15) allows one for selecting rules among the ones
composing the global input program. A rule r to be selected must be identified by a
name, which is expected to be specified in the input program in a comment appearing
in the row immediately preceding r (see Figure 1). ASPIDE adds automatically the
comments specifying rule names. If a set of selected rules does not belong to the same
splitting set, the system has to print a warning indicating the problem.

The expected output of a test case is expressed in term of assertions statements
(lines 16/19). The possible assertions are:

– assertTrue({”atomList.”})/assertCautiouslyTrue({”atomList.”}). Asserts that all atoms
of the atom list must be true in any answer sets;

– assertBravelyTrue({”atomList.”}). Asserts that all atoms of the atom list must be
true in at least one answer set;

– assertTrueIn(number, {”atomList.”}). Asserts that all atoms of the atom list must
be true in exactly number answer sets;

– assertTrueInAtLeast(number, {”atomList.”}). Asserts that all atoms of the atom list
must be true in at least number answer sets;

– assertTrueInAtMost(number, {”atomList.”}). Asserts that all atoms of the atom list
must be true in at most number answer sets;

together with the corresponding negative assertions: assertFalse, assertCautiouslyFalse,
assertBravelyFalse, assertFalseIn, assertFalseInAtLeast, assertFalseInAtMost. Asser-
tions can be global (line 19) or local to a single test (line 16).

In the following we report an example of test case file.

Test case example. The Hamiltonian Path problem is a classical NP-complete problem
in graph theory. Given a finite directed graph G = (V,A) and a node a ∈ V of this
graph, does there exist a path in G starting at a and passing through each node in V
exactly once? Suppose that the graph G is specified by using facts over predicates vtx
(unary) and edge (binary), and the starting node a is specified by the predicate start
(unary). The program in Figure 1 solves the problem.

The disjunctive rule (r2) guesses a subset S of the arcs to be in the path, while the rest
of the program checks whether S constitutes a Hamiltonian Path. Here, an auxiliary

4 pfilter selects only positive literals and excludes the strong negated ones, while nfilter has
opposite behavior.

Testing ASP programs in ASPIDE 121

Fig. 2. Input graphs.

predicate reached is defined, which specifies the set of nodes which are reached from
the starting node. In the checking part, the two constraints r4 and r5 ensure that the set
of arcs S selected by path meets the following requirements, which any Hamiltonian
Path must satisfy: (i) a vertex must have at most one incoming edge, and (ii) a vertex
must have at most one outgoing edge. The constraints r6 and r7 enforces that all nodes
in the graph are reached from the starting node in the subgraph induced by S and the
start node must be the first node of the path.

In order to test this encoding we define a test suite file. Suppose that the encoding
is stored in a file named hamiltonianPath.dl. Suppose also that the graph instance of
Figure 2a is stored in a file named graphInstance.dl, and is composed by the following
facts: vtx(1). vtx(2). vtx(3). vtx(4). vtx(5). edge(1, 2). edge(2, 3). edge(3, 4). edge(4, 5).
edge(3, 2). edge(1, 3). edge(2, 4). edge(5, 1)..

The following is a simple test suite specification for the above-reported ASP pro-
gram:

invocation("SEAHamiltonianPath", "/usr/bin/dlv", "");
inputFile("hamiltonianPath.dl");
reachability()
{
inputFile("graphInstance.dl");
input("start(1).");
assertTrue("reached(1).reached(2).reached(3).reached(4).reached(5).");
}
guessSlice(SELECTED RULES)
{
inputFile("graphInstance.dl");
input("reached(1).");
selectRule("r2");
selectRule("r3");
assertBravelyFalse("path(1, 2).");
assertBravelyTrue("path(1, 2).");
}
guessSliceNonReachability(SPLIT PROGRAM)
{
inputFile("graphInstance.dl");
input("start(3).");

122 Onofrio Febbraro, Kristian Reale, Francesco Ricca

excludeInput("edge(5, 1).");
selectRule("r2");
selectRule("r3");
assertCautiouslyFalse("reached(1).");
}
assertFalse("path(1, 2).");

Here, we first setup the invocation parameters by indicating DLV as solver, then we
specify the file to be tested hamiltonianPath.dl by exploiting a global input statement;
then, we add the test case reachability, in which we verify that if node 1 is the start-
ing node than nodes {1,2,3,4,5} are reached (see Figure 2a). To this end we specify
graphInstance.dl as local input file and start(1) as local input and write some assertion
requiring that atoms {reached(1), reached(2), reached(3), reached(4), reached(5)} are
(cautiously) true.

In the second test case, named guessSlice, we select rules r2 and r3 and we require
to test selected rules in isolation. The (local) inputs in this case are: the file graphIn-
stance.dl and the fact {reached(1).}. In this case we are testing only the part of the
program that guesses the paths, and we specify a couple of additional assertions (i.e.,
path(1, 2) has to be true in some answer set and false in some other).

Test case guessSliceNonReachability is run in SPLIT PROGRAM modality, which
requires to test the subprogram containing all the rules belonging to the splitting set
corresponding to the selection (i.e., {path, outPath, edge, reached}). With this test case
the sub-program that we are testing is composed by all the rules of the Hamiltonian
Path example without the constraints. Also in this case we include the graph instance
file graphInstance.dl. Additionally, we remove edge from 5 to 1 (see Fig. 2b), so that
node 1 is not reached, then we add the assertion corresponding to this observation.
Finally, we add a global assertion (assertFalse(”path(1,2).”) to check if path(1,2) is
not contained in any answer set (note that the graph instance and the starting node are
missing in the global inputs).

The test file described above can be created graphically and executed in ASPIDE as
described in the following section.

4 Unit Testing in ASPIDE

In this section we describe the graphic tools implemented in ASPIDE conceived for
developing and running test cases. Space constraints prevent us from providing a com-
plete description of all the usage scenarios and available commands. However, in order
to have an idea about the capabilities of the testing interface of ASPIDE, we describe
step by step how to implement the example illustrated in the previous section.

Suppose that we have created in ASPIDE a project named SEA, which contains
the files hamiltonianPath.dl and graphInstance.dl (see Fig. 1) storing the encoding of
the hamiltonian path problem and the graph instance, respectively. Since the file that we
want to test in our example is hamiltonianPath.dl, we select it in the workspace explorer,
then we click the right button of the mouse and select New Test from the popup menu
(Fig. 3a). The system shows the test creation dialog (Fig. 3b), which allows for both

Testing ASP programs in ASPIDE 123

Fig. 3. Test case creation.

setting the name of the test file and selecting a previously-defined run configuration
(storing execution options). In this case we select the one named SEAHamiltonianPath
explicitly referring to the DLV system (ASPIDE will get the solver path directly from
the selected run configuration). By clicking on the Finish button, the new test file is

124 Onofrio Febbraro, Kristian Reale, Francesco Ricca

Fig. 4. Test case execution and assertion management.

created (see Fig. 3c) where the statements regarding input files and invocation are added
automatically. We add the first unit test (called reachability) by exploiting the text editor
(see Fig. 3d), whereas we build the remaining ones (working on some selected rules) by
exploiting the logic program editor. After opening the hamiltonianPath.dl file, we select

Testing ASP programs in ASPIDE 125

rules r2 and r3 inside the text editor, we right-click on them and we select Add selected
rules in test case from the menu item Test of the popup menu (fig. 3e). The system opens
a dialog window where we indicate the test file in which we want to add the new test
case (fig. 3f). We click on the Create test case; the system will ask for the name of the
new test case and we write guessSlice; after that, on the window, we select the option
execute selected rules and click on the Finish button. The system will add the test case
guessSlice filled with the selectRule statements indicating the two selected rules. To add
project files as input of the test case, we select them from the workspace explorer and
click on Use file as input in the menu item Test (fig. 3g). The test created up to now
is shown in figure 3h. Following an analogous procedure we create the remaining test
cases (see Fig. 4a). To execute our tests, we right-click on the test file and select Execute
Test. The Test Execution Dialog appears and the results are shown to the programmer
(see Fig. 4b). Failing tests are indicated by a red icon, while green icons indicate passing
tests. At this point, in order to show how to modify graphically a test case, we add the
following additional test that purposely fails:

reachabilityFailure()
{
inputFile("graphInstance.dl");
input("start(1).");
excludeInput("edge(4, 5).");
excludeInput(":- vtx(X), not reached(X).");
assertTrue("reached(5).");

}
As shown in Figure 2c this additional test (as expected) fails, and the reason for

this failure is indicated (see Fig. 4c) in the test execution dialog. In order to know
which literals of the solution do not satisfy the assertion, we right-click on the failed
test and select Manage Asserts from the menu. A dialog showing the outputs of the test
appears where, in particular, predicates and literals matching correctly the assertions are
marked in green, whereas the ones violating the assertion are marked in red (gray icons
may appear to indicate missing literals which are expected to be in the solution). In
our example, the assertion is assertTrue(”reached(5).”), so we expect that all solutions
contain the literal reached(5); however, in our instance, node 5 is never reached, this is
because the test case purposely contains an error. We modify this test case by adding the
right assertion. This can be obtained by acting directly on the result window (fig. 4d).
We remove the old assertion by selecting it and clicking on the Remove Assert button.
Finally, we save the modifications, and we execute the test suite again (see Fig. 4e).

5 Conclusion

This paper presents a pragmatic environment for testing ASP programs. In particular,
we present a new language, inspired to the JUnit framework [40], for specifying and
running unit tests on ASP programs. The testing language has been implemented in
ASPIDE together with some graphic tools for easing both the development of tests and
the analysis of test execution.

As far as future work is concerned, we plan to extend ASPIDE by improving/intro-
ducing additional dynamic editing instruments, and graphic tools. In particular, we plan

126 Onofrio Febbraro, Kristian Reale, Francesco Ricca

to further improve the testing tool by supporting (semi)automatic test case generation
based on the structural testing techniques proposed in [39].

Acknowledgments. This work has been partially supported by the Calabrian Region
under PIA (Pacchetti Integrati di Agevolazione industria, artigianato e servizi) project
DLVSYSTEM approved in BURC n. 20 parte III del 15/05/2009 - DR n. 7373 del
06/05/2009.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
NGC 9 (1991) 365–385

2. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS 22(3) (1997) 364–418
3. Lifschitz, V.: Answer Set Planning. In: ICLP’99) 23–37
4. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczyński, M.: The first

answer set programming system competition. In: LPNMR’07. LNCS 4483, (2007) 3–17
5. Balduccini, M., Gelfond, M., Watson, R., Nogeira, M.: The USA-Advisor: A Case Study in

Answer Set Planning. In: LPNMR 2001 (LPNMR-01). LNCS 2173, (2001) 439–442
6. Baral, C., Gelfond, M.: Reasoning Agents in Dynamic Domains. In: Logic-Based Artificial

Intelligence. Kluwer (2000) 257–279
7. Baral, C., Uyan, C.: Declarative Specification and Solution of Combinatorial Auctions Using

Logic Programming. In: LPNMR 2001 (LPNMR-01). LNCS 2173, (2001) 186–199
8. Friedrich, G., Ivanchenko, V.: Diagnosis from first principles for workflow

executions. Tech. Rep., http://proserver3-iwas.uni-klu.ac.at/download area/Technical-
Reports/technical report 2008 02.pdf.

9. Franconi, E., Palma, A.L., Leone, N., Perri, S., Scarcello, F.: Census Data Repair: a Chal-
lenging Application of Disjunctive Logic Programming. In: LPAR 2001. LNCS 2250, (2001)
561–578

10. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog Decision
Support System for the Space Shuttle. In: Practical Aspects of Declarative Languages, Third
International Symposium (PADL 2001). LNCS 1990, (2001) 169–183

11. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M., Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
SIGMOD 2005, Baltimore, Maryland, USA, ACM Press (2005) 915–917

12. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP
(2003)

13. Bardadym, V.A.: Computer-Aided School and University Timetabling: The New Wave. In:
Practice and Theory of Automated Timetabling, First International Conference 1995. LNCS
1153, (1996) 22–45

14. Grasso, G., Iiritano, S., Leone, N., Ricca, F.: Some DLV Applications for Knowledge Man-
agement. In: Proceedings of the 10th International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR 2009). LNCS 5753, (2009) 591–597

15. Grasso, G., Leone, N., Manna, M., Ricca, F.: Logic Programming, Knowledge Representa-
tion, and Nonmonotonic Reasoning: Essays in Honor of M. Gelfond. LNCS 6565 (2010)

16. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL 7(3) (2006) 499–562

17. Simons, P.: Smodels Homepage (since 1996) http://www.tcs.hut.fi/Software/
smodels/.

Testing ASP programs in ASPIDE 127

18. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. AI 138 (2002) 181–234

19. Zhao, Y.: ASSAT homepage (since 2002) http://assat.cs.ust.hk/.
20. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In:

AAAI-2002, Edmonton, Alberta, Canada, AAAI Press / MIT Press (2002)
21. Babovich, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced to non-tight

programs. http://www.cs.utexas.edu/users/tag/cmodels.html (2003)
22. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.

In: IJCAI 2007,(2007) 386–392
23. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-

junctions in Stable Model Semantics. ACM TOCL 7(1) (2006) 1–37
24. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: LPNMR’05. LNCS

3662, (2005) 447–451
25. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:

Conflict-Driven Disjunctive Answer Set Solving. In: Proceedings of the Eleventh Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR 2008),
Sydney, Australia, AAAI Press (2008) 422–432

26. Denecher, M., Vennekens, J., Bond, S., Gebser, M., M., M.T.: The second answer set pro-
gramming system competition. In: Logic Programming and Nonmonotonic Reasoning —
10th International Conference, LPNMR’09. LNCS 5753, Potsdam, Germany, Berlin // Hei-
delberg (2009) 637–654

27. Dovier, A., Erdem, E.: Report on application session @lpnmr09 (2009) http://www.cs.
nmsu.edu/ALP/2010/03/report-on-application-session-lpnmr09/.

28. Perri, S., Ricca, F., Terracina, G., Cianni, D., Veltri, P.: An integrated graphic tool for devel-
oping and testing DLV programs. In: Proceedings of the Workshop on Software Engineering
for Answer Set Programming (SEA’07). (2007) 86–100

29. Sureshkumar, A., Vos, M.D., Brain, M., Fitch, J.: APE: An AnsProlog* Environment.
In: Proceedings of the Workshop on Software Engineering for Answer Set Programming
(SEA’07). (2007) 101–115

30. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: That is Illogical
Captain! The Debugging Support Tool spock for Answer-Set Programs: System Description.
In: Proceedings of the Workshop on Software Engineering for Answer Set Programming
(SEA’07). (2007) 71–85

31. Brain, M., De Vos, M.: Debugging Logic Programs under the Answer Set Semantics. In:
Proceedings ASP05 - Answer Set Programming: Advances in Theory and Implementation,
Bath, UK (2005)

32. El-Khatib, O., Pontelli, E., Son, T.C.: Justification and debugging of answer set programs
in ASP. In: Proceedings of the Sixth International Workshop on Automated Debugging,
California, USA, ACM (2005)

33. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: On debugging non-ground
answer-set programs. In: Proc. of the ICLP’10. (2010)

34. Brain, M., Gebser, M., Pührer, J., Schaub, T., Tompits, H., Woltran, S.: Debugging asp
programs by means of asp. In: LPNMR’07. LNCS 4483, (2007) 31–43

35. De Vos, M., Schaub, T., eds.: SEA’07: Software Engineering for Answer Set Programming.
In: . Volume 281., CEUR (2007) Online at http://CEUR-WS.org/Vol-281/.

36. De Vos, M., Schaub, T., eds.: SEA’09: Software Engineering for Answer Set Programming.
In: . Volume 546., CEUR (2009) Online at http://CEUR-WS.org/Vol-546/.

37. Ricca, F., Gallucci, L., Schindlauer, R., Dell’Armi, T., Grasso, G., Leone, N.: OntoDLV: an
ASP-based system for enterprise ontologies. Journal of Logic and Computation (2009)

128 Onofrio Febbraro, Kristian Reale, Francesco Ricca

38. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: Integrated Development Environment for An-
swer Set Programming. In: Logic Programming and Nonmonotonic Reasoning — 11th In-
ternational Conference, LPNMR’11, Vancouver, Canada, 2011, Proceedings. LNCS 6645,
(May 2011) 317–330

39. Janhunen, T., Niemelä, I., Oetsch, J., Pührer, J., Tompits, H.: On testing answer-set pro-
grams. In: Proceeding of the 2010 conference on ECAI 2010: 19th European Conference
on Artificial Intelligence, Amsterdam, The Netherlands, The Netherlands, IOS Press (2010)
951–956

40. JUnit.org community: JUnit, Resources for Test Driven Development http://www.
junit.org/.

41. Jack, O.: Software Testing for Conventional and Logic Programming. Walter de Gruyter &
Co., Hawthorne, NJ, USA (1996)

42. Wielemaker, J.: Prolog Unit Tests http://www.swi-prolog.org/pldoc/
package/plunit.html.

43. Cancinos, C.: Prolog Development Tools - ProDT http://prodevtools.
sourceforge.net.

44. Calimeri, F., Ianni, G., Ricca, F.: The third answer set programming system competition
(since 2011) https://www.mat.unical.it/aspcomp2011/.

45. Terracina, G., Leone, N., Lio, V., Panetta, C.: Experimenting with recursive queries in
database and logic programming systems. TPLP 8 (2008) 129–165

46. Ianni, G., Ielpa, G., Pietramala, A., Santoro, M.C.: Answer Set Programming with Tem-
plates. In: ASP’03, Messina, Italy (2003) 239–252 Online at http://CEUR-WS.org/
Vol-78/.

47. Calimeri, F., Leone, N., Ricca, F., Veltri, P.: A Visual Tracer for DLV. In: Proc. of SEA’09,
Potsdam, Germany (2009)

48. Febbraro, O., Reale, K., Ricca, F.: A Visual Interface for Drawing ASP Programs. In: Proc.
of CILC2010, Rende(CS), Italy (2010)

49. Sommerville, I.: Software Engineering. Addison-Wesley (2004)
50. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: ICLP’94, MIT Press (1994) 23–37
51. Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set

programming with description logics for the semantic web. Artif. Intell. 172 (2008) 1495–
1539

Testing ASP programs in ASPIDE 129

Complexity of Super-Coherence Problems in ASP⋆

Mario Alviano1, Wolfgang Faber1, and Stefan Woltran2

1 University of Calabria, Italy
{alviano,faber}@mat.unical.it
2 Vienna University of Technology, Austria

woltran@dbai.tuwien.ac.at

Abstract. Adapting techniques from database theory in order to optimize An-
swer Set Programming (ASP) systems, and in particular the grounding compo-
nents of ASP systems, is an important topic in ASP. In recent years, the Magic Set
method has received some interest in this setting, and a variant of it, calledDMS,
has been proposed for ASP. However, this technique has a caveat, because it is not
correct (in the sense of being query-equivalent) for all ASP programs. In recent
work, a large fragment of ASP programs, referred to assuper-coherent programs,
has been identified, for which DMS is correct. An open question remained: How
complex is it to determine whether a given program is super-coherent? This ques-
tion turned out to be quite difficult to answer precisely. In this paper, we formally
prove that deciding whether a propositional program is super-coherent is ΠP

3 -
complete in the disjunctive case, while it isΠP

2 -complete for normal programs.
The hardness proofs are the difficult part in this endeavor: We proceed by charac-
terizing the reductions by the models and reduct models which the ASP programs
should have, and then provide instantiations that meet the given specifications.

1 Introduction

Answer Set Programming (ASP) is a powerful formalism for knowledge representation
and common sense reasoning [5]. Allowing disjunction in rule heads and nonmono-
tonic negation in bodies,ASP can express every query belonging to the complexity
classΣP

2 (NPNP). Encouraged by the availability of efficient inference engines, such
as DLV [17], GnT [15], Cmodels [18], or ClaspD [8],ASP has found several prac-
tical applications in various domains, including data integration [16], semantic-based
information extraction [20, 21], e-tourism [24], workforce management [25], and many
more. As a matter of fact, theseASP systems are continuously enhanced to support
novel optimization strategies, enabling them to be effective over increasingly larger ap-
plication domains.

Frequently, optimization techniques are inspired by methods that had been proposed
in other fields, for example database theory, satisfiabilitysolving, or constraint satisfac-
tion. Among techniques adapted to ASP from database theory,Magic Sets [26, 4, 6]

⋆ This work will also be presented at the ASPOCP 2011 workshop. Partly supported by Re-
gione Calabria and EU under POR Calabria FESR 2007-2013 and within the PIA project of
DLVSYSTEM s.r.l., and by MIUR under the PRIN project LoDeN. We also thank the anony-
mous reviewers for their valuable comments.

have recently achieved a lot of attention. Following some earlier work [14, 7], recently
an adapted method calledDMShas been proposed forASP in [3]. However, this tech-
nique has a caveat, because it is not correct (in the sense of being query-equivalent) for
all ASP programs. In recent work [2, 1], a large fragment of ASP programs, referred
to assuper-coherent programs(ASPsc), has been identified, for which DMS can be
proved to be correct.

While our main motivation for studyingASPsc stemmed from the applicability of
DMS, this class actually has many more important motivations. Indeed, it can be viewed
as the class ofnon-constraining programs: Adding extensional information to these
programs will always result in answer sets. One important implication of this property
is for modular evaluation. For instance, when using the splitting set theorem of [19], if a
top part of a split program is anASPsc program, then any answer set of the bottom part
will give rise to at least one answer set of the full program—sofor determining answer
set existence, there would be no need to evaluate the top part.

On a more abstract level, one of the main criticisms ofASP (being voiced espe-
cially in database theory) is that there are programs which do not admit any answer set
(traditionally this has been considered a more serious problem than the related nondeter-
minism in the form of multiple answer sets, cf. [23]). From this perspective, programs
which guarantee coherence (existence of an answer set) havebeen of interest for quite
some time. In particular, if one considers a fixed program anda variable “database,”
one arrives naturally at the classASPsc when requiring existence of an answer set. This
also indicates that deciding super-coherence of programs is related to some problems
from the area of equivalence checking in ASP [13, 10, 22]. Forinstance, when deciding
whether, for a given arbitrary programP , there is a uniformly equivalent definite pos-
itive (or definite Horn) program, super-coherence ofP is a necessary condition—this
is straightforward to see because definite Horn programs have exactly one answer set,
so a non-super-coherent program cannot be uniformly equivalent to any definite Horn
program.

Since the property of being super-coherent is a semantic one, a natural question
arises: How difficult is it to decide whether a given program belongs toASPsc? It turns
out that the precise complexity is rather difficult to establish. Some bounds have been
given in [2], in particular showing decidability, but especially hardness results seemed
quite hard to obtain.

In order to focus on the essentials of this problem, in this paper we deal with propo-
sitional programs and show the precise complexity (in termsof completeness) for de-
ciding whether a given propositionalASP program belongs toASPsc. In Section 2 we
first define some terminology needed later on. In Section 3 we formulate the problem
that we analyze and state the results. The remainder of the paper contains the proofs —
in Section 4 for disjunctive programs and in Section 5 for normal programs — and in
Section 6 we briefly discuss the relation to equivalence problems before concluding the
work in Section 7.

132 Mario Alviano, Wolfgang Faber, Stefan Woltran

2 Preliminaries

In this paper we consider propositional programs, so an atomp is a member of a count-
able setU . A literal is either an atomp (a positive literal), or an atom preceded by the
negation as failuresymbolnot (a negative literal). Arule r is of the form

p1 ∨ · · · ∨ pn ← q1, . . . , qj , not qj+1, . . . , not qm

wherep1, . . . , pn, q1, . . . , qm are atoms andn ≥ 0, m ≥ j ≥ 0. The disjunctionp1 ∨
· · · ∨ pn is theheadof r, while the conjunctionq1, . . . , qj , not qj+1, . . . , not qm is
thebodyof r. Moreover,H(r) denotes the set of head atoms, whileB(r) denotes the set
of body literals. We also useB+(r) andB−(r) for denoting the set of atoms appearing
in positive and negative body literals, respectively, andAt(r) for the setH(r)∪B+(r)∪
B−(r). A rule r is normal (or disjunction-free) if|H(r)| = 1 or |H(r)| = 0 (in this
caser is also referred to as aconstraint), positive (or negation-free) ifB−(r) = ∅, a
fact if both B(r) = ∅ and|H(r)| = 1.

A programP is a finite set of rules; if all rules in it are positive (resp. normal),
then P is a positive (resp. normal) program. Odd-cycle-free and stratified programs
constitute two other interesting classes of programs. An atom p appearing in the head
of a rule r dependson each atomq that belongs toB(r); if q belongs toB+(r), p
depends positively onq, otherwise negatively. A program without constraints isodd-
cycle-freeif there is no cycle of dependencies involving an odd number of negative
dependencies, while it isstratifiedif each cycle of dependencies involves only positive
dependencies. Programs containing constraints have been excluded by the definition of
odd-cycle-free and stratified programs. In fact, constraints intrinsically introduce odd-
cycles in programs as a constraint of the form

← q1, . . . , qj , not qj+1, . . . , not qm

can be replaced by the following equivalent rule:

co← q1, . . . , qj , not qj+1, . . . , not qm, not co,

whereco is a fresh atom (i.e., an atom that does not occur elsewhere inthe program).
Given a programP , let At(P) denote the set of atoms that occur in it, that is, let

At(P) =
⋃

r∈P At(r). An interpretationI for a programP is a subset ofAt(P). An
atomp is true w.r.t. an interpretationI if p ∈ I; otherwise, it is false. A negative literal
not p is true w.r.t.I if and only if p is false w.r.t.I. The body of a ruler is true w.r.t.I if
and only if all the body literals ofr are true w.r.t.I, that is, if and only ifB+(r) ⊆ I and
B−(r) ∩ I = ∅. An interpretationI satisfiesa ruler ∈ P if at least one atom inH(r)
is true w.r.t.I whenever the body ofr is true w.r.t.I. An interpretationI is amodelof
a programP if I satisfies all the rules inP .

Given an interpretationI for a programP , the reduct ofP w.r.t.I, denoted byP I , is
obtained by deleting fromP all the rulesr with B−(r) ∩ I 6= ∅, and then by removing
all the negative literals from the remaining rules. The semantics of a programP is given
by the setAS(P) of the answer sets ofP , where an interpretationM is an answer set
for P if and only if M is a subset-minimal model ofPM .

In the subsequent sections, we will use the following properties that the models and
models of reducts of programs satisfy (see, e.g. [9, 13]):

Complexity of Super-Coherence Problems in Answer Set Programming 133

(P1) for any disjunctive programP and interpretationsI ⊆ J ⊆ K, if I satisfiesP J ,
thenI also satisfiesPK ;

(P2) for any normal programP and interpretationsI, J ⊆ K, if I andJ both satisfy
PK , then also(I ∩ J) satisfiesPK .

We now introduce super-coherent ASP programs (ASPsc programs), the main class
of programs studied in this paper.

Definition 1 (ASPsc programs [1, 2]).A programP is super-coherentif, for every set
of factsF , AS(P ∪ F) 6= ∅. LetASPsc denote the set of all super-coherent programs.

Note thatASPsc programs include all odd-cycle-free programs (and therefore also
all stratified programs). Indeed, every odd-cycle-free program admits at least one an-
swer set and remains odd-cycle-free even if an arbitrary setof facts is added to its rules.
On the other hand, there are programs having odd-cycles thatare inASPsc, cf. [2].

An important question regards whetherASPsc programs are as expressive asASP
programs. Of course, checking coherence (existence of answer sets) is a trivial task for
ASPsc programs. But when considering query answering, it turns out that expressivity
is not lowered. Indeed, all expressivity results of [12] hold for disjunctive programs
with stratified negation (examining the proofs, actually for disjunctive programs with
input negation, that is, having at most two strata), which guarantee super-coherence
and are a proper subset ofASPsc. It therefore follows that all properties inΣP

2 or ΠP
2

are expressible byASPsc programs using a query under brave or cautious reasoning,
respectively. The picture is less clear for nondisjunctiveASPsc programs.

However, we should point out that many (probably most) existing ASP programs
follow a “Guess&Check” or “Generate&Test” methodology, which usually relies on
integrity constraints, the presence of which usually contradicts super-coherence. As
an alternative, violated integrity constraints can derivea special atom, on which the
query atom should depend negatively. If the Guess/Generatepart involves non-stratified
negation, it depends on how this construct is used in the encoding. If it just encodes a
choice, this can often be easily converted to a disjunction,while for encodings that
entangle guess and check using unstratified negation, an automated conversion to an
ASPsc program seems less straightforward. In general, however, we feel that for ob-
taining computationally efficientASPsc encodings, different encoding methodologies
should be developed.

3 Problem Statement and Main Theorems

In this paper, we study the complexity of the following natural problem.

– Given a programP , isP super-coherent, i.e. doesAS(P ∪F) 6= ∅ hold for any set
F of facts.

We will study the complexity for this problem for the case of disjunctive logic pro-
grams and non-disjunctive (normal) logic programs. We firsthave a look at a similar
problem, which turns out to be rather trivial to decide.

134 Mario Alviano, Wolfgang Faber, Stefan Woltran

Proposition 1. The problem of deciding whether, for a given disjunctive program P ,
there is a setF of facts such thatAS(P ∪F) 6= ∅ is NP-complete;NP-hardness holds
already for normal programs.

Proof. We start by observing that there isF such thatAS(P ∪ F) 6= ∅ if and only if P
has at least one classical model. Indeed, ifM is a model ofP , thenP ∪M hasM as its
answer set. On the other hand, ifP has no model, then no addition of factsF will yield
an answer set forP ∪ F . It is well known that deciding whether a program has at least
one (classical) model isNP-complete for both disjunctive and normal programs.2

In contrast, the complexity for deciding super-coherence is surprisingly high, which
we shall show next. To start, we give a straight-forward observation.

Proposition 2. A programP is super-coherent if and only if for each setF ⊆ At(P),
AS(P ∪ F) 6= ∅.

Proof. The only-if direction is by definition. For the if-direction, let F be any set of
facts.F can be partitioned intoF ′ = F ∩ At(P) andF ′′ = F \ F ′. By assumption,
P ∪ F ′ is coherent. LetM be an answer set ofP ∪ F ′. We shall show thatM ∪ F ′′ is
an answer set ofP ∪ F = P ∪ F ′ ∪ F ′′. This is in fact a consequence of the splitting
set theorem [19], as the atoms inF ′′ are only defined by facts not occurring inP ∪ F ′.
2

Our main results are as follows. The proofs are contained in the subsequent sections.

Theorem 1. The problem of deciding super-coherence for disjunctive programs isΠP
3 -

complete.

Theorem 2. The problem of deciding super-coherence for normal programs is ΠP
2 -

complete.

4 Proof of Theorem 1

Membership follows by the following straight-forward nondeterministic algorithm for
the complementary problem, i.e. given a programP , does there exist a setF of facts
such thatAS(P ∪ F) = ∅: we guess a setF ⊆ At(P) and checkAS(P ∪ F) = ∅ via
an oracle-call. Restricting the guess toAt(P) can be done by Proposition 2. Checking
AS(P ∪ F) = ∅ is known to be inΠP

2 [11]. This showsΠP
3 -membership.

For the hardness we reduce theΠP
3 -complete problem of deciding whether QBFs

of the form∀X∃Y ∀Zφ are true to the problem of super-coherence. Without loss of
generality, we can considerφ to be in DNF and, indeed,X 6= ∅, Y 6= ∅, andZ 6= ∅. We
also assume that each disjunct ofΦ contains at least one variable fromX, one fromY
and one fromZ. More precisely, we shall construct for each such QBFΦ a programPΦ

such thatΦ is true iff PΦ is super-coherent. Before showing how to actually construct
PΦ from Φ in polynomial time, we give the required properties forPΦ. We then show
that for programsPΦ satisfying these properties, the desired relation (Φ is true iff PΦ is
super-coherent) holds, and finally we provide the construction of PΦ.

Complexity of Super-Coherence Problems in Answer Set Programming 135

Definition 2. Let Φ = ∀X∃Y ∀Zφ be a QBF withφ in DNF. We call any programP
satisfying the following properties aΦ-reduction:

1. P is given over atomsU = X ∪ Y ∪Z ∪X ∪ Y ∪Z ∪ {u, v, w}, where all atoms
in setsS = {s | s ∈ S} and{u, v, w} are fresh and mutually disjoint;

2. P has the following models:
– U
– for eachI ⊆ X, J ⊆ Y ,

M [I, J] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ Z ∪ Z ∪ {u, v}
and

M ′[I, J] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ Z ∪ Z ∪ {v, w};
3. for eachI ⊆ X, J ⊆ Y , the models3 of the reductPM [I,J] areM [I, J] and

O[I] = I ∪ (X \ I);

4. for eachI ⊆ X, J ⊆ Y , the models of the reductPM ′[I,J] areM ′[I, J] and
– for eachK ⊆ Z such thatI ∪ J ∪K 6|= φ,

N [I, J, K] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪K ∪ (Z \K) ∪ {v};
5. the models of the reductPU are given only by the models already mentioned above,

i.e.U itself,M [I, J], M ′[I, J], andO[I], for eachI ⊆ X, J ⊆ Y , andN [I, J, K]
for eachI ⊆ X, J ⊆ Y , K ⊆ Z, such thatI ∪ J ∪K 6|= φ.

The structure of models ofΦ-reductions and the “countermodels” (see below what
we mean by this term) of the relevant reducts is sketched in Figure 1. The center of the
diagram contains the models of theΦ-reduction and their subset relationship. For each
of the model the respective box lists the “countermodels,” by which we mean those
reduct models which can serve as counterexamples for the original model being an
answer set, that is, those reduct models which are proper subsets of the original model.

We just note at this point that the models of the reductPU given in Item 5 are not
specified for particular purposes, but are required to allowfor a realization via disjunc-
tive programs. In fact, these models are just an effect of property (P1) mentioned in Sec-
tion 2. However, before showing a program satisfying the properties of aΦ-reduction,
we first show the rationale behind the concept ofΦ-reductions.

Lemma 1. For any QBFΦ = ∀X∃Y ∀Zφ with φ in DNF, a Φ-reduction is super-
coherent iffΦ is true.

Proof. Suppose thatΦ is false. Hence, there exists anI ⊆ X such that, for allJ ⊆ Y ,
there is aKY ⊆ Z with I ∪ J ∪KY 6|= φ. Now letP be anyΦ-reduction andFI =
I ∪ (X \ I). We show thatAS(P ∪FI) = ∅, thusP is not super-coherent. LetM be a
model ofP ∪FI . SinceP is aΦ-reduction, the only candidates forM areU , M [I, J],
andM ′[I, J], whereJ ⊆ Y . Indeed, for eachI 6= I, M [I, J] andM ′[I, J] cannot be
models ofP ∪ FI becauseFI 6⊆M [I, J], resp.FI 6⊆M ′[I, J]. We now analyze these
three types of potential candidates:

3 Here and below, for a reductP M we only list models of the formN ⊆ M , since those are the
relevant ones for our purposes. Recall thatN = M is always a model ofP M in caseM is a
model ofP .

136 Mario Alviano, Wolfgang Faber, Stefan Woltran

U

M [I0, J0] · · · M [Im, Jn] M ′[I0, J0] · · · M ′[Im, Jn]

⊂
· · ·

⊂ ⊂
· · ·

⊂

O[I0]

P M [I0,J0]

· · · O[Im]

P M [Im,Jn]

N [I0, J0, K] s.t.
I0 ∪ J0 ∪ K 6|= φ

P M′[I0,J0]

· · · N [Im, Jn, K] s.t.
Im ∪ Jn ∪ K 6|= φ

P M′[Im,Jn]

M [I0, J0] · · · M [Im, Jn] M ′[I0, J0] · · · M ′[Im, Jn]

O[I0] · · · O[Im]
N [I0, J0, K] s.t.
I0 ∪ J0 ∪ K 6|= φ

· · · N [Im, Jn, K] s.t.
Im ∪ Jn ∪ K 6|= φ

P U

Fig. 1.Models and reduct “countermodels” ofΦ-reductions

– M = U : Then, for instance,M [I, J] ⊂ U is a model of(P ∪ FI)M = PM ∪ FI
for anyJ ⊆ Y . Thus,M /∈ AS(P ∪ FI).

– M = M [I, J] for someJ ⊆ Y . Then, by the properties ofΦ-reductions,O[I] ⊂
M is a model of(P ∪ FI)M = PM ∪ FI . Thus,M /∈ AS(P ∪ FI).

– M = M ′[I, J] for someJ ⊆ Y . By the initial assumption, there exists aKY ⊆ Z
with I ∪ J ∪KY 6|= φ. Then, by the properties ofΦ-reductions,N [I, J, K] ⊂M
is a model ofPM. Thus,M /∈ AS(P ∪ FI).

In each of the cases we have obtainedM /∈ AS(P ∪ FI), henceAS(P ∪ FI) = ∅
andP is not super-coherent.

Suppose thatΦ is true. It is sufficient to show that for eachF ⊆ U , AS(P ∪ F) 6= ∅.
We have the following cases:

If {s, s} ⊆ F for somes ∈ X ∪ Y or {u, w} ⊆ F . ThenU ∈ AS(P ∪ F) since
U is a model ofP ∪ F and each potential modelM ⊂ U of the reductPU (see the
properties ofΦ-reductions) does not satisfyF ⊆ M ; thus each suchM is not a model
of PU ∪ F = (P ∪ F)U .

Otherwise, we haveF ⊆ M [I, J] or F ⊆ M ′[I, J] for someI ⊆ X, J ⊆ Y . In
caseF ⊆ M [I, J] andF 6⊆ O[I], we observe thatM [I, J] ∈ AS(P ∪ F) sinceO[I]
is the only model of the reductPM [I,J]. Thus for each suchF there cannot be a model
M ⊂M [I, J] of PM [I,J] ∪F = (P ∪F)M [I,J]. As well, in caseF ⊆M ′[I, J], where
w ∈ F , M ′[I, J] can be shown to be an answer set ofP ∪ F . Indeed, in this case no
M ⊂M ′[I, J] is a model ofPM ′[I,J] becauseΦ is true.

It remains to consider the caseF ⊆ O[I] for eachI ⊆ X. We show thatM ′[I, J]
is an answer set ofP ∪ F , for someJ ⊆ Y . SinceΦ is true, we know that, for each

Complexity of Super-Coherence Problems in Answer Set Programming 137

I ⊆ X, there exists aJI ⊆ Y such that, for allK ⊆ Z, I ∪ JI ∪ K |= φ. As can
be verified by the properties ofΦ-reductions, then there is no modelM ⊂ M ′[I, JI]
of PM ′[I,JI]. Consequently, there is also no such model of(P ∪ F)M ′[I,JI], and thus
M ′[I, JI] ∈ AS(P ∪ F).

So in each of these casesAS(P ∪ F) 6= ∅ and since these cases cover all possible
F ⊆ U , we obtain thatP is supercoherent.

In total we have shown thatΦ being false implies that anyΦ-reductionP is not
super-coherent, whileΦ being true implies that anyΦ-reduction is super-coherent,
which proves the lemma.

2

It remains to show that for any QBF of the desired form, aΦ-reduction can be
obtained in polynomial time (w.r.t. the size ofΦ). For the construction below, let us
denote a negated atoma in the propositional part of the QBFΦ asa.

Definition 3. For any QBFΦ = ∀X∃Y ∀Zφ with φ =
∨n

i=1 li,1 ∧ · · · ∧ li,mi
a DNF

(i.e., a disjunction of conjunctions over literals), we define

PΦ = {x ∨ x←; u← x, x; w ← x, x; x← u, w; x← u, w | x ∈ X} ∪ (1)

{y ∨ y ← v; u← y, y; w ← y, y; y ← u, w;
y ← u, w; v ← y; v ← y | y ∈ Y } ∪ (2)

{z ∨ z ← v; u← z,not w; u← z,not w; v ← z; v ← z;
z ← w; z ← w; z ← u; z ← u; w ∨ u← z, z | z ∈ Z} ∪ (3)

{w ∨ u← li,1, . . . , li,mi
| 1 ≤ i ≤ n} (4)

{v ← w; v ← u; v ← not u}. (5)

Obviously, the program from above definition can be constructed in polynomial
time in the size of the reduced QBF. To conclude the proof of Theorem 1 it is thus
sufficient to show the following relation.

Lemma 2. For any QBFΦ = ∀X∃Y ∀Zφ, the programPΦ is aΦ-reduction.

Proof. Obviously,At(PΦ) contains the atoms as required in 1) of Definition 2. We
continue to show 2). To see thatU is a model ofPΦ is obvious. We next show that the
remaining modelsM are all of the formM [I, J] or M ′[I, J]. First we havev ∈ M
because of the rulesv ← u andv ← not u in (5). In casew ∈ M , Z ∪ Z ⊆ M by
the rules in (3). In casew /∈ M , we haveK ∪ (Z \K) ⊆ M for someK ⊆ Z, since
v ∈ M and by (3). But then, sincew /∈ M , u ∈ M holds (rulesu ← z,not w resp.
u ← z,not w). Hence, also hereZ ∪ Z ⊆ M . In both cases, we observe that by (1)
and (2),I ∪ (X \ U) ∪ J ∪ (Y \ J) ⊆ M , for someI ⊆ X andJ ⊆ Y . This yields
the desired models,M [I, J], M ′[I, J]. It can be checked that no other model exists by
showing that forN 6⊆M [I, J], resp.N 6⊆M ′[I, J], N = U follows.

We next show that, for eachI ⊆ X andJ ⊆ Y , PM [I,J] andPM ′[I,J] possess the
required models. Let us start by showing thatO[I] is a model ofPM [I,J]. In fact, it can
be observed that all of the rules of the formx ∨ x ← in (1) are satisfied because either

138 Mario Alviano, Wolfgang Faber, Stefan Woltran

x or x belong toO[I], while all of the other rules inPM [I,J] are satisfied because of a
false body literal. We also note that each strict subset ofO[I] does not satisfy some rule
of the formx∨x←, and thus it is not a model ofPM [I,J]. Similarly, any interpretation
W such thatO[I] ⊂ W ⊂ M [I, J] does not satisfy some rule inPM [I,J] (note that
rules of the formu← z andu← z occur inPM [I,J] becausew 6∈M [I, J]; such rules
are obtained by rules in (3)).

Let us now considerPM ′[I,J] and letW ⊆ M ′[I, J] be one of its models. We
shall show that eitherW = M ′[I, J], or W = N [I, J, K] for someK ⊆ Z such that
I ∪ J ∪ Z 6|= φ. Note thatv is a fact inPM ′[I,J], hencev must belong toW . By (1)
and (2), sincev ∈ W andW ⊆ M ′[I, J], we can conclude that all of the atoms in
I ∪ (X \ I) ∪ J ∪ (Y \ J) belong toW . Consider now the atomw. If w belongs to
W , by the rules in (3) we conclude that all of the atoms inZ ∪ Z belong toW , and
thusW = M ′[I, J]. Otherwise, ifw 6∈ W , by the rules of the formz ∨ z ← v in (3),
there must be a setK ⊆ Z such thatK∪ (Z \K) is contained inW . Note that no other
atoms inZ∪Z can belong toW because of the last rule in (3). Hence,W = N [I, J, K].
Moreover,w 6∈W andu 6∈W imply thatI ∪ J ∪K 6|= φ holds because of (4).

Finally, one can show thatPU does not yield additional models as those which are
already present by other models. LetW ⊆ U be a model ofPU . By (1), O[I] ⊆ W
must hold for someI ⊆ X. Consider now the atomv. If v 6∈ W , we conclude that the
modelW is actuallyO[I]. We can thus consider the other case, i.e.v ∈ W . By (2),
J ∪ (Y \ J) ⊆W must hold for someJ ⊆ Y . Consider now the atomu. If u ∈W , we
haveZ ∪ Z ⊆ W because of (3). If no other atom belongs toW , thenW = M [I, J]
holds. Otherwise, if any other atom belongs toW , it can be checked thatW must be
equal toU . We can then consider the case in whichu 6∈W , and the atomw. Again, we
have two possibilities. Ifw belongs toW , by (3) we conclude that all of the atoms in
Z∪Z belong toW , and thus eitherW = M ′[I, J] orW = U . Otherwise, ifw 6∈W , by
the rules of the formz∨z ← v in (3), there must be a setK ⊆ Z such thatK∪(Z \K)
is contained inW . Note that no other atoms inZ ∪ Z can belong toW because of the
last rule in (3). Hence,W = N [I, J, K]. Moreover, because of (4),w 6∈W andu 6∈W
imply thatI ∪ J ∪K 6|= φ holds. 2

Note that the program from Definition 3 does not contain constraints. As a conse-
quence, theΠP

3 -hardness result presented in this section also holds if we only consider
disjunctiveASP programs without constraints.

5 Proof of Theorem 2

Membership follows by the straight-forward nondeterministic algorithm for the com-
plementary problem presented in the previous section. We have just to note that a
co − NP oracle can be used for checking the consistency of a normal program. Thus,
ΠP

2 -membership is established.

For the hardness we reduce theΠP
2 -complete problem of deciding whether QBFs of

the form∀X∃Y φ are true to the problem of super-coherence. Without loss of generality,
we can considerφ to be in CNF and, indeed,X 6= ∅, andY 6= ∅. We also assume that

Complexity of Super-Coherence Problems in Answer Set Programming 139

each clause ofΦ contains at least one variable fromX and one fromY . More precisely,
we shall adapt the notion ofΦ-reduction to normal programs. In particular, we have to
take into account a fundamental difference between disjunctive and normal programs:
while disjunctive programs allow for using disjunctive rules for guessing a subset of
atoms, such a guess can be achieved only by means of unstratified negation within a
normal program. For example, one atom in a set{x, y} can be guessed by means of the
following disjunctive rule:x ∨ y ←. Within a normal program, the same result can be
obtained by means of the following rules:x ← not y andy ← not x. However, these
last rules would be deleted in the reduced program associated with a model containing
bothx andy, which would allow for an arbitrary subset of{x, y} to be part of a model
of the reduct. More generally speaking, we have to take Property (P2), as introduced
in Section 2, into account. This makes the following definition a bit more cumbersome
compared to Definition 2.

Definition 4. Let Φ = ∀X∃Y φ be a QBF withφ in CNF. We call any programP
satisfying the following properties aΦ-norm-reduction:

1. P is given over atomsU = X ∪ Y ∪ X ∪ Y ∪ {v, w}, where all atoms in sets
S = {s | s ∈ S} and{v, w} are fresh and mutually disjoint;

2. P has the following models:
– for eachJ ⊆ Y , and for eachJ∗ such thatJ ∪ (Y \ J) ⊆ J∗ ⊆ Y ∪ Y

O[J∗] = X ∪X ∪ J∗ ∪ {v, w};

– for eachI ⊆ X,
M [I] = I ∪ (X \ I) ∪ {v};

– for eachI ⊆ X, J ⊆ Y , such thatI ∪ J |= φ,

N [I, J] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ {w};

3. the only models of a reductPM [I] are M [I] andM [I] \ {v}; the only model of a
reductPN [I,J] is N [I, J];

4. each modelM of a reductPO[J∗] satisfies the following properties:
(a) for eachy ∈ Y such thaty ∈ O[J∗] andy 6∈ O[J∗], if w ∈M , theny ∈M ;
(b) for eachy ∈ Y such thaty ∈ O[J∗] andy 6∈ O[J∗], if w ∈M , theny ∈M ;
(c) if (Y ∪ Y) ∩M 6= ∅, thenw ∈M ;
(d) if there is a clauseli,1 ∨ · · · ∨ li,mi

of φ such that{li,1, . . . , li,mi
} ⊆ M , then

v ∈M ;
(e) if there is anx ∈ X such that{x, x} ⊆ M , or there is ay ∈ Y such that
{y, y} ⊆M , or {v, w} ⊆M , then it must hold thatX ∪X ∪ {v, w} ⊆M .

Lemma 3. For any QBFΦ = ∀X∃Y φ with φ in CNF, aΦ-norm-reduction is super-
coherent iffΦ is true.

Proof. Suppose thatΦ is false. Hence, there exists anI ⊆ X such that, for allJ ⊆ Y ,
I ∪ J 6|= φ. Now, letP be anyΦ-norm-reduction andFI = I ∪ (X \ I). We show that
AS(P ∪ FI) = ∅, thusP is not super-coherent. LetM be a model ofP ∪ FI . Since

140 Mario Alviano, Wolfgang Faber, Stefan Woltran

P is aΦ-norm-reduction, the only candidates forM areO[J∗] for someJ ⊆ Y and
J∗ such thatJ ∪ (Y \ J) ⊆ J∗ ⊆ Y ∪ Y , M [I], andN [I, J ′], whereJ ′ ⊆ Y satisfies
I ∪ J ′ |= φ. However, from our assumption (for allJ ⊆ Y , I ∪ J 6|= φ), no such
N [I, J ′] exists. Thus, it remains to considerO[J∗] andM [I]. By the properties ofΦ-
norm-reductions,M [I]\{v} is a model ofPM [I], and henceM [I]\{v} is also a model
of PM [I]∪FI = (P∪FI)M [I]. Thus,M [I] is not an answer set ofP∪FI . On the other
hand, it can be checked thatM [I] \ {v} is a model ofPO[J∗] ∪ FI = (P ∪ FI)O[J∗],
for anyO[J∗], and so none of theseO[J∗] are answer sets ofP ∪ FI either. Since this
means that no model ofP ∪ FI is an answer set, we concludeAS(P ∪ FI) = ∅, and
henceP is not super-coherent.

Suppose thatΦ is true. It is sufficient to show that, for eachF ⊆ U , AS(P ∪ F) 6= ∅.
We distinguish the following cases forF ⊆ U :

F ⊆ I ∪ (X \ I) ∪ {v} for someI ⊆ X: If v ∈ F , thenM [I] is the unique model
of PM [I] ∪ F = (P ∪ F)M [I], and thusM [I] ∈ AS(P ∪ F). Otherwise, ifv /∈ F ,
sinceΦ is true, there exists aJ ⊆ Y such thatI ∪ J |= φ. Thus,N [I, J] is a model of
P ∪ F , and since no subset ofN [I, J] is a model of(P ∪ F)N [I,J] (by property 3 of
Φ-norm-reductions),N [I, J] ∈ AS(P ∪ F).

I ∪ (X \ I) ⊂ F ⊆ N [I, J] for someI ⊆ X andJ ⊆ Y such thatI ∪ J |= φ: In
this caseN [I, J] is a model ofP ∪F and, by property 3 ofΦ-norm-reductions,N [I, J]
is also the unique model ofPN [I,J] ∪ F = (P ∪ F)N [I,J].

I ∪ (X \ I) ⊂ F ⊆ N [I, J] for someI ⊆ X andJ ⊆ Y such thatI ∪ J 6|= φ:
We shall show thatO[J] is an answer set ofP ∪ F in this case. LetM be a model
of PO[J] ∪ F = (P ∪ F)O[J]. SinceI ∪ (X \ I) ⊂ F ⊆ N [I, J], eitherw ∈ F or
(Y ∪ Y) ∩ F 6= ∅. Clearly,F ⊆ M and sow ∈ M in the first case. Note thatw ∈ M
holds also in the second case because of property 4(c) ofΦ-norm-reductions. Thus, as
a consequence of properties 4(a) and 4(b) ofΦ-norm-reductions,J ∪ (Y \ J) ⊆ M
holds. SinceI ∪ J 6|= φ and because of property 4(d) ofΦ-norm-reductions,v ∈ M
holds. Finally, since{v, w} ⊆ M and because of property 4(e) ofΦ-norm-reductions,
X ∪X ⊆M holds and, thus,M = O[I].

In all other cases, either{v, w} ⊆ F , or there is anx ∈ X such that{x, x} ⊆ F ,
or there is ay ∈ Y such that{y, y} ⊆ F . We shall show that in such cases there is an
O[J∗] which is an answer set ofP ∪F . Let O[J∗] be such thatJ∗ = F ∩ (Y ∪ Y) and
let M be a model ofPO[J∗] ∪F = (P ∪F)O[J∗] such thatM ⊆ O[J∗]. We shall show
thatO[J∗] ⊆M holds, which would imply thatO[J∗] = M is an answer set ofP ∪F .
Clearly,F ⊆M holds. By property 4(e) ofΦ-norm-reductions,X ∪X ∪ {v, w} ⊆M
holds. Thus, by property 4(a) ofΦ-norm-reductions and becausew ∈ M , it holds that
y ∈ M for eachy ∈ Y such thaty ∈ O[J∗] andy /∈ O[J∗]. Similarly, by property
4(b) of Φ-norm-reductions and becausew ∈ M , it holds thaty ∈ M for eachy ∈ Y
such thaty ∈ O[J∗] andy /∈ O[J∗]. Moreover, for ally ∈ Y such that{y, y} ⊆ O[J∗],
it holds that{y, y} ⊆ F ⊆ M . Therefore,O[J∗] ⊆ M holds and, consequently,
O[J∗] ∈ AS(P ∪ F).

So in each of these casesAS(P ∪ F) 6= ∅ and since these cases cover all possible
F ⊆ U , we obtain thatP is supercoherent.

Complexity of Super-Coherence Problems in Answer Set Programming 141

Summarizing, we have shown thatΦ being false implies that anyΦ-norm-reduction
P is not super-coherent, whileΦ being true implies that anyΦ-norm-reduction is super-
coherent, which proves the lemma.

2

Definition 5. For any QBFΦ = ∀X∃Y φ with φ =
∧n

i=1 li,1 ∨ · · · ∨ li,mi
in CNF, we

define

NΦ = {x← not x; x← not x | x ∈ X} ∪ (6)

{y ← not y, w; y ← not y, w; w ← y; w ← y | y ∈ Y } ∪ (7)

{z ← v, w; z ← x, x; z ← y, y | z ∈ X ∪X ∪ {v, w},
x ∈ X, y ∈ Y } ∪ (8)

{v ← li,1, . . . , li,mi
| 1 ≤ i ≤ n} ∪ (9)

{w ← not v}. (10)

Again, the program from the above definition can be constructed in polynomial time
in the size of the reduced QBF. To conclude the proof, it is thus sufficient to show the
following relation.

Lemma 4. For any QBFΦ = ∀X∃Y φ with φ in CNF, the programNΦ is a Φ-norm-
reduction.

Proof. We shall first show thatNΦ has the requested models. LetM be a model ofNΦ.
Let us consider the atomsv andw. Because of the rulew ← not v in (10), three cases
are possible:

1. {v, w} ⊆ M . Thus,X ∪ X ⊆ M holds because of (8). Moreover, there exists
J ⊆ Y such thatJ ∪ (Y \ J) ⊆ M because of (7). Note that any other atom inU
could belong toM . These are the modelsO[J∗].

2. v ∈M andw /∈M . Thus, there existsI ⊆ X such thatI ∪ (X \ I) ⊆M because
of (6). Moreover, no atoms inY ∪ Y belong toM because of (7) andw /∈ M by
assumption. Thus,M = M [I] in this case.

3. v /∈M andw ∈M . Thus, there existI ⊆ X andJ ⊆ Y such thatI∪(X \ I) ⊆M
andJ ∪ (Y \ J) ⊆ M because of (6) and (7). Hence, in this caseM = N [I, J]
and, because of (9), it holds thatI ∪ J |= φ.

Let us consider a reductPM [I] and one of its modelsM ⊆ M [I]. First of all,
note thatPM [I] contains a fact for each atom inI ∪ (X \ I). Thus,I ∪ (X \ I) ⊆ M
holds. Note also that, since each clause ofφ contains at least one variable fromY , all
of the rules of (9) have at least one false body literal. Hence, eitherM = M [I] or
M = M [I] \ {v}, as required byΦ-norm-reductions.

For a reductPN [I,J] such thatI ∪ J |= φ it is enough to note thatPN [I,J] contains
a fact for each atom ofN [I, J].

Let us consider a reductPO[J∗] and one of its modelsM ⊆ O[J∗]. The first obser-
vation is that for eachy ∈ Y such thaty ∈ O[J∗] andy /∈ O[J∗], the reductPO[J∗]

contains a rule of the formy ← w (obtained by some rule in (7)). Similarly, for each

142 Mario Alviano, Wolfgang Faber, Stefan Woltran

y ∈ Y such thaty ∈ O[J∗] andy /∈ O[J∗], the reductPO[J∗] contains a rule of the
form y ← w (obtained by some rule in (7)). Hence,M must satisfy properties 4(a) and
4(b) ofΦ-norm-reductions. Property 4(c) is a consequence of (7), property 4(d) follows
from (9) and, finally, property 4(e) must hold because of (8). 2

Note that the program from Definition 5 does not contain constraints. As a conse-
quence, theΠP

2 -hardness result presented in this section also holds if we only consider
normalASP programs without constraints.

6 Some Implications

In [22] the following problem has been studied under the name“uniform equivalence
with projection:”

Given two programsP andQ, and two setsA, B of atoms,P ≡A
B Q iff for each

setF ⊆ A of facts,{I ∩B | I ∈ AS(P ∪ F)} = {I ∩B | I ∈ AS(Q ∪ F)}.

Let us callA the context alphabet andB the projection alphabet. As is easily verified
the following relation holds.

Proposition 3. A programP over atomsU is super-coherent iffP ≡U
∅ Q, whereQ is

an arbitrary definite Horn program.

Note thatP ≡U
∅ Q means{I ∩ ∅ | I ∈ AS(P ∪ F)} = {I ∩ ∅ | I ∈ AS(Q ∪ F)}

for all setsF ⊆ U . Now observe that for anyF ⊆ U , both of these sets are either
empty or contain the empty set, depending on whether the programs (extended byF)
have answer sets.

{I ∩ ∅ | I ∈ AS(P ∪ F)} =
{
∅ iff AS(P ∪ F) = ∅
{∅} iff AS(P ∪ F) 6= ∅

{I ∩ ∅ | I ∈ AS(Q ∪ F)} =
{
∅ iff AS(Q ∪ F) = ∅
{∅} iff AS(Q ∪ F) 6= ∅

If Q is a definite Horn program, thenAS(Q ∪ F) 6= ∅ for all F ⊆ U , and therefore
the statement of Proposition 3 becomes equivalent to checking whetherAS(P ∪F) 6= ∅
for all F ⊆ U , and thus whetherP is super-coherent.

In [22], the complexity of the problem of deciding uniform equivalence with pro-
jection has also been investigated, reportingΠP

3 -completeness for disjunctive programs
andΠP

2 -completeness for normal programs. However, these hardness results use bound
context alphabetsA ⊂ U (whereU are all atoms from the compared programs). Our
results thus strengthen the observations in [22]. Using Proposition 3 and the main re-
sults in this paper, we obtainΠP

3 -hardness (resp.ΠP
2 -hardness in the case of normal

programs) for uniform equivalence with projection even forthe particular parameteri-
zation where the context alphabet is unrestricted, the projection set is empty, and one of
the compared programs are of a very simple structure (in fact, even the empty program
is sufficient forQ in Proposition 3).

Complexity of Super-Coherence Problems in Answer Set Programming 143

7 Conclusion

Many recent advances in ASP rely on the adaptions of technologies from other ar-
eas. One important example is the Magic Set method, which stems from the area of
databases and is used in state-of-the-art ASP grounders. Recent work showed that a
particular variant of this technique only applies to a certain class of programs called
super-coherent [2]. Super-coherent programs are those which possess at least one an-
swer set, no matter which set of facts is added to them. We believe that this class of
programs is interesting of its own (for instance, since there is a certain relation to some
problems in equivalence checking) and thus studied here theexact complexity of recog-
nizing the property of super-coherence for disjunctive andnormal programs. Our results
show that the problems are surprisingly hard, viz. completefor ΠP

3 and resp.ΠP
2 . One

direction of future work is to search for methods to turn arbitrary programs into super-
coherent ones with minimal changes. Our proofs might provide valuable foundations
for such methods. That said, for using super-coherent programs efficiently for applica-
tions, we believe that an approach that uses a methodology different from the currently
prevailing “Guess&Check” or “Generate&Test” should be developed.

References

1. Alviano, M., Faber, W.: Dynamic magic sets for super-consistent answer set programs. In:
Balduccini, M., Woltran, S. (eds.) Proceedings of the 3rd Workshop on Answer Set Program-
ming and Other Computing Paradigms (ASPOCP 2010) (Jul 2010)

2. Alviano, M., Faber, W.: Dynamic magic sets and super-coherent answer set programs. AI
Communications 24(2), 125–145 (2011)

3. Alviano, M., Faber, W., Greco, G., Leone, N.: Magic sets for disjunctive datalog programs.
Tech. Rep. 09/2009, Dipartimento di Matematica, Università della Calabria, Italy (2009),
http://www.wfaber.com/research/papers/TRMAT092009.pdf

4. Bancilhon, F., Maier, D., Sagiv, Y., Ullman, J.D.: Magic Sets and Other Strange Ways to Im-
plement Logic Programs. In: Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems. pp. 1–15. Cambridge, Massachusetts (1986)

5. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

6. Beeri, C., Ramakrishnan, R.: On the power of magic. Journal of Logic Programming 10(1–
4), 255–259 (1991)

7. Cumbo, C., Faber, W., Greco, G., Leone, N.: Enhancing the magic-set method for disjunc-
tive datalog programs. In: Proceedings of the the 20th International Conference on Logic
Programming – ICLP’04. LNCS, vol. 3132, pp. 371–385 (2004)

8. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-Driven Disjunctive Answer Set Solving. In: Brewka, G., Lang, J. (eds.) Proceedings
of the Eleventh International Conference on Principles of Knowledge Representation and
Reasoning (KR 2008). pp. 422–432. AAAI Press, Sydney, Australia(2008)

9. Eiter, T., Fink, M., Tompits, H., Woltran, S.: On eliminating disjunctions instable logic pro-
gramming. In: Proceedings of the 9th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2004). pp. 447–458. AAAI Press(2004)

10. Eiter, T., Fink, M., Woltran, S.: Semantical Characterizations and Complexity of Equiva-
lences in Stable Logic Programming. ACM Transactions on Computational Logic 8(3), 1–53
(2007)

144 Mario Alviano, Wolfgang Faber, Stefan Woltran

11. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289–323 (1995)

12. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database
Systems 22(3), 364–418 (Sep 1997)

13. Eiter, T., Tompits, H., Woltran, S.: On Solution Correspondences inAnswer Set Program-
ming. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Con-
ference on Artificial Intelligence (IJCAI’05). pp. 97–102. Professional Book Center (2005)

14. Greco, S.: Binding Propagation Techniques for the Optimization of Bound Disjunc-
tive Queries. IEEE Transactions on Knowledge and Data Engineering 15(2), 368–385
(March/April 2003)

15. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Disjunc-
tions in Stable Model Semantics. ACM Transactions on Computational Logic 7(1), 1–37 (Jan
2006)

16. Leone, N., Gottlob, G., Rosati, R., Eiter, T., Faber, W., Fink, M.,Greco, G., Ianni, G., Kałka,
E., Lembo, D., Lenzerini, M., Lio, V., Nowicki, B., Ruzzi, M., Staniszkis, W., Terracina, G.:
The INFOMIX System for Advanced Integration of Incomplete and Inconsistent Data. In:
Proceedings of the 24th ACM SIGMOD International Conference on Management of Data
(SIGMOD 2005). pp. 915–917. ACM Press, Baltimore, Maryland, USA(Jun 2005)

17. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri,S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM Transactions on Computational
Logic 7(3), 499–562 (Jul 2006)

18. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: Baral, C., Greco,
G., Leone, N., Terracina, G. (eds.) Logic Programming and Nonmonotonic Reasoning —
8th International Conference, LPNMR’05, Diamante, Italy, September2005, Proceedings.
LNCS, vol. 3662, pp. 447–451. Springer Verlag (Sep 2005)

19. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: Van Hentenryck, P. (ed.) Proceedings
of the 11th International Conference on Logic Programming (ICLP’94). pp. 23–37. MIT
Press, Santa Margherita Ligure, Italy (Jun 1994)

20. Manna, M., Ruffolo, M., Oro, E., Alviano, M., Leone, N.: The HiLeX System for Semantic
Information Extraction. Transactions on Large-Scale Data and Knowledge-Centered Sys-
tems (2011), to appear

21. Manna, M., Scarcello, F., Leone, N.: On the complexity of regular-grammars with integer
attributes. Journal of Computer and System Sciences (JCSS) 77(2), 393–421 (2011)

22. Oetsch, J., Tompits, H., Woltran, S.: Facts do not cease to exist because they are ignored:
Relativised uniform equivalence with answer-set projection. In: Proceedings of the 22nd
National Conference on Artificial Intelligence (AAAI’07). pp. 458–464. AAAI Press (2007)

23. Papadimitriou, C.H., Yannakakis, M.: Tie-breaking semantics andstructural totality. Journal
of Computer and System Sciences 54(1), 48–60 (1997)

24. Ricca, F., Alviano, M., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone,
N.: A Logic-Based System for e-Tourism. Fundamenta Informaticae 105(1–2), 35–55 (2010)

25. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano,S., Leone, N.: Team-building
with answer set programming in the Gioia-Tauro seaport. Theory and Practice of Logic Pro-
gramming (2011), to appear, doi:10.1017/S147106841100007X

26. Ullman, J.D.: Principles of Database and Knowledge Base Systems.Computer Science Press
(1989)

Complexity of Super-Coherence Problems in Answer Set Programming 145

Verifying Compliance of Business Processes with
Temporal Answer Sets

Davide D’Aprile1, Laura Giordano1, Valentina Gliozzi2, Alberto Martelli2,
Gian Luca Pozzato2, and Daniele Theseider Dupré1

1 Dipartimento di Informatica, Università del Piemonte Orientale
{davide.daprile,laura.giordano,dtd}@mfn.unipmn.it

2 Dipartimento di Informatica, Università di Torino
{gliozzi,mrt,pozzato}@di.unito.it

Abstract. In this paper we provide a framework for the specification
and the verification of business processes, which is based on a temporal
extension of answer set programming (ASP) and we address the problem
of verifying the compliance of business processes to norms. The logical
formalism we use, is a combination of Answer Set Programming and Dy-
namic Linear Time Temporal Logic (DLTL), and allows for a declarative
specification of a business process, as well as the specification of norms,
by means of a set of temporal rules and a set of temporal constraints.
A notion of commitment, borrowed from the social approach to agent
communication, is used to capture obligations within norms. Besides al-
lowing for a declarative specification of business processes, the proposed
framework can be used for encoding business processes specified in con-
ventional workflow languages. The verification of temporal properties of
a business process, expressed by temporal formulas, can be done by en-
coding bounded model checking techniques in ASP. Verifying compliance
of a business process to norms consists, in particular, in verifying that
there are no executions of the business process which leave commitments
unfulfilled.

1 Introduction

The problem of verifying the compliance of business processes has attracted
a lot of interest in recent years. Many organizations (banks, hospitals, public
administrations, etc.), whose activities are subject to regulations, are required to
justify their behaviors with respect to the norms and to show that the business
procedures they adopt conform to such norms. For instance, in the financial
domain, the Sarbanes-Oxley Act (commonly named SOX), enacted in 2002 in
the USA, describes mandates and requirements for financial reporting, and was
proposed in order to restore investors’ confidence in capital markets after major
accounting scandals. MiFID (Markets in Financial Instruments Directive) is a
EU law, effective from 2007, with similar goals, including transparency.

In this paper, we address the problem of automatic verification of business
process compliance and, to this purpose, we propose a framework for the speci-
fication and the verification of business processes, which is based on a temporal

extension of answer set programming (ASP [12]). The choice of a logical for-
malism for the specification of business processes has the advantage of allowing
a declarative specification of business processes and web services, which has
been advocated in recent literature [29, 27, 24], as opposed to the more rigid
transition based approach. A declarative specification of a process is, generally,
more concise than transition based specification as it abstracts away form rigid
control-flow details and does not require the order among the actions in the pro-
cess to be rigidly defined. A further advantage of logical formalisms is that the
computational mechanisms of the underlying logic can then be exploited in the
verification of business process properties.

The framework for the specification and the verification of business processes
proposed in this paper, is based on a temporal extension of Answer Set Program-
ming (ASP [12]) defined in [17], which combines Answer Set Programming with
a temporal logic, namely Dynamic Linear Time Temporal Logic (DLTL) [22].
DLTL extends propositional temporal logic of linear time (LTL) with regular
programs of propositional dynamic logic, that are used for indexing temporal
modalities. The language in [17] is a temporal action language, which allows for
the specification of atomic actions by means of their effects and preconditions, as
well as for the specification of complex actions and general temporal constraints
to specify the wanted interactions among the tasks (and, under this respect, our
approach to business process specification has similarities with that of DecSer-
Flow [29]). Besides allowing for a declarative specification of business processes,
this language is well suited for encoding processes specified workflow languages.

As concerns compliance verification, to represent the obligations which can
be enforced by the application of norms, we make use of the notion of commit-
ment, which is borrowed from the area of multi-agent communication [27, 11,
20, 16, 5]. We show that the temporal language is well suited to model norms as
directional rules which generate commitments, and that defeasible negation of
ASP can be exploited to capture exceptions to the norms, by allowing norms
to be defeasible. Given the specification of a business process in temporal ASP
and the specification of norms as a set of (defeasible) causal laws generating
obligations (commitments), the problem of compliance verification can be given
a logical characterization. It consists in verifying that there are no executions of
the business process which leave some commitment unfulfilled.

For the verification of the business process properties and, in particular, for
compliance verification, we exploit Bounded Model Checking [6]. In particular,
we exploit an approach developed in [17] for DLTL bounded model checking in
ASP, which extends the approach for Bounded LTL Model Checking with Stable
Models that has been developed in [21].

2 A temporal extension of ASP

We shortly recall the temporal action language introduced in [17], which is based
on a temporal extension of Answer Set Programming (ASP).

148 D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G.L. Pozzato, D. Theseider Dupré

2.1 Temporal action language

The action language is based on the Dynamic Linear Time Temporal Logic
(DLTL) [22]. DLTL extends LTL by allowing the until operator Uπ to be indexed
by a program π, an expression of Propositional Dynamic Logic: π can be any
regular expression built from atomic actions using sequence (;), non-deterministic
choice (+) and finite iteration (∗). The usual LTL modalities 2 (always), 3

(eventually), © (next), and U (until) can be defined from Uπ as well as the new
temporal modalities [π] and 〈π〉.

Informally, a formula [π]α is true in a world w of a linear temporal model
if α holds in all the worlds of the model which are reachable from w through
any execution of the program π. A formula 〈π〉α is true in a world w of a linear
temporal model if there exists a world of the model reachable from w through
an execution of the program π, in which α holds. A formula α Uπβ is true at a
world w if “α until β” is true at w on a finite stretch of behavior which is in the
linear time behavior of the program π.

A domain description is defined as a set of laws describing the effects of ac-
tions as well as their executability preconditions. Atomic propositions describing
the state of the domain are called fluents. Actions may have direct effects, that
are described by action laws, and indirect effects, that capture the causal de-
pendencies among fluents and are described by causal laws. The execution of an
action a in a state s leads to a new state s′ in which the effect of the action
holds. The fluents which hold in s and are not affected by the action a, still hold
in s′.

Let P be a set of atomic propositions, the fluents, including the inconsistency,
⊥. A simple fluent literal l is a fluent name f or its negation ¬f . We will denote
by LitS the set of all simple fluent literals. In the language, we also make use of
temporal literals, that is, literals that are prefixed by the temporal modalities [a],
with a ∈ Σ, and©. Their intended meaning is: [a]l holds in a state s if l holds in
the state obtained after the execution of action a in s; ©l holds in a state s if l
holds in the state next to s. LitT is the set of temporal fluent literals: if l ∈ LitS ,
then [a]l,©l ∈ LitT , where a is an action name (an atomic proposition, possibly
containing variables), and [a] and © are the temporal operators introduced in
the previous section. Let Lit = LitS ∪LitT ∪{⊥}. Given a (simple or temporal)
fluent literal l, not l represents the default negation of l. A (simple or temporal)
fluent literal possibly preceded by a default negation, will be called an extended
fluent literal.

The laws are formulated as rules of a temporally extended logic programming
language. Rules have the form

2(t′0 or . . . or t
′
h ← t1, . . . , tm, not tm+1, . . . , not tn) (1)

or the form
t′0 or . . . or t

′
h ← t1, . . . , tm, not tm+1, . . . , not tn (2)

where the t′i’s and the ti’s are either simple fluent literals or temporal fluent
literals. While laws of the form (1) can be applied in all states, laws of the form

Verifying Compliance of Business Processes with Temporal Answer Sets 149

(2) can only be applied in the initial state. Action laws, causal laws, precondition
laws, persistency laws, initial state laws, etc., which are normally used in action
theories, can all be defined as instances of (1) and (2).

A domain description D is defined as a tuple (Π, C), where Π is a set of laws
of the form 1 and 2 and C is a set of temporal constraints, i.e. general DLTL
formulas.

2.2 Temporal Answer Sets

To define the the semantics of a domain description, we extend the notion of
answer set [12] to capture the linear structure of temporal models. In the fol-
lowing, we consider the ground instantiation of the domain description Π, and
we denote by Σ the set of all the ground instances of the action names in Π.

We define a (partial) temporal interpretation as a pair (σ, S), where σ ∈
Σω is a sequence of actions and S is a consistent set of literals of the form
[a1; . . . ; ak]l, where a1 . . . ak is a prefix of σ, meaning that l holds in the state
obtained by executing a1 . . . ak. S is consistent iff it is not the case that both
[a1; . . . ; ak]l ∈ S and [a1; . . . ; ak]¬l ∈ S, for some l, or [a1; . . . ; ak]⊥ ∈ S. A
temporal interpretation (σ, S) is said to be total if either [a1; . . . ; ak]p ∈ S or
[a1; . . . ; ak]¬p ∈ S, for each a1 . . . ak prefix of σ and for each fluent name p.

We define the satisfiability of a simple, temporal or extended literal t in a
partial temporal interpretation (σ, S) in the state a1 . . . ak, (written S, a1 . . . ak |=
t) as follows:

(σ, S), a1 . . . ak |= >, (σ, S), a1 . . . ak 6|= ⊥
(σ, S), a1 . . . ak |= l iff [a1; . . . ; ak]l ∈ S, for a literal l
(σ, S), a1 . . . ak |= [a]l iff [a1; . . . ; ak; a]l ∈ S or

a1 . . . ak, a is not a prefix of σ
(σ, S), a1 . . . ak |=©l iff [a1; . . . ; ak; b]l ∈ S,

where a1 . . . akb is a prefix of σ
(σ, S), a1 . . . ak |= not l iff (σ, S), a1 . . . ak 6|= l

Observe that [a]l is true in any state of a linear model in which a is not the
next action to be executed. The satisfiability of rule bodies and rule heads in a
temporal interpretation are defined as usual. A rule 2(H ← Body) is satisfied
in a temporal interpretation (σ, S) if, for all action sequences a1 . . . ak (including
the empty one), (σ, S), a1 . . . ak |= Body implies (σ, S), a1 . . . ak |= H.

A rule H ← Body is satisfied in a partial temporal interpretation (σ, S) if,
(σ, S), ε |= Body implies (σ, S), ε |= H, where ε is the empty action sequence.

To define the answer sets of Π, we introduce the notion of reduct of Π,
containing rules of the form: [a1; . . . ; ah](H ← Body). Such rules are evaluated
in the state a1 . . . ah.

Let Π be a set of rules over an action alphabet Σ, not containing default
negation, and let σ ∈ Σω.

Definition 1. A temporal interpretation (σ, S) is a temporal answer set of Π
if S is minimal (in the sense of set inclusion) among the S′ such that (σ, S′) is
a partial interpretation satisfying the rules in Π.

150 D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G.L. Pozzato, D. Theseider Dupré

To define answer sets of a program Π containing negation, given a temporal
interpretation (σ, S) over σ ∈ Σω, we define the reduct, Π(σ,S), of Π relative
to (σ, S) extending Gelfond and Lifschitz’ transform [13] to compute a different
reduct of Π for each prefix a1, . . . , ah of σ.

Definition 2. The reduct, Π(σ,S)
a1,...,ah , of Π relative to (σ, S) and to the prefix

a1, . . . , ah of σ , is the set of all the rules

[a1; . . . ; ah](H ← l1, . . . , lm)

such that H ← l1, . . . , lm, not lm+1, . . . , not ln is in Π and (σ, S), a1, . . . , ah 6|= li,
for all i = m+ 1, . . . , n.

The reduct Π(σ,S) of Π relative to (σ, S) is the union of all reducts Π(σ,S)
a1,...,ah

for all prefixes a1, . . . , ah of σ.

Definition 3. A temporal interpretation (σ, S) is an answer set of Π if (σ, S)
is an answer set of the reduct Π(σ,S).

Although the answer sets of a domain description Π are partial interpreta-
tions, in some cases, e.g., when the initial state is complete and all fluents are
inertial, it is possible to guarantee that the temporal answer sets of Π are total.

In case the initial state is not complete,we consider all the possible ways
to complete the initial state by introducing in Π, for each fluent name f , the
rules: f ← not ¬f and ¬f ← not f . The case of total temporal answer sets is of
special interest as a total temporal answer set (σ, S) can be regarded as temporal
model (σ, V), where, for each finite prefix a1 . . . ak of σ, V (a1, . . . , ak) = {p :
[a1; . . . ; ak]p ∈ S}. In the following, we restrict our consideration to domain
descriptions Π, such that all the answer sets of Π are total.

The notion of extension of a domain description D = (Π, C) over Σ is defined
in two steps: first, the answer sets of Π are computed; second, all the answer sets
which do not satisfy the temporal constraints in C are filtered out. For the second
step, we need to define when a temporal formula α is satisfied in a total temporal
interpretation S. Observe that a total answer set S over σ can be regarded as a
linear temporal (DLTL) model [22]. Given a total answer set S over σ we define
the corresponding temporal model as MS = (σ, VS), where p ∈ VS(a1, . . . , ah) if
and only if [a1; . . . ; ah]p ∈ S, for all atomic propositions p. We say that a total
answer set S over σ satisfies a DLTL formula α if MS , ε |= α.

Definition 4. An extension of a domain description D = (Π, C) over Σ, is any
(total) answer set S of Π satisfying the constraints in C.

3 Specifying the business process and the norms

Let us consider a business process of an investment firm, where the firm offers
financial instruments to an investor. The description of the business processes
given in Figure 1 in the language YAWL (Yet AnotherWorkflow Language) [28].

Also, let us consider a regulation containing the following norms:

Verifying Compliance of Business Processes with Temporal Answer Sets 151

Fig. 1. Example business process in YAWL

(1) the firm shall provide to the investor adequate information on its services
and policies before any contract is signed;

(2) if the investor signs an order, the firm is obliged to provide him a copy of
the contract.

The execution of each task in the process has some preconditions and effects.
Due to the presence of norms, the execution of a task in the process above should
generate obligations to be fulfilled. For instance, according to the second norm,
signing an order generates for the firm the obligation to provide a copy of the
contract to the investor. Verifying the compliance of a business process to a
regulation requires to check that, in all the executions of the business process,
the obligations triggered by the norms are fulfilled.

In the following, we provide the specification of the business process and of
the related norms in an action theory. The problem of verifying compliance of
the business process to the norms is then defined as a reasoning problem in the
action theory. Concerning the specification of a business process, we distinguish
two parts in this specification: the specification of the workflow itself, for which
we will exploit the capability of the action language to represent complex ac-
tions, and the specification of the atomic tasks occurring in it. The description
of the atomic actions occurring in the business process provides the background
knowledge, which is common both to the business process and to the norms. The
effects and, possibly, the preconditions of the atomic tasks are defined by intro-
ducing propositions representing the properties of the world that are affected by
the execution of the tasks and that are subject to the norms. They are the prop-
erties whose value is to be checked, for verifying the compliance of the process to
the norms themselves. Such properties are sometimes used in the literature [14,
19, 30] as annotations that decorate the business process. Here, we exploit the ac-
tion language to provide a more expressive formalism for formulating properties
annotations. In the next subsections, we address the problems of specifying the
atomic tasks, specifying the business process control and specifying the norms.

152 D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G.L. Pozzato, D. Theseider Dupré

3.1 Semantic annotations: the specification of atomic tasks

The atomic tasks occurring in the business process are those represented by
boxes in the YAWL specification. In the action theory, they are modeled as
atomic actions with the same name as the atomic tasks.

To introduce the propositions needed to describe the effects and, possibly,
the preconditions of atomic tasks, we introduce the following fluent names in P:

investor(C): C has been identified as a client (an investor);
investor classified(C): the investor C has been classified;
risk averse(C), risk seeking(C) represent the profile of the client;
informed(C): the client has been informed about the bank services and

policies;
selected(T,C): client C has selected financial instrument T ;
accepted(T,C): client C has accepted financial instrument T ;
order signed(T,C): client C has signed the order of financial instrument T ;
order confirmed(T,C): the order has been confirmed by the bank;
sent contract(T,C): the contract of the order has been sent to the client;
order deleted(T,C): the order has been canceled.

In the following, profiling stands for investor profiling, inform stands for inform
investor, fi selection stands for financial instrument selection, p eval stands for
proposal evaluation and, finally, order verif stands for order verification.

The following action and causal laws describe the effect of the actions in the
business process. Although the action language is propositional, in the following,
we use variables in fluent names and in atomic action, so that each action/causal
law stands for a finite number of ground action/causal laws:

2([investor identification(C)]investor identified(C))← client(C))
2([profiling(C)]investor classified(C)← client(C))
2([profiling(C)]risk averse(C) or [profiling(C)]risk seeking(C)

← client(C))
2([inform(C)]informed(C)← client(C))
2([fi selection(C)]selected(t1, C) or . . . or [fi selection(C)]selected(tn, C)

← financial instr(t1)∧. . .∧financial instr(tn)∧risk averse(C))
2([p eval(T,C)]accepted(T,C) or [p eval(T,C)]¬accepted(T,C))
2([sign order(T,C)]order signed(T,C)← order(T), client(C))
2([order verif(T,C)]confirmed(T,C) or [order verif(T,C)]¬confirmed(T,C)

← order(T), client(C))
2([send contract(T,C)]sent contract(T,C)← order(T), client(C))
2([withdraw(T,C)]order deleted(T,C))← order(T), client(C))
2(¬confirmed(T,C)← order deleted(T,C))
2([end procedure]end)

Laws defining executability conditions for atomic tasks can also be given. For
instance,

2([send contract(T,C)]⊥ ← not confirmed(T,C))

Verifying Compliance of Business Processes with Temporal Answer Sets 153

states that it is possible to send a contract to the investor only if the contract
has been confirmed. Such temporal formulae can be seen as “good properties”,
that the modeler would like to verify on the business process and they can be
verified to hold in all possible executions of the business process with the same
technique that will be introduced for verifying norm compliance. Indeed, some
of the norms will be formalized as precondition laws.

3.2 The specification of the business process workflow

When we are faced with the problem of specifying a business process, even in a
given language as the one introduced in section 2.2, many options are available.

In [9], we have shown that the control flow of a business process can be mod-
eled in a rigid way by means of a program expression π, i.e. by defining a complex
action using composition operators like sequence, non deterministic choice and
finite iteration, as well as test actions p? which can be suitably introduced in
the language. Then, a temporal constraint 〈π〉> is introduced in the set of con-
straints C to select those extensions of the domain description, corresponding to
the possible executions of the program π.

Although this is a very simple solution, in the general case, the workflow
of a business process may be non-structured or, even, we may want to provide
a declarative specification of the business process, as done, for instance, in the
declarative flow language ConDec [25]. It must be observed that the logical
nature of our action language makes it well suited for a declarative specification.
Indeed, the presence of general DLTL constraints in action domains allows for a
simple way to constrain activities in a business process. As DLTL is an extension
of LTL, it is possible to provide an encoding of ConDec constraints our action
language.

Besides allowing for a declarative specification of business processes, the
language introduced in Section 2 is well suited for encoding processes spec-
ified in conventional workflow languages, through the specification of action
effects, preconditions and constraints. Consider, for instance, the atomic task
Investor profiling. We can model the fact that this task can be executed only
if the atomic task Investor identification has been executed, by introducing the
precondition law: 2([profiling(C)]⊥ ← not investor identified(C)). Moreover,
the fact that Investor profiling has to be executed after Investor identification
is executed can be modeled by the temporal constraint:

2[investor identification(C)]3〈profiling(C)〉>

Consider, in addition, the atomic task Order verification. After its execution
Send contract is to be executed if the order has been confirmed, otherwise, the
task Modify order has to be executed. This can be modeled introducing the
precondition laws

2([send contract(T,C)]⊥ ← ¬confirmed(T,C))
2([modify order(T,C)]⊥ ← confirmed(T,C))

154 D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G.L. Pozzato, D. Theseider Dupré

and temporal constraints

2[order verif(C)](confirmed(T,C)→ 3〈send contract(T,C)〉>)
2[order verif(C)](¬confirmed(T,C)→ 3〈modify order(T,C)〉>)

This approach can be generalized for translating YAWL processes into a
domain description by action effects and preconditions as well as constraints.
The translation, in general, would require to introduce new fluent names as, for
instance, for each atomic task a, a fluent executable(a), which is made true when
the execution of task a is enabled. Some technicalities (that we do not address
here) are needed to model AND/OR splits and AND/OR joins.

The approach we adopt in this paper for reasoning about actions is well
suited for reasoning about systems with infinite computations (see [17]). To deal
with finite computations we introduce a dummy action, which can be repeated
infinitely many times after the termination of the process (thus giving rise to
an infinite computation). In practice, however, as an optimization of the ASP
translation, we can avoid looking for arbitrary models with loops during model
checking and restrict to ad hoc computations corresponding to finite traces.

3.3 Normative specification

According to the normative specification, the execution of each task in the busi-
ness process can trigger some normative positions (obligations, permissions, pro-
hibitions). For instance, the identification task in the business process above,
which introduces a new investor C, also generates the obligation to inform the
investor. This obligation must be fulfilled during the course of execution of the
business process, if the process is compliant with the norm stating that the firm
has the obligation to inform customers.

In the following we make use of causal laws to represent norms in the ac-
tion theory, and we introduce a notion of commitment to model obligations.
The use of commitments has long been recognized as a “key notion” to allow
coordination and communication in multi-agent systems [27, 20, 11]. A notion of
commitment for reasoning about agent protocols in a temporal action logic has
been adopted in [16]. Following [16], we introduce two kinds of commitments
(which are regarded as special fluent propositions): base-level commitments hav-
ing the form C(i, j, A) and meaning that agent i is committed to agent j to
bring about A (where A is an arbitrary propositional formula not containing
commitment fluents); conditional commitments having the form CC(i, j, B,A)
and meaning that agent i is committed to agent j to bring about A, if condition
B is brought about.
A base level commitment C(i, j, A) can be naturally regarded as an obligation
(namely, OA, “A is obligatory”), in which the debtor and the creditor are made
explicit. The two kinds of base-level and conditional commitments we use here
are essentially those introduced in [31]. Our present choice is different from the
one in [20], where agents are committed to execute an action rather than to
achieve a condition.

Verifying Compliance of Business Processes with Temporal Answer Sets 155

The idea is that commitments (or obligations) are created as effects of the
execution of some basic tasks in the business process and they are “discharged”
when they have been fulfilled. A commitment C(i, j, A), created at a given state
of a run of the process, is regarded to be fulfilled in the run if there is a later
state of the run in which A holds. As soon as a commitment is fulfilled in a run,
it is considered to be satisfied and no longer active: it can be discharged.

Given the notion of commitment introduced above, the norms which gener-
ate obligations to be fulfilled can be modeled as causal laws which trigger new
commitments/obligations. Other norms which define preconditions on the exe-
cutability of some actions or, in general, ordering constraints on the executions
of atomic tasks can be encoded by general temporal formulas. For instance, we
can encode the norms (1) and (2) above by the following precondition and causal
laws:

2([sign order(T,C)]⊥ ← not informed(C))
2(C(firm,C, sent contract(T,C))← order signed(T,C))

The first one is a precondition for sign order(T,C), stating that, if the client
has not been informed, he cannot sign an order. The second one, a causal law,
states that when an order is signed by C, the firm is committed to C to send
her the information required.

Causal laws are needed for modeling the interplay of commitments and fluent
changes. In particular, for each commitment C(i, j, α), we introduce the following
dynamic causal laws in the domain description:

(i) 2(©¬C(i, j, α)← C(i, j, α),©α)
(ii) 2(©C(i, j, α)← CC(i, j, β, α),©β)
(iii) 2(©¬CC(i, j, β, α)← CC(i, j, β, α),©β)

A commitment to bring about α is considered fulfilled and is discharged as soon
as α holds (i). A conditional commitment CC(i, j, β, α) becomes a base-level
commitment C(i, j, α) when β has been brought about (ii) and, in that case, the
conditional commitment is discharged (iii).

One of the central issues in the representation of norms comes from the
defeasible nature of norms. Norms may have exceptions: recent norms may cancel
older ones; more specific norms override more general norms and, in other cases,
explicit priority information (not necessarily related to recency or specificity) is
needed for eliminating conflicts. Consider the following example from [19]:

r1: C(S,M,O, discount)← sells(S,M,O), premium customer(M)
r2: ¬C(S,M,O, discount)← sells(S,M,O), special order(S,M,O)

Rule r1 states that a seller has the obligation to apply a discount to premium cus-
tomers. Rule r2 states that customers are not entitled for a discount in case the
order (O) is a special order. Observe that, if two rules are regarded as being strict,
a state in which the fluents premium customer(M), special order(S,M,O) and
sells(S,M,O) hold results to be inconsistent.

156 D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G.L. Pozzato, D. Theseider Dupré

To avoid conflicting situations as the one above, priorities among rules can
be incorporated. Suppose the two rules above are regarded as defeasible and
assume that rule r2 has preference over rule r1 (we write r2 > r1). The priority
between the conflicting norms r1 and r2, with r2 > r1, can be modeled using
default negation. For instance, we can transform the rules r1 and r2 as follows:

2(C(S,M,O, discount)← sells(S,M,O), premium(M), not bl(r1(S,M,O)))
2(¬C(S,M,O, discount)← sells(S,M,O), special order(C), not bl(r2(S,M,O)))
2(bl(r1(S,M,O))← sells(S,M,O)∧special order(C), not bl(r2(S,M,O)))

where bl(ri(S,M,O)) means that rule ri is blocked. In this way, rule r2, when
applicable, blocks the application of r1, but not vice-versa.

This treatment of priorities among conflicting rules, in essence, relies on the
idea of using abnormality predicates for capturing exceptions. It is not intended
to provide a general solution to the problem of modeling priorities among rules,
as, in the general case, priorities may be also allowed between non conflicting
rules. The problem of dealing with prioritized programs under the answer set
semantics has been addressed, for instance, in [7] and in [10] in a more general
setting. We believe that the approach proposed in [10] can be exploited in this
setting to model defeasible norms as prioritized defeasible causal laws.

A further issue to be addressed when modeling norms is that of formalizing
violations and reparation obligations, and we refer to [9] for a possible encoding
of reparation chains in our language.

4 Compliance verification by model checking

In this section we provide a characterization of the problem of compliance, as a
problem of reasoning about action in the action theory defined above. In Section
3.3, we have devised two different typologies of norms which we may want to
verify compliance with: norms which can be encoded as a temporal formula (in
the example, a precondition formula) and norms whose application generates
obligations to be fulfilled, which can be modeled as causal laws generating com-
mitments. Concerning the first kind of norms, the temporal formula encoding the
norm has to be verified to be true in all the extensions of the domain description.
Concerning the second kind of norms, verifying the compliance of the business
process with such norms amounts to check that, in all the possible extensions
of the domain description D, all the commitments generated will be eventually
fulfilled, unless they have been cancelled: 2(C(i, j, α) → 3(α ∨ ¬C(i, j, α))).
Action withdraw, for instance, might have the indirect effect of canceling the
commitment to send the contract, if it has not yet been sent. Observe that can-
celing a commitment would not be possible if the commitment were encoded by
the temporal formula 3α.

Let DB = (ΠB , CB) be a domain description defined as the specification of a
given business process B, including the specification of the atomic tasks involved
in the process (semantic annotations). Let N be a set of norms, which have been
encoded by a set of causal laws ΠN and a set of temporal formulas PN . The

Verifying Compliance of Business Processes with Temporal Answer Sets 157

domain description resulting from the encoding of the business process and the
norms can then be defined as D = (ΠB ∪ΠN , CB). We can define the problem
of verifying the compliance of a business process to a set of norms as follows:

Definition 5. The business process B is compliant with the set of norms N =
(ΠN , PN) if, for each extension (σ, S) of the domain description D = (ΠB ∪
ΠN , CB), the following conditions hold:

– for each temporal formula α in PN , (σ, S) satisfies α;
– for each commitment C(i, j, α) occurring in ΠN , (σ, S) satisfies the formula

2(C(i, j, α)→ 3(α ∨ ¬C(i, j, α))).

Dually, the problem of identifying a violation to the norms can be regarded
as a satisfiability problem: the problem of finding an execution of the business
process which violates some of the norms, that is, the problem of finding an
extension (σ, S) of D such that either (σ, S) contains unfulfilled commitments,
i.e., it satisfies 3(C(i, j, α)∧¬3(α∨¬C(i, j, α))), or it falsifies a formula in ΠN .

Consider the domain description D, including the specification DB of the
business problem example and the causal law 2(C(firm,C, sent contract(T,C))
← order signed(T,C)). Each extension S of the domain description satisfies the
temporal formulas

2(C(firm,C, sent contract(T,C))→ 3sent contract(T,C))
2([sign order(T,C)]⊥ ← informed(C))

Hence, the business process is compliant with the norms. In fact, in all the execu-
tion of the business process, the commitment to send the contract is eventually
fulfilled by the execution of the action send contract, which has to be eventually
executed in the business process; and, for the second formula, the execution of
sign order is always after inform which makes the client informed.

In [17] we exploit bounded model checking (BMC) techniques [6] for com-
puting the extensions of a temporal domain description and for verifying its
temporal properties. More precisely, we describe a translation of a temporal do-
main description into standard ASP, so that the temporal answer sets of the
domain description can then be computed as the standard answer sets of its
translation. Extensions of the domain description satisfying the temporal con-
straints or given temporal properties are computed by bounded model checking,
following the approach proposed in [17] for the verfication of DLTL formulas,
which extends the one developed in [21] for bounded LTL model checking with
Stable Models.

As an alternative to encoding the business process control flow in the logical
formalisms (as done in section 3.2), a direct encoding of the workflow compu-
tations in the ASP program is also feasible, and makes the verification more
efficient. In this case, the action language is used only for the specification of
the semantic annotations and of the norms. Based on these ideas, we have used
bounded model checking in ASP verify business process compliance. The imple-
mentation we have developed is based on the DLV system [23].

158 D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G.L. Pozzato, D. Theseider Dupré

5 Conclusions and related work

The paper presents an approach to the verification of the compliance of business
processes with norms. The approach is based on a temporal extension of ASP.
Both the business process, their semantic annotation and the norms are encoded
using temporal ASP rules as well as temporal constraints. In particular, defea-
sible causal laws are used for modeling norms and commitments are introduced
for representing obligations. The verification of compliance can be performed
by using BMC techniques. In particular, we exploit an approach developed in
[17] for DLTL bounded model checking in ASP, which extends the approach for
bounded LTL model checking with Stable Models in [21]. We are currently test-
ing our implementation on several workflow examples to verify the scalability of
the approach, and to compare with other approaches to compliance verification,
including the traditional Petri net approach.

Several proposals in the literature introduce annotations on business pro-
cesses for dealing with compliance verification [14, 19, 30]. In particular, [19]
proposes a logical approach to the problem of business process compliance based
on the idea of annotating the business process. Process annotations and norma-
tive specifications are provided in the same logical language, namely, the Formal
Contract Language (FCL), which combines defeasible logic [3] and deontic logic
of violations [18]. Compliance is verified by traversing the graph describing the
process and identifying the effects of tasks and the obligations triggered by task
execution. Ad hoc algorithms for propagating obligations through the process
graph are defined.

In [30] a formal execution semantics for annotated business processes is intro-
duced. The proposed semantics combines a Petri-net like (token passing) seman-
tics for BPMN process execution, coming from the workflow community, with
a declarative specification of actions preconditions and effects in clausal form,
coming from the AI literature of actions and state changes. Several verification
tasks are defined to check whether the business process control flow interacts
correctly with the behaviour of the individual activities. However, [30] does not
address the problem of verifying compliance of the business process with norms.

An approach to compliance based on a commitment semantics in the con-
text of multi-agent systems is proposed in [8]. The authors formalize notions of
conformance, coverage, and interoperability, proving that they are orthogonal
to each other. Another approach to the verification of agents compliance with
protocols, based on a temporal action theory, has been proposed in [16]. These
papers do not address the problem of compliance with norms.

[4] presents an approach to compliance checking for BPMN process models
using BPMN-Q, a visual language based on BPMN. Compliance rules are given
a declarative representation as BPMN-Q queries. Then, BPMN-Q queries are
translated into temporal formulas for verification.

In [24] the Abductive Logic Programming framework SHIFF [2] is exploited
in the declarative specification of business processes as well as in the (static and
runtime) verification of their properties. In particular, in [1] expectations are

Verifying Compliance of Business Processes with Temporal Answer Sets 159

used for modelling obligations and prohibitions and norms are formalized by
abductive integrity constraints.

In [26] Concurrent Transaction Logic (CTR) is used to model and reason
about general service choreographies. Service choreographies and contract re-
quirements are represented in CTR. The paper addresses the problem of decid-
ing if there is an execution of the service choreography that complies both with
the service policies and the client contract requirements.

Temporal rule patterns for regulatory policies are introduced in [15], where
regulatory requirements are formalized as sets of compliance rules in a real-time
temporal object logic. The approach is used essentially for event monitoring.

Acknowledgments

We want to thank the anonymous referees for their helpful comments. This
work has been partially supported by Regione Piemonte, Project “ICT4LAW:
ICT Converging on Law: Next Generation Services for Citizens, Enterprises,
Public Administration and Policymakers”

References

1. M. Alberti, M. Gavanelli, E. Lamma, P. Mello, P. Torroni, and G. Sartor. Mapping
of Deontic Operators to Abductive Expectations. NORMAS, pages 126–136, 2005.

2. Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma, Paola Mello,
and Paolo Torroni. Verifiable agent interaction in abductive logic programming:
The sciff framework. ACM Trans. Comput. Log., 9(4), 2008.

3. G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Representation
results for defeasible logic. ACM Trans. on Computational Logic, 2:255–287, 2001.

4. Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance checking
using bpmn-q and temporal logic, lncs 5240. In BPM, pages 326–341. Springer,
2008.

5. Matteo Baldoni, Cristina Baroglio, and Elisa Marengo. Behavior-oriented
commitment-based protocols. In Proceedings ECAI 2010, pages 137–142, 2010.

6. A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:118–149, 2003.

7. Gerhard Brewka and Thomas Eiter. Preferred answer sets for extended logic pro-
grams. Artificial Intelligence, 109(1-2):297–356, 1999.

8. A.K. Chopra and M.P. Sing. Producing compliant interactions: Conformance,
coverage and interoperability. DALT IV, LNCS(LNAI) 4327, pages 1–15, 2006.

9. D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G. L. Pozzato, and D. Theseider
Dupré. Verifying business process compliance by reasoning about actions. In
CLIMA XI, pages 99–116, 2010.

10. James P. Delgrande, Torsten Schaub, and Hans Tompits. A framework for com-
piling preferences in logic programs. Theory and Practice of Logic Programming,
3(2):129–187, 2003.

11. N. Fornara and M. Colombetti. Defining Interaction Protocols using a
Commitment-based Agent Communication Language. AAMAS03, pages 520–527.

12. M. Gelfond. Answer Sets. Handbook of Knowledge Representation, chapter 7,
Elsevier, 2007.

160 D. D’Aprile, L. Giordano, V. Gliozzi, A. Martelli, G.L. Pozzato, D. Theseider Dupré

13. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
Logic Programming, Proc. of the 5th Int. Conf. and Symposium, pages 1070–1080,
1988.

14. A. Ghose and G. Koliadis. Auditing business process compliance. ICSOC, LNCS
4749, pages 169–180, 2007.

15. C. Giblin, S. Müller, and B. Pfitzmann. From Regulatory Policies to Event Mon-
itoring Rules: Towards Model-Driven Compliance Automation. IBM Reasearch
Report, 2007.

16. L. Giordano, A. Martelli, and C. Schwind. Specifying and Verifying Interaction
Protocols in a Temporal Action Logic. Journal of Applied Logic (Special issue on
Logic Based Agent Verification), 5:214–234, 2007.

17. L. Giordano, A. Martelli, and D. Theseider Dupré. Reasoning about Actions with
Temporal Answer Sets. Proc. CILC 2010, 25th Italian Conference on Computa-
tional Logic, 2010.

18. G. Governatori and A. Rotolo. Logic of Violations: A Gentzen System for Reason-
ing with Contrary-To-Duty Obligations. Australasian Journal of Logic, 4:193–215,
2006.

19. G. Governatori and S. Sadiq. The journey to business process compliance. Hand-
book of Research on BPM, IGI Global, pages 426–454, 2009.

20. F. Guerin and J. Pitt. Verification and Compliance Testing. Communications in
Multiagent Systems, Springer LNAI 2650, 2003.

21. K. Heljanko and I. Niemelä. Bounded LTL model checking with stable models.
Theory and Practice of Logic Programming, 3(4-5):519–550, 2003.

22. J.G. Henriksen and P.S. Thiagarajan. Dynamic Linear Time Temporal Logic.
Annals of Pure and Applied logic, 96(1-3):187–207, 1999.

23. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The dlv system for knowledge representation and reasoning. ACM Transactions
on Computational Logic, 7(3):499–562, 2006.

24. Marco Montali, Paolo Torroni, Federico Chesani, Paola Mello, Marco Alberti,
and Evelina Lamma. Abductive logic programming as an effective technology for
the static verification of declarative business processes. Fundam. Inform., 102(3-
4):325–361, 2010.

25. Maja Pesic and Wil M. P. van der Aalst. A declarative approach for flexible
business processes management. In Business Process Management Workshops,
LNCS 4103, pages 169–180. Springer, 2006.

26. Dumitru Roman and Michael Kifer. Semantic web service choreography: Contract-
ing and enactment. In International Semantic Web Conference, LNCS 5318, pages
550–566, 2008.

27. M. P. Singh. A social semantics for Agent Communication Languages. Issues in
Agent Communication, LNCS(LNAI) 1916, pages 31–45, 2000.

28. W. van der Aalst and A. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, 2005.

29. Wil M. P. van der Aalst and Maja Pesic. Decserflow: Towards a truly declara-
tive service flow language. In The Role of Business Processes in Service Oriented
Architectures, volume 06291 of Dagstuhl Seminar Proceedings, 2006.

30. Ingo Weber, Jörg Hoffmann, and Jan Mendling. Beyond soundness: On the ver-
ification of semantic business process models. Distributed and Parallel Databases
(DAPD), 2010.

31. P. Yolum and M.P. Singh. Flexible Protocol Specification and Execution: Applying
Event Calculus Planning using Commitments. AAMAS’02, pages 527–534, 2002.

Verifying Compliance of Business Processes with Temporal Answer Sets 161

The CHR-based Implementation of the SCIFF
Abductive System

Marco Alberti1, Marco Gavanelli2, and
Evelina Lamma2

1 CENTRIA - DI/FCT - Universidade Nova de Lisboa
Quinta da Torre - 2829-516 Caparica, Portugal

2 ENDIF - Università di Ferrara
Via Saragat, 1 - 44100 Ferrara, Italy.

m.alberti@fct.unl.pt,{marco.gavanelli|evelina.lamma}@unife.it

Abstract. Abduction is a form of inference that supports hypothetical
reasoning and has been applied to a number of domains, such as di-
agnosis, planning, protocol verification. Abductive Logic Programming
(ALP) is the integration of abduction in logic programming. Usually, the
operational semantics of an ALP language is defined as a proof proce-
dure.
The first implementations of ALP proof-procedures were based on the
meta-interpretation technique, which is flexible but limits the use of
the built-in predicates of logic programming systems. Another, more
recent, approach exploits theoretical results on the similarity between
abducibles and constraints. With this approach, which bears the ad-
vantage of an easy integration with built-in predicates and constraints,
Constraint Handling Rules has been the language of choice for the im-
plementation of abductive proof procedures. The first CHR-based imple-
mentation mapped integrity constraints directly to CHR rules, which is
an efficient solution, but prevents defined predicates from being in the
body of integrity constraints and does not allow a sound treatment of
negation by default.
In this paper, we describe the CHR-based implementation of the SCIFF
abductive proof-procedure, which follows a different approach. The SCIFF
implementation maps integrity constraints to CHR constraints, and the
transitions of the proof-procedure to CHR rules, making it possible to
treat default negation, while retaining the other advantages of CHR-
based implementations of ALP proof-procedures.

1 Introduction

According to the philosopher Peirce [1], abductive reasoning is one of the ba-
sic inferences a reasoning agent (and a human in particular) uses. It is a type
of hypothetical reasoning associated with finding explanations for a given evi-
dence. Its most classical application is diagnosis: we are given a symptom of a
patient, or a wrong behaviour of a machine, plus a set of rules explaining which
illnesses might cause the symptom/misbehaviour, and we have to guess the right

cause. Besides diagnosis, abductive reasoning has been applied to a number of
applications, like planning [2], protocol verification [3], etc.

Abductive Logic Programming (ALP) [4] is a language that embeds abduc-
tive reasoning into logic programming. In ALP, we have a set of predicates that
have no definition, and are called abducibles. The truth of such predicates cannot
be proven, but it can be assumed: the abductive derivation will provide in the
computed answer the set of abduced hypotheses, together with the binding (the
classical answer of Logic Programming languages). However, in typical applica-
tions, not all combinations of assumptions make sense: some illnesses are to be
excluded beforehand, depending e.g. on the sex of the patient. For this reason,
in ALP the user can typically define a set of rules, called Integrity Constraints,
that must be satisfied by the set of hypotheses. The operational semantics of
an ALP is typically defined as a proof-procedure. A number of proof-procedures
have been proposed in the past for performing abductive reasoning; they are
typically implemented as Prolog meta-interpreters [5–8].

A number of researchers have become interested in abductive reasoning be-
cause it deals in a simple and sound way with negation [9]. Literal not(a) is
rewritten as an integrity constraint a → false, and then handled appropriately
by the proof procedure. This type of negation is also called negation by default.

ALP has also been integrated with Constraint Logic Programming [6, 8, 10],
in order to use both abductive reasoning and constraint propagation.

Kowalski et al. [11] studied the theoretical similarities between constraints
and abducibles. Such similarity was later exploited for the implementation of
abductive proof-procedures where abducibles are mapped to CLP constraints.
For this purpose, a promising is Constraint Handling Rules (CHR) [12] a lan-
guage designed to implement new constraints and constraint solvers in a simple
and efficient way.

The first works on the implementation of abductive reasoning in CHR [13–16]
implemented directly the integrity constraints into CHR rules: in a sense, CHR
becomes also the language for writing integrity constraints. Thus, the user can
write rules such as

p ∧ q→ r,

where p and q are abducible predicates and r can be either an abducible or
a defined predicate. The interest of a CHR implementation is not only theo-
retical: thanks to the tight integration of CHR in the host language (which is
often Prolog), those proof-procedures can seamlessly access built-in constructs
and constraint solvers. This means that they have access to the innumerable li-
braries written in Prolog, and they can even recurse through external predicates:
the abductive program can invoke Prolog predicates, and also meta-predicates
(e.g., findall, minimize, . . .), which can in their turn request the abduction
of atoms, etc. A proof-procedure written in CHR benefits immediately from all
the improvements of CHR engines, as recently happened with the Leuven CHR
implementation [17]. Finally, those ALP which do not exploit abduction (or use
abduction only in a limited subset of the application) do not suffer from the
meta-interpretation overhead, but run at full speed.

164 Marco Alberti, Marco Gavanelli, Evelina Lamma

However, a rule with a defined predicate in the antecedent is not allowed:
these languages sacrifice negation by default on the altar of efficiency, which is
a sensible thing to do in some applications, but it is not in others.

The SCIFF proof-procedure [18] was developed in 2003 with an alternative
CHR implementation, in which integrity constraints are first-class objects, and
the proof-procedure can actively reason about them. In particular, we map ab-
ducibles into CHR constraints and implement the transitions of the operational
semantics as CHR rules; in this way, the implementation follows very closely the
operational semantics. Thanks to the sound operational semantics, SCIFF has
a sound treatment of default (and also explicit) negation. Thanks to the CHR
implementation, SCIFF is smoothly integrated with a constraint solver. From a
language viewpoint, SCIFF has unique features that do not appear in other ab-
ductive proof-procedures: it handles universally quantified variables both in the
abducibles and in the integrity constraints; CLP constraints (treated as quan-
tifier restrictions [19]) can be imposed both on existentially and on universally
quantified variables.
SCIFF has been continuously developed and improved in the past few years,

and now it is smoothly integrated in graphical interfaces, semantic web applica-
tions; it is considerably faster, more robust, and provides more features.

In this paper, we show the implementation in CHR of the abductive proof-
procedure SCIFF, and we report about its recent improvements.

The rest of the paper is organised as follows. We first describe the SCIFF
abductive framework in Section 2. After some preliminaries on CHR (Section 3),
we present the implementation of SCIFF in CHR (Section 4). Discussion of
related work (Section 5) and conclusions (Section 6) follow.

2 An abductive framework

Abductive Logic Programming is a family of programming languages that inte-
grate abductive reasoning into logic programming. An ALP is a logic program,
consisting of a set of clauses, that can contain in the body some distinguished
predicates, belonging to a set A and called abducibles, (that will be shown in
the following in boldface). The aim is finding a set of abducibles ∆ ⊆ A that,
together with the knowledge base, is an explanation for a given known effect
(also called goal G):

KB ∪∆ |= G.
Also, ∆ should satisfy a set of logic formulae, called Integrity Constraints IC:

KB ∪∆ |= IC.

E.g., if a patient has a headache, a physician may consult a knowledge base

headache← flu.
headache←migraine.
headache←meningitis.

The CHR-based Implementation of the SCIFF Abductive System 165

and the abductive system will return one of the three explanations.
SCIFF [18] is a language in the ALP class. CLP [20] constraints can be

imposed on variables (which allows, for instance, to express that an event is
expected to happen in a given time interval). For example, we might have an
integrity constraint

flu→ temp(T), T < 39

saying that the explanation flu is acceptable only if the temperature of the pa-
tient is less than 39oC. The computed answer includes in general three elements:
a substitution for the variables in the goal (as usual in Prolog), the constraint
store (as in CLP), and the set ∆ of abduced literals.
SCIFF was originally developed for the verification of interaction in multia-

gent systems [21, 22] and it is an extension of the IFF proof-procedure [7].

3 A brief introduction to Constraint Handling Rules

Constraint Handling Rules [12] (CHR for brevity hereafter) are essentially a
committed-choice language consisting of guarded rules that rewrite constraints
in a store into simpler ones until they are solved. CHR define both simplification
(replacing constraints by simpler constraints while preserving logical equiva-
lence) and propagation (adding new, logically redundant but computationally
useful, constraints) over user-defined constraints.

The main intended use for CHR is to write constraint solvers, or to extend
existing ones. However, the computational model of CHR presents features that
make it a useful tool for the implementation of the SCIFF proof-procedure.

There are three types of CHRs: simplification, propagation and simpagation.

Simplification CHRs. Simplification rules are of the form

H1, . . . ,Hi ⇐⇒ G1, . . . , Gj |B1, . . . , Bk (1)

with i > 0, j ≥ 0, k ≥ 0 and where the multi-head H1, . . . ,Hi is a nonempty
sequence of CHR constraints, the guard G1, . . . , Gj is a sequence of built-in con-
straints, and the body B1, . . . , Bk is a sequence of built-in and CHR constraints.

Declaratively, a simplification rule states that, if the guard is true, then the
left-hand-side and the right-hand-side are equivalent.

Operationally, when constraint instances H1, . . . ,Hi in the head are in the
store and the guardG1, . . . , Gj is true, they are replaced by constraintsB1, . . . , Bk
in the body.

Propagation CHRs. Propagation rules have the form

H1, . . . ,Hi =⇒ G1, . . . , Gj |B1, . . . , Bk (2)

where the symbols have the same meaning of those in the simplification rules
(1).

Declaratively, a propagation rule is an implication, provided that the guard
is true. Operationally, when the constraints in the head are in the store, and the
guard is true, the constraints in the body are added to the store.

166 Marco Alberti, Marco Gavanelli, Evelina Lamma

Simpagation CHRs. Simpagation rules have the form

H1, . . . ,Hl\Hl+1, . . . ,Hi ⇐⇒ G1, . . . , Gj |B1, . . . , Bk (3)

where l > 0 and the other symbols have the same meaning and constraints of
those of simplification CHRs (1).

Declaratively, the rule of Eq. (3) is equivalent to

H1, . . . ,Hl, Hl+1, . . . ,Hi ⇐⇒ G1, . . . , Gj |B1, . . . , Bk, H1, . . . ,Hl (4)

Operationally, when the constraints in the head are in the store and the guard is
true,H1, . . . ,Hl remain in the store, andHl+1, . . . ,Hi are replaced byB1, . . . , Bk.

For example, the constraint ≤ can be implemented in CHR by giving its base
properties, namely the following rules:

A ≤ A⇔ true (5)
A ≤ B,B ≤ A⇔ A = B (6)
A ≤ B,B ≤ C ⇒ A ≤ C (7)

where the symbol ’=’ stands for unification. The CHR engine rewrites the con-
straints in the store occurring as in the left-hand-side of the rules; for example,
if the constraints X ≤ Y , Y ≤ X are in the store, they are removed from
the store and the variables X and Y are unified, as prescribed by rule 6. Note
that on the left-hand-side of a CHR rule only constraints defined with CHR can
appear: while the right-hand-side can contain any Prolog predicate (including
CLP(FD) constraints, unifications, etc.), these elements cannot appear on the
left-hand-side.

4 Implementation of the SCIFF proof-procedure

One of the features obtained through a CHR implementation (avoiding meta-
interpretation) is that the resolvent of the proof is directly represented as the
Prolog resolvent. This allows us to exploit the Prolog stack for depth-first ex-
ploration of the tree of states. More importantly, this means that we extensively
reuse the Prolog machinery, and that built-in predicates in the host Prolog sys-
tem can be called from the user’s Abductive Logic Programs. We remark again
that this feature comes for free together with the CHR implementation, and
is not easily available in metainterpreter-based implementations of abductive
proof-procedures.

In the same way, the constraint store of the constrained abductive proof-
procedure3 is represented as the union of the CLP constraint stores. For the
implementation of the proof-procedure, we used the CLP(FD) and CLP(B) li-
braries, available both on SICStus [23] and SWI Prolog [24] We also have a
3 This constraint store, which contains CLP constraints over variables, should not be

confused with the CHR constraint store, which is used for the implementation of the
other data structures.

The CHR-based Implementation of the SCIFF Abductive System 167

CHR-based solver on finite and infinite domains, and we defined an ad-hoc solver
for reified unification. Recently, the interface between SCIFF and the constraint
solver has been re-engineered, and now it allows the developer to adopt any con-
straint solver that implements a given interface. In this way, the user can choose
for each application which solver he/she wants to use; moreover, new solvers
can be added with very limited effort. For example, the constraint solver on the
reals, CLP(R) [25] has been integrated into SCIFF: the new solver is based on
the simplex algorithm (plus branch-and-bound), which is very efficient for linear
constraints.

To the best of our knowledge, the other abductive proof-procedures imple-
mented in CHR map abducibles to CHR constraints. Integrity constraints, in-
stead, are often represented as CHR rules (typically, propagation rules) [13, 15].
Since a propagation CHR can have only CHR constraints in the multiple heads,
the corresponding abductive proof-procedure can contain only abducibles in the
precondition. This limitation forbids in the proof-procedure the implementation
of default negation, that was one of the main motivations behind Abductive
Logic Programming [9]. The operational semantics is then an extension of the
operational semantics of CHR.
SCIFF was developed following a different idea: we wanted increased flexibil-

ity in our language, while retaining the features that come for free with the CHR
implementation. We first defined the declarative and operational semantics of
SCIFF as extensions of the IFF [7]. The operational semantics is given through
a set of transitions that transform a state into another. The implementation,
which maps integrity constraints, as well as the other relevant data strutures, to
CHR constraints (rather than CHR rules) and transitions to CHR rules, follows
the operational semantics very closely.

In the following, we first show some examples of transitions; the interested
reader can find the complete list of transitions in a previous publication [18],
together with the proofs of soundness and completeness of the SCIFF proof-
procedure. We then describe the implementation of some transitions in Sec-
tion 4.2.

4.1 Examples of transitions

Given an abducible a(X) and an integrity constraint

a(Y) ∧ p(Z) ∧ Y > Z → r(Z)

transition propagation generates the following implication (that we call Partially
Solved Integrity Constraint or PSIC for short):

X = Y ∧ p(Z) ∧ Y > Z → r(Z) (8)

Now, a transition case analysis generates two nodes of an OR-tree: in the first
we consider the case X = Y , so the previous implication is transformed into

p(Z) ∧X > Z → r(Z),

168 Marco Alberti, Marco Gavanelli, Evelina Lamma

in the second node, we consider the case that X 6= Y , and in this case the
implication (8) is already satisfied.

Suppose we choose the first node, and that the knowledge base contains the
definition of predicate p(Z), e.g., as a fact p(1). Transition unfolding generates
the following implication:

X > 1→ r(1)

Now, case analysis is again applied to the implication: in the first node we
consider the case X > 1, while in the second X ≤ 1. In the first case, the goal
r(1) is invoked.

These are just some examples of the transitions. SCIFF contains transi-
tions for handling correctly the various items (abducibles, expectations, hap-
pened events, CLP constraints, negation by default, explicit negation, etc.) in
the SCIFF language.

4.2 CHR implementation

The implementation of the transitions in CHR follows very closely the opera-
tional semantics. The various types of data are mapped to CHR constraints,
while the transitions are mapped into CHR rules. For example, abducibles are
represented as abd(X); this means that abducibles can be directly used in the
knowledge base, and CHR will take care of all the machinery necessary to abduce
a new literal and propagate its consequences. For example, the clause

g(X) : −a(X), b.

can be written as
g(X) :- abd(a(X)), b.

A (partially solved) integrity constraint

a(X) ∧ p(Y)→ r(Z) ∨ q(Z)

is mapped to the CHR constraint

psic([abd(a(X)),p(Y)],(r(Z);q(Z))).

As a first attempt, the propagation transition (together with case analysis)
can be implemented via the CHR rule

abd(X), psic([abd(Y)|Rest],Head)
==>
copy(psic([abd(Y)|Rest],Head),psic([abd(Y1)|Rest1],Head1)),
reif_unify(X,Y1,B),
(B#=1, psic(Rest1,Head1) ; B#=0).

(9)

where copy performs a renaming of an atom (which also considers the various
types of quantification in the SCIFF [18], as well as CLP constraints attached

The CHR-based Implementation of the SCIFF Abductive System 169

to the variables), #= is the finite domain equality constraint and reif_unify is
a CHR implementation of reified unification [26].

reif_unify is a CHR constraint that declaratively imposes that either B = 1
and the first two arguments unify, or B = 0 and the two atoms do not unify; in
logics, reif_unify(X,Y,B) is true iff

X = Y ↔ B = 1.

Note that some of the details are taken care of directly by CHR: if we have
a set of abducibles and a set of PSICs we do not have to remember explicitly
which PSICs have been tried with which abducibles (in order to avoid loops), as
CHR itself does this work.

Note also that propagation is attempted only with the first element of the
partially solved integrity constraint’s antecedent, but this does not impact on
what integrity constraints will be completely solved. For instance, given the
integrity constraint a,b → c, if b and a are abduced in sequence, b will not
be propagated as soon as it is abduced, but only after a has been abduced and
propagated, and the partially solved integrity constraint b→ c has been added
to the constraint store; in the end, c will be abduced anyway. In this way, we
ensure that each atom is propagated only once with each integrity constraint,
without a need to keep track of previous propagations.

A number of improvements can be done to rule (9). First of all, CHR uses
efficient indexing and hash tables to avoid checking all the possible pairs of CHR
constraints. Sadly, rule (9) does not exploit such features of CHR. Note that the
constraints in the antecedent of the propagation CHR do not share any variable,
thus the CHR engine has to try each possible pair of constraints of types abd
and psic, while, intuitively, one should try only those pairs whose arguments
may unify. A first idea would be to rewrite the transition as:

abd(X), psic([abd(X)|Rest],Head)
==> ...

which would use CHR hash tables much more efficiently, but it would propagate
only when the arguments are already ground or bound to the same term. This
would be a very lazy propagation, that does not exploit the reified unification
algorithm.

However, since abducibles are atoms, they always have a main functor, thus
the argument of abd is always a term, which can contain variables, but it cannot
be a variable itself. It is sensible to exploit the main functor for improving
the selection of candidates. We represent each abducible as a CHR constraint
with two arguments, where the first argument contains a ground term used to
improve the hashing: in the current implementation, it is a list containing the
main functor and its arity. The code for abducing an atom X is then:

abd(X) :- functor(X,F,A), abd([F,A],X).

170 Marco Alberti, Marco Gavanelli, Evelina Lamma

Now, the propagation transition can be implemented with the CHR propagation
rule:

abd(F,X), psic([abd(F,Y)|Rest],Head)
==>
fn_ok(X,Y) |
copy(psic([abd(Y)|Rest],Head),psic([abd(Y1)|Rest1],Head1)),
reif_unify(X,Y1,B),
(B#=1, psic(Rest1,Head1) ; B#=0).

(10)

i.e., only those pairs with identical first argument (i.e., abducibles that share the
same functor and arity) are tried. fn_ok is a predicate that checks if the two
arguments can possibly unify, and is also used for improving efficiency.

Many of the transitions of SCIFF open a choice point, as we can see from
the example of Eq. (10). However, in case reif_unify immediately yields 0
or 1, there is no point in opening a choice point. Otherwise, one could delay
the disjunction, in order to open choice points as late as possible, hoping that
other transitions might constrain the value of the B variable, possibly making it
ground. In other words, it would be more desirable to delay as much as possible
the non-deterministic transitions (those opening choice points), while expediting
the deterministic ones (those that do not open choice points). One reason is
that the deterministic may fail, and in this case the choice points opened by
nondeterministic choices would be useless.

In order to implement the delay mechanism, we defined a CHR constraint
’nondeterministic’ that holds, as argument, a non-deterministic goal. In the
previous example, the propagation transition is actually rewritten as

abd(F,X), psic([abd(F,Y)|Rest],Head)
==>
fn_ok(X,Y) |
copy(psic([abd(Y)|Rest],Head),psic([abd(RenY)|RenRest],RenHead)),
reif_unify(X,RenY,B),
(B == 1 -> psic(RenRest,RenHead) ;
B == 0 -> true ;
nondeterministic((B#=1, psic(RenRest,RenHead)) ; B#=0)).

i.e., we check if reified unification imposed a value on the boolean variable B, and
we open a choice point only in case it did not. The choice point is not actually
opened immediately, but it is declared in a CHR constraint.

Then, we defined a set of CHRs for dealing with nondeterministic con-
straints. We alternate a deterministic and a non-deterministic phase: initially, in
the derivation, only deterministic transitions can be activated. Later, when the
fixed point of the deterministic ones is reached, one non-deterministic transition
can be applied, and we return to the deterministic phase. In CHR:

switch2det @ phase(nondeterministic), nondeterministic(G) <=>
call(G),

The CHR-based Implementation of the SCIFF Abductive System 171

phase(deterministic).
switch2nondet @ phase(deterministic) <=> phase(nondeterministic).

where rule switch2nondet should be one of the last rules to be tried.

Transition Unfolding. Differently from HYPROLOG [15], integrity constraints
can involve literals built on defined predicates. This allows for a sound treatment
of default negation: a negative literal not(a) is converted into an implication
a → false. Given a PSIC whose body contains a literal of a predicate defined
in the KB, transition unfolding unfolds the literal:

psic([Atom|Rest],Head) <=>
is_defined_literal(Atom) |
findall(clause(Atom,Body),clause(Atom,Body),Clauses),
unfold(Clauses,psic([Atom|Rest],Head)).

unfold([],_).
unfold([clause(Atom,Body)|Clauses],psic([Atom1|Rest1],Head1)):-
ccopy(psic([Atom1,Rest1],Head1),psic([Atom2|Rest2],Head2)),
Atom = Atom2,
append(Body,Rest2,NewBody),
psic(NewBody,Head2),
unfold(Clauses,psic([Atom1|Rest1],Head1)).

This might pose problems of termination: if the unfolded predicate is recur-
sive, there exists an infinite branch in the derivation. For example, consider the
IC:

a(List),member(Term,List)→ b(Term) (11)

with the knowledge base:

member(X, [X|T]).
member(X, [Y |T]) : −member(X,T).
g : −a([1, 2, 3]).

Intuitively, the goal g is true provided that we abduce a([1, 2, 3]) and b(1), b(2),
b(3). However, if we unfold predicate member in the IC (11) before the atom
a([1, 2, 3]) was abduced, the unfolding generates an infinite number of implica-
tions. For this reason, early versions of SCIFF delay the unfolding after the
other transitions, in the hope of binding some of the variables. In this particular
example, if member is unfolded only after a([1, 2, 3]) is abduced, the number of
implications generated is equal to the number of elements in the list L, which is
finite.

However, in other cases defined predicates provide just the value of a param-
eter, in this example, a deadline:

start(a, Ta) ∧ deadline(D)→ end(b, Tb) ∧ Tb ≤ Ta +D

172 Marco Alberti, Marco Gavanelli, Evelina Lamma

The knowledge base contains a simple fact deadline(5) stating that the deadline
is 5 time units. In this case, if the unfolding of deadline is postponed after
propagation of the start(a, Ta) event, it is repeated as many times as the number
of start atoms that will be abduced, which might be a big number. For this
reason, recent versions of SCIFF unfold eagerly the predicates defined only by
facts, and lazily the other predicates.

Results. The efficiency of SCIFF has greatly improved with respect to earlier
versions [27]. The following experiments were run on a 1.5GHz Pentium M 715
processor, 512MB RAM computer running SICStus 4.0.7.

Experiment SCIFF 2005 SCIFF 2011

Auction Protocol 2.27s 0.37s
Block World 45.0s 15.7s

AlLoWS Feeble conformance 84.4s 36.8s

AlLoWS non-conformant 3.7s 3.3s

The aim of these experiments is not to compete with other abductive proof-
procedures, but to show the improvements obtained taking into consideration the
features of CHR. The version 2011 features improved hashing, eager unfolding,
and other minor improvements. The experiments are real-life applications that
we developed in SCIFF: the proof of conformance of agents to an auction proto-
col, planning in the abductive event calculus, and AlLoWS [28], a system based
on SCIFF for the conformance verification of web services to choreographies.

4.3 SCIFF as a System

From a software engineering perspective, since its first prototypical implemen-
tation [27] SCIFF has been greatly improved, and it is now a fully fledged
development system (see Fig. 1). An integrated development environment for
SCIFF ALPs, implemented as an Eclipse plugin, is now available. Through a
RuleML parser, ALPs can be obtained dynamically from the web. Animations
of the output are possible through Scalable Vector Graphics (SVG), the W3C
standard for vector graphics and animations. A Graphical User Interface dis-
plays relevant information to the user [3]. Facts can be added dynamically from
a number of sources, including Linda blackboards, Apache log files, Jade Sniffer
Agent output.

5 Related work

The SCIFF abductive framework is derived from the IFF proof procedure [7],
which it extends in several directions: dynamic update of the knowledge base by

The CHR-based Implementation of the SCIFF Abductive System 173

Fig. 1. Architecture of the SCIFF system, illustrating some of the available inputs and
outputs.

happening events, confirmation and disconfirmation of hypotheses, hypotheses
with universally quantified variables, CLP constraints. Many other abductive
proof-procedures have been proposed in the past; the interested reader can refer
to the exhaustive survey by Kakas et al. [29].

Other proof-procedures deal with constraints; in particular we mention ACLP
[6] and the A-system [8], which are deeply focussed on efficiency issues.

Some conspicuous work has been done with the integration of the IFF proof-
procedure with constraints [11]. Endriss et al. [10] present an implementation
of an abductive proof-procedure that extends IFF [7] in two ways: by dealing
with constraint predicates and with non-allowed abductive logic programs. The
cited work, however, does not deal with confirmation and disconfirmation of
hypotheses and universally quantified variables in abducibles, as ours does.

All of these proof-procedures are implemented as Prolog meta-interpreters.
However, we believe that a CHR implementation has features that a meta-
interpreted version cannot have, as we explained in the introduction.

Abdennadher and Christiansen [13] and Christiansen and Dahl [30] propose
to exploit the CHR language to extend SICStus Prolog to support abduction
more efficiently than with metainterpretation-based solutions. They represent
abducibles as CHR constraints as we do, but they represent integrity constraints
directly as CHR propagation rules, using the built-in CHR matching mechanism
for propagation: this does not seem possible in our framework, in which we pose
no limitations on the type of literals that occur in the conditions of integrity
constraints. We also experimented with a similar implementation [14, 16], but
it proved insufficient for our needs, as we needed a sound treatment of default
negation and more flexibility in the quantification of variables.

174 Marco Alberti, Marco Gavanelli, Evelina Lamma

6 Conclusions and future work

In this paper, we have presented the implementation of an abductive proof-
procedure in CHR. We believe that the use of CHR in writing abductive proof-
procedures has several advantages, compared to traditional approaches based
on meta-interpretation. The first advantage is that SCIFF benefits immediately
from new implementations and improvements of CHR engines [31, 32, 17]. An-
other advantage is that the proof-procedure does not require meta-interpretation,
which lets the user invoke built-in Prolog (meta)predicates within an Abductive
Logic Program, without the need of contemplating explicitly their occurrence
in the meta-interpreter. Also, Prolog is an instance of ALP (that does not use
abduction): in SCIFF, a Prolog program that does not use abduction runs at
full speed, without the overhead of meta-interpretation.

An interesting extension of this work would be to integrate the two main
ideas for implementing abduction in CHR in a unique framework. Each of the
ideas have their own pros and cons: HYPROLOG, that implements integrity
constraints as CHR rules, has less overhead, while SCIFF, that maps integrity
constraints into CHR constraints, is able to deal with default negation and is
provably sound and complete. We are currently studying the idea of selecting
syntactically the integrity constraints in an ALP in a preprocessing phase, and
implementing each in the most efficient possible way, i.e., as CHR rules, when-
ever possible, or as CHR constraints when they contain defined predicates or
CLP(FD) constraints.

Concerning confirmation, there are many possible extensions of this work,
which we intend to pursue in the future. For instance, it would be worthwhile
to let the user impose the failure of a branch of the reasoning tree, regardless
of the confirmation or disconfirmation of the hypotheses made in the branch, in
order to explore branches that the user finds more promising. We also intend
to support a breadth-first exploration of the computation tree, as an alternative
to the depth-first exploration of the current implementation. Besides, we believe
that the formal framework would benefit from the introduction of a formalism
to express priorities among the possible alternative hypotheses, in a given state
of the computation.

Another direction of improvement could be towards better computational
performance, possibly exploiting alternative efficient CHR implementations, such
as the one proposed by Wolf [32].

Acknowledgments

This work has been supported by the European Commission within the e-Policy
project (n. 288147).

References

1. Hartshorne, C., Weiss, P., eds.: Collected Papers of Charles Sanders Peirce, 1931–
1958. Volume 2. Harvards University Press (1965)

The CHR-based Implementation of the SCIFF Abductive System 175

2. Eshghi, K.: Abductive planning with the event calculus. In: Logic Programming,
Proceedings of the Fifth International Conference and Symposium, Seattle, Wash-
ington, Cambridge, MA, MIT Press (1988)

3. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Com-
pliance verification of agent interaction: a logic-based tool. Applied Artificial In-
telligence 20 (2006) 133–157

4. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive Logic Programming. Journal of
Logic and Computation 2 (1993) 719–770

5. Denecker, M., Schreye, D.D.: SLDNFA: an abductive procedure for abductive logic
programs. Journal of Logic Programming 34 (1998) 111–167

6. Kakas, A.C., Michael, A., Mourlas, C.: ACLP: Abductive Constraint Logic Pro-
gramming. Journal of Logic Programming 44 (2000) 129–177

7. Fung, T.H., Kowalski, R.A.: The IFF proof procedure for abductive logic program-
ming. Journal of Logic Programming 33 (1997) 151–165

8. Kakas, A.C., van Nuffelen, B., Denecker, M.: A-System: Problem solving through
abduction. In Nebel, B., ed.: Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence, Seattle, Washington, USA (IJCAI-01), Seat-
tle, Washington, USA, Morgan Kaufmann Publishers (2001) 591–596

9. Eshghi, K., Kowalski, R.A.: Abduction compared with negation by failure. In Levi,
G., Martelli, M., eds.: Proceedings of the 6th International Conference on Logic
Programming, Cambridge, MA, MIT Press (1989) 234–255

10. Endriss, U., Mancarella, P., Sadri, F., Terreni, G., Toni, F.: The CIFF proof
procedure for abductive logic programming with constraints. In Alferes, J.J., Leite,
J.A., eds.: Proc. JELIA 2004. Volume 3229 of LNAI., Springer-Verlag (2004) 31–43

11. Kowalski, R., Toni, F., Wetzel, G.: Executing suspended logic programs. Funda-
menta Informaticae 34 (1998) 203–224

12. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming 37 (1998) 95–138

13. Abdennadher, S., Christiansen, H.: An experimental CLP platform for integrity
constraints and abduction. In Larsen, H., Kacprzyk, J., Zadrozny, S., Andreasen,
T., Christiansen, H., eds.: FQAS, Flexible Query Answering Systems. LNCS, War-
saw, Poland, Springer-Verlag (2000) 141–152

14. Gavanelli, M., Lamma, E., Mello, P., Milano, M., Torroni, P.: Interpreting ab-
duction in CLP. In Buccafurri, F., ed.: APPIA-GULP-PRODE Joint Conference
on Declarative Programming, Reggio Calabria, Italy, Università Mediterranea di
Reggio Calabria (2003) 25–35

15. Christiansen, H., Dahl, V.: HYPROLOG: A new logic programming language with
assumptions and abduction. In Gabbrielli, M., Gupta, G., eds.: Proc. ICLP 2005.
Volume 3668 of LNCS., Springer (2005) 159–173

16. Alberti, M., Chesani, F., Daolio, D., Gavanelli, M., Lamma, E., Mello, P., Torroni,
P.: Specification and verification of agent interaction protocols in a logic-based
system. Scalable Computing: Practice and Experience 8 (2007) 1–13

17. Schrijvers, T., Demoen, B.: The K.U. Leuven CHR system: implementation and
application. In Frhwirth, T., Meister, M., eds.: Proc. CHR’04, Ulm, Germany
(2004)

18. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Ver-
ifiable agent interaction in abductive logic programming: the SCIFF framework.
ACM Transactions on Computational Logic 9 (2008)

19. Bürckert, H.: A resolution principle for constrained logics. Artificial Intelligence
66 (1994) 235–271

176 Marco Alberti, Marco Gavanelli, Evelina Lamma

20. Jaffar, J., Maher, M.: Constraint logic programming: a survey. Journal of Logic
Programming 19-20 (1994) 503–582

21. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Specification and
verification of agent interactions using social integrity constraints. Electronic Notes
in Theoretical Computer Science 85 (2003)

22. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An Abductive
Interpretation for Open Agent Societies. In Cappelli, A., Turini, F., eds.: AI*IA
2003: Advances in Artificial Intelligence, Proceedings of the 8th Congress of the
Italian Association for Artificial Intelligence, Pisa. Volume 2829 of Lecture Notes
in Artificial Intelligence., Springer-Verlag (2003) 287–299

23. Carlsson, M., et al.: SICStus Prolog user’s manual. Swedish Institute of Computer
Science, Kista, Sweden. 4.0.7 edn. (2009) www.sics.se/sicstus/.

24. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and
Practice of Logic Programming (2011) http://arxiv.org/abs/1011.5332.

25. Holzbaur, C.: OFAI clp(q,r) Manual. Austrian Research Institute for Artificial
Intelligence, Vienna. 1.3.3 edn. (1995) TR-95-09.

26. Nuffelen, B.V.: Abductive Constraint Logic Programming: Implementation and
Applications. PhD thesis, Katholieke Universiteit Leuven (2004)

27. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E.: The CHR-based Implementa-
tion of a System for Generation and Confirmation of Hypotheses. Number 2005-01
in Ulmer Informatik-Berichte (2005) 111–122

28. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M.: An
abductive framework for a-priori verification of web services. In Maher, M., ed.:
Proceedings of the Eighth Symposium on Principles and Practice of Declarative
Programming, July 10-12, 2006, Venice, Italy, New York, USA, Association for
Computing Machinery (ACM), Special Interest Group on Programming Languages
(SIGPLAN), ACM Press (2006) 39–50

29. Kakas, A.C., Kowalski, R.A., Toni, F.: The role of abduction in logic program-
ming. In Gabbay, D.M., Hogger, C.J., Robinson, J.A., eds.: Handbook of Logic in
Artificial Intelligence and Logic Programming. Volume 5., Oxford University Press
(1998) 235–324

30. Christiansen, H., Dahl, V.: Assumptions and abduction in Prolog. In Muñoz-
Hernández, S., Gómez-Perez, J.M., Hofstedt, P., eds.: Workshop on Multiparadigm
Constraint Programming Languages (MultiCPL’04), Saint-Malo, France (2004)
Workshop notes.

31. Holzbaur, C., Frühwirth, T.: Compiling constraint handling rules into Prolog with
attributed variables. In Nadathur, G., ed.: PPDP. (1999)

32. Wolf, A.: Adaptive constraint handling with CHR in Java. In Walsh, T., ed.:
Principles and Practice of Constraint Programming - CP 2001. Volume 2239 of
Lecture Notes in Computer Science., Paphos, Cyprus, Springer Verlag (2001) 256–
270

The CHR-based Implementation of the SCIFF Abductive System 177

Controlling Polyvariance for

Specialization-Based Verification

Fabio Fioravanti1, Alberto Pettorossi2, Maurizio Proietti3, and Valerio Senni2,4

1 Dipartimento di Scienze, University ‘G. D’Annunzio’, Pescara, Italy
fioravanti@sci.unich.it

2 DISP, University of Rome Tor Vergata, Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

3 CNR-IASI, Rome, Italy
maurizio.proietti@iasi.cnr.it

4 LORIA-INRIA, Villers-les-Nancy, France
valerio.senni@loria.fr

Abstract. We present some extensions of a method for verifying safety
properties of infinite state reactive systems. Safety properties are speci-
fied by constraint logic programs encoding (backward or forward) reach-
ability algorithms. These programs are transformed, before their use for
checking safety, by specializing them with respect to the initial states (in
the case of backward reachability) or with respect to the unsafe states (in
the case of forward reachability). In particular, we present a specializa-
tion strategy which is more general than previous proposals and we show,
through some experiments performed on several infinite state reactive
systems, that by using the specialized reachability programs obtained
by our new strategy, we considerably increase the number of successful
verifications. Then we show that the specialization time, the size of the
specialized program, and the number of successful verifications may vary,
depending on the polyvariance introduced by the specialization, that is,
the set of specialized predicates which have been introduced. Finally,
we propose a general framework for controlling polyvariance and we use
our set of examples of infinite state reactive systems to compare in an
experimental way various control strategies one may apply in practice.

1 Introduction

Program specialization is a program transformation technique that, given a pro-
gram and a specific context of use, derives a specialized program that is more
effective in the given context [19]. Program specialization techniques have been
proposed for several programming languages and, in particular, for (constraint)
logic languages (see, for instance [7,11,16,17,21,22,24,27]).

Program specialization may generate polyvariant procedures, that is, it may
derive, starting from a single procedure, multiple specialized versions of that
procedure. In the case of (constraint) logic programming, program specialization
may introduce several new predicates corresponding to specialized versions of
a predicate occurring in the original program. The application of specialized

procedures to specific input values often results in a very efficient computation.
However, if the number of new predicate definitions and, hence, the size of the
specialized program, is overly large, we may have difficulties during program
compilation and execution.

In order to find an optimal balance between the degree of specialization and
the size of the specialized program, several papers have addressed the issue of
controlling polyvariance (see [22,26], in the case of logic programming). This
issue is related to the one of controlling generalization during program special-
ization, because a way of reducing unnecessary polyvariance is to replace several
specialized procedures by a single, more general one.

In this paper we address the issue of controlling polyvariance in the context
of specialization-based techniques for the automatic verification of properties of
reactive systems [12,13,23].

One of the present challenges in the verification field is the extension of
model checking techniques [5] to systems with an infinite number of states. For
these systems exhaustive state exploration is impossible and, even for restricted
classes, simple properties such as safety (or reachability) properties are undecid-
able (see [9] for a survey of relevant results).

In order to overcome this limitation, several authors have advocated the use
of constraints to represent infinite sets of states and constraint logic programs
to encode temporal properties (see, for instance, [8,15]). By using constraint-
based methods, a temporal property can be verified by computing the least
or the greatest models of programs, represented as finite sets of constraints.
Since, in general, the computation of these models may not terminate, various
techniques have been proposed based on abstract interpretation [2,3,6,8] and
program specialization [12,13,23].

The techniques based on abstract interpretation compute a conservative ap-
proximation of the program model, which is sometimes sufficient to prove that
the property of interest actually holds. However, in the case where the property
does not hold in the approximated model, one cannot conclude that the property
does not hold.

The techniques based on program specialization transform the program that
encodes the property of interest by taking into account the property to be proved
and the initial states of the system, so that the construction of the model of the
transformed program may terminate more often than the one of the original
program, that is, the so-called verification precision is improved.

In this paper we show that the control of polyvariance plays a very rele-
vant role in verification techniques based on program specialization. Indeed, the
specialization time, the size of the specialized program, and the precision of
verification may vary depending on the set of specialized predicates introduced
by different specialization strategies. We also propose a general framework for
controlling polyvariance during specialization and, through several examples of
infinite state reactive systems taken from the verification literature, we com-
pare in an experimental way various control strategies that may be applied in
practice.

180 Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, Valerio Senni

Our paper is structured as follows. In Section 2 we present a method based
on constraint logic programming for specifying and verifying safety properties of
infinite state reactive systems. In Sections 3 and 4 we present a general framework
for specializing constraint logic programs that encode safety properties of infinite
state reactive systems and, in particular, for controlling polyvariance during
specialization. In Section 5 we present some experimental results. Finally, in
Section 6 we compare our method with related approaches in the field of program
specialization and verification.

2 Specialization-Based Reachability Analysis of Infinite
State Reactive Systems

An infinite state reactive system is specified as follows. A state is an n-tuple
〈a1, . . . , an〉 where each ai is either an element of a finite domain D or an element
of the set R of the real numbers. By X we denote a variable ranging over states,
that is, an n-tuple of variables 〈X1, . . . , Xn〉 where each Xi ranges over either D
or R. Every constraint c is a (possibly empty) conjunction fd(c) of equations on
a finite domain D and a (possibly empty) conjunction re(c) of linear inequations
on R. An equation on R is considered as a conjunction of two inequations. Given
a constraint c, every equation in fd(c) and every linear inequation in re(c) is said
to be an atomic constraint.

The set I of the initial states is represented by a disjunction init1(X) ∨∨ . . . ∨∨
initk(X) of constraints on X . The transition relation is a disjunction t1(X, X ′) ∨∨
. . . ∨∨ tm(X, X ′) of constraints on X and X ′, where X ′ is the n-tuple 〈X ′

1, . . . , X
′
n〉

of primed variables.
A constraint c is also denoted by c(X), when we want indicate that the

variable X occurs in it. Similarly, for constraints denoted by c(X ′) or c(X, X ′).
Given a constraint c and a tuple V of variables, we define the projection c|V to
be the constraint d such that: (i) the variables of d are among the variables in V ,
and (ii) D ∪ R |= d↔ ∃Z c, where Z is the tuple of the variables occurring in c
and not in V . We assume that the set of constraints is closed under projection.

Given a clause C of the form H ← c ∧∧ G, by con(C) we denote the con-
straint c. A clause of the form H ← c, where c is a constraint, is said to be
a constrained fact . We say that a constrained fact H ← c subsumes a clause
H ← d∧∧G, where d is a constraint and G is a goal, iff d entails c, written d � c,
that is, D ∪ R |= ∀(d→ c).

In this paper we will focus on the verification of safety properties. A safety
property holds iff an unsafe state cannot be reached from an initial state of the
system. The set U of the unsafe states is represented by a disjunction u1(X) ∨∨ . . .
∨∨ un(X) of constraints.

One can verify a safety property by one of the following two strategies:
(i) the Backward Strategy : one applies a backward reachability algorithm, thereby
computing the set BR of states from which it is possible to reach an unsafe state,
and then one checks whether or not BR has an empty intersection with the set I
of the initial states;

Controlling Polyvariance for Specialization-based Verification 181

(ii) the Forward Strategy: one applies a forward reachability algorithm, thereby
computing the set FR of states reachable from an initial state, and then one
checks whether or not FR has an empty intersection with the set U of the unsafe
states.

Variants of these two strategies have been proposed and implemented in
various automatic verification tools [1,4,14,20,28].

The Backward and Forward Strategies can easily be encoded into constraint
logic programming. In particular, we can encode the backward reachability al-
gorithm by means of the following constraint logic program Bw :

I1: unsafe← init1(X) ∧∧ bwReach(X)
· · ·

Ik: unsafe← initk(X) ∧∧ bwReach(X)
T1: bwReach(X)← t1(X, X ′) ∧∧ bwReach(X ′)
· · ·

Tm: bwReach(X)← tm(X, X ′) ∧∧ bwReach(X ′)
U1: bwReach(X)← u1(X)
· · ·

Un: bwReach(X)← un(X)
We have that: (i) bwReach(X) holds iff an unsafe state can be reached from the
state X in zero or more applications of the transition relation, and (ii) unsafe
holds iff there exists an initial state of the system from which an unsafe state
can be reached.

The semantics of program Bw is given by the least model, denoted M(Bw),
that is, the set of ground atoms derived by using: (i) the theory of equations
over the finite domain D and the theory of linear inequations over the reals R
for the evaluation of the constraints, and (ii) the usual least model construction
(see [18] for more details).

The system is safe if and only if unsafe
∈M(Bw).

Example 1. Let us consider an infinite state reactive system where each state is
a pair of real numbers and the following holds:
(i) the set of initial states is the set of pairs 〈X1, X2〉 such that the constraint
X1 ≥ 1 ∧∧ X2 = 0 holds;
(ii) the transition relation is the set of pairs of states 〈〈X1, X2〉, 〈X ′

1, X
′
2〉〉 such

that the constraint X ′
1 =X1+X2 ∧∧ X ′

2 =X2+1 holds; and
(iii) the set of unsafe states is the set of pairs 〈X1, X2〉 such that the constraint
X2 >X1 holds.
For the above system the predicate unsafe is defined by the following CLP
program Bw1:

1. unsafe← X1≥1 ∧∧ X2 =0 ∧∧ bwReach(X1, X2)
2. bwReach(X1, X2)← X ′

1 =X1+X2 ∧∧ X ′
2 = X2+1 ∧∧ bwReach(X ′

1, X
′
2)

3. bwReach(X1, X2)← X2 >X1 �

The Backward Strategy can be implemented by the bottom-up construction
of the least fixpoint of the immediate consequence operator SBw, that is, by
computing SBw ↑ω [18]. The operator SBw is analogous to the usual immediate
consequence operator associated with logic programs, but constructs a set of

182 Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, Valerio Senni

constrained facts, instead of a set of ground atoms. We have that M(Bw) is the
set of ground atoms of the form Aϑ such that there exists a constrained fact
A← c in SBw ↑ω and the constraint cϑ is satisfiable. BR is the set of all states s
such that there exists a constrained fact of the form bwReach(X) ← c(X) in
SBw ↑ω and c(s) holds. Thus, by using clauses I1, . . . , Ik, we have that the atom
unsafe holds iff BR ∩ I
= ∅.

One weakness of the Backward Strategy is that, when computing BR, it does
not take into account the constraints holding on the initial states. This may lead
to a failure of the verification process, even if the system is safe, because the
computation of SBw ↑ω may not terminate. A similar weakness is also present
in the Forward Strategy as it does not take into account the properties holding
on the unsafe states when computing FR.

In this paper we present a method, based upon the program specialization
technique introduced in [13], for overcoming these weaknesses. For reasons of
space we will present the details of our method for the Backward Strategy only.
The application of our method in the case of the Forward Strategy is similar, and
we will briefly describe it when presenting our experimental results in Section 5.

The objective of program specialization is to transform the constraint logic
program Bw into a new program SpBw such that: (i) unsafe ∈ M(Bw) iff
unsafe ∈ M(SpBw), and (ii) the computation of SSpBw ↑ ω terminates more
often than SBw ↑ ω because it exploits the constraints holding on the initial
states.

Let us show how our method based program specialization works on the
infinite state reactive system of Example 1.

Example 2. Let us consider the program Bw1 of Example 1. The computation of
SBw1 ↑ω does not terminate, because it does not take into account the informa-
tion about the set of initial states, represented by the constraint X1≥1 ∧∧ X2 =0.
(One can also check that the top-down evaluation of the query unsafe does not
terminate either.)

This difficulty can be overcome by specializing the program Bw1 with respect
to the constraint X1 ≥ 1 ∧∧ X2 = 0. Similarly to [13], we apply a specialization
technique based on the unfolding and folding transformation rules for constraint
logic programs (see, for instance, [10]). We introduce a new predicate new1
defined as follows:

4. new1(X1, X2)← X1≥1 ∧∧ X2 =0 ∧∧ bwReach(X1, X2)

We fold clause 1 using clause 4, that is, we replace the atom bwReach(X1, X2)
by new1(X1, X2) in the body of clause 1, and we get:

5. unsafe← X1≥1 ∧∧ X2 =0 ∧∧ new1(X1, X2)

Now we continue the transformation from the definition of the newly intro-
duced predicate new1. We unfold clause 4, that is, we replace the occurrence of
bwReach(X1, X2) by the bodies of the clauses 2 and 3 defining bwReach(X1, X2)
in Bw1, and we derive:

6. new1(X1, X2)← X1≥1 ∧∧ X2 =0 ∧∧ X ′
1 =X1 ∧∧ X ′

2 =1 ∧∧ bwReach(X ′
1, X

′
2)

Controlling Polyvariance for Specialization-based Verification 183

In order to fold clause 6 we may use the following definition, whose body consists
(modulo variable renaming) of the atom bwReach(X ′

1, X
′
2) and the constraint

X1≥1 ∧∧ X2 =0 ∧∧ X ′
1 =X1 ∧∧ X ′

2 =1 projected w.r.t. the variables 〈X ′
1, X

′
2〉:

7. newp(X1, X2)← X1≥1 ∧∧ X2 =1 ∧∧ bwReach(X1, X2)
However, if we repeat the process of unfolding and, in order to fold, we introduce
new predicate definitions whose bodies consist of the atom bwReach(X ′

1, X
′
2) and

projected constraints w.r.t. 〈X ′
1, X

′
2〉, then we will introduce, in fact, an infinite

sequence of new predicate definitions of the form:
newq(X1, X2)← X1≥1 ∧∧ X2 =k ∧∧ bwReach(X1, X2)

where k gets the values 1, 2, . . . In order to terminate the specialization pro-
cess we apply a generalization strategy and we introduce the following predicate
definition which is a generalization of both clauses 4 and 7:
8. new2(X1, X2)← X1≥1 ∧∧ X2≥0 ∧∧ bwReach(X1, X2)

We fold clause 6 using clause 8 and we get:
9. new1(X1, X2)← X1≥1 ∧∧ X2 =0 ∧∧ X ′

1 =X1 ∧∧ X ′
2 =1 ∧∧ new2(X ′

1, X
′
2)

Now we continue the transformation from the definition of the newly introduced
predicate new2. By unfolding clause 8 and then folding using again clause 8 we
derive:
10. new2(X1, X2)← X1≥1 ∧∧X2≥0 ∧∧ X ′

1 =X1+X2 ∧∧X ′
2 =X2+1 ∧∧new2(X ′

1, X
′
2)

11. new2(X1, X2)← X1≥1 ∧∧ X2 >X1

The final specialized program, called SpBw1, is made out of clauses 5, 9, 10,
and 11. Now the computation of SSpBw1 ↑ω terminates due to the presence of
the constraint X1≥1 which holds on the initial states and occurs in all clauses
of SpBw1. �

The form of the specialized program strongly depends on the strategy used
for introduction of new predicates corresponding to the specialized versions of the
predicate bwReach. For instance, in Example 1 we have introduced the two new
predicates new1 and new2, and then we have obtained the specialized program
by deriving mutually recursive clauses defining those predicates. Note, however,
that the definition of new2 is more general than the definition of new1, because
the constraint occurring in the body of the clause defining new1 implies the
constraint occurring in the body of the clause defining new1. Thus, by applying
an alternative strategy we could introduce new2 only and derive a program
SpBw2 where clauses 5 and 9 are replaced by the following clause:
12. unsafe← X1≥1 ∧∧ X2 =0 ∧∧ new2(X1, X2)
Program SpBw2 is smaller than SpBw1 and the computation of SSpBw2 ↑ ω
terminates in fewer steps than the one of SSpBw1 ↑ω.

In general, when applying our specialization-based verification method there
is an issue of controlling polyvariance, that is, of introducing a set of new predi-
cate definitions that perform well with respect to the following objectives:
(i) ensuring the termination and the efficiency of the specialization strategy,
(ii) minimizing the size of the specialized program, and

184 Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, Valerio Senni

(iii) ensuring the termination and the efficiency of the fixpoint computation of
the least models.

The objective of ensuring the termination of the fixpoint computation (and,
thus, the precision of the verification\) can be in contrast with the other objec-
tives, because it may need the introduction of less general predicates, while the
achievement of other objectives is favoured by the introduction of more general
predicates. In the next section we will present a framework for controlling poly-
variance and achieving a good balance between the requirements we have listed
above.

3 A Generic Algorithm for Controlling Polyvariance
During Specialization

The core of our technique for controlling polyvariance is an algorithm for spe-
cializing the CLP program Bw with respect to the constraints characterizing the
set of initial states. Our algorithm is generic, in the sense that it depends on
three unspecified procedures: (1) Partition, (2) Generalize, and (3) Fold. Various
definitions of the Partition, Generalize, and Fold procedures will be given in the
next section, thereby providing concrete specialization algorithms. These defini-
tions encode techniques already proposed in the specialization and verification
fields (see, for instance, [6,13,22,27]) and also new techniques proposed in this
paper.

Our generic specialization algorithm (see Figure 1) constructs a tree, called
DefsTree, where: (i) each node is labelled by a clause of the form newp(X) ←
d(X) ∧∧ bwReach(X), called a definition, defining a new predicate introduced
during specialization, and (ii) each arc from node Di to node Dj is labelled by
a subset of the clauses obtained by unfolding the definition of node Di. When
no confusion arises, we will identify a node with its labelling definition. An arc
from definition Di to definition Dj labelled by the set Cs of clauses is denoted
by Di

Cs−→ Dj.
The definition at the root of DefsTree is denoted by the special symbol T.

Initially, DefsTree is {T {I1}−→ D1, . . . , T
{Ik}−→ Dk}, where (i) I1, . . . , Ik are the

clauses defining the predicate unsafe in program Bw (see Section 2), and (ii) for
j = 1, . . . , k, Dj is the clause new j(X) ← initj(X) ∧∧ bwReach(X), such that
new j is a new predicate symbol and the body of Dj is equal to the body of Ij .

A definition D in DefsTree is said to be recurrent iff D labels both a leaf
node and a non-leaf node of DefsTree.

We construct the children of a non-recurrent definition D in the definition
tree DefsTree constructed so far, as follows. We unfold D with respect to the
atom bwReach(X) occurring in its body, that is, we replace bwReach(X) by the
bodies of the clauses T1, . . . , Tm, U1, . . . , Un that define bwReach in Bw, thereby
deriving a set UnfD of m+n clauses. Then, from UnfD we remove all clauses
whose body contains an unsatisfiable constraint and all clauses that are subsumed
by a (distinct) constrained fact in UnfD.

Controlling Polyvariance for Specialization-based Verification 185

Next we apply the Partition procedure and we compute a set {B1, . . . , Bh}
of pairwise disjoint sets of clauses, called blocks, such that UnfD = B1∪ . . .∪Bh.

Finally, we apply the Generalize procedure to each block of the partition.
This generalization step is often useful because, as it has been argued in [27],
it allows us to derive more efficient programs. Our Generalize procedure takes
as input the clause D, a block Bi of the partition of UnfD , and the whole
definition tree constructed so far. As we will indicate below, this third argument
of the Generalize procedure allows us to express the various techniques presented
in [6,13,22,27] for controlling generalization and polyvariance.

The output of the Generalize procedure is, for each block Bi, a definition Gi

such that the constraint occurring in the body of Gi is entailed by every con-
straint occurring in the body of a non-unit clause (that is, a clause different from
a constrained fact) in Bi and, hence, every non-unit clause in Bi can be folded
using Gi. If all clauses in Bi are constrained facts (and thus, no folding step is
required), then Gi is the special definition denoted by the symbol �. If a clause
in Bi has the form h(X) ← c(X, X ′) ∧∧ bwReach(X ′), then Gi has the form
newp(X) ← d(X) ∧∧ bwReach(X) and c(X, X ′) � d(X ′). However, we postpone
the folding steps until the end of the construction of the whole tree DefsTree.
For i = 1, . . . , h, we add to DefsTree the arc D

Bi−→ Gi.

The construction of DefsTree terminates when all leaf clauses of the current
DefsTree are recurrent. In general, termination of this construction is not guar-
anteed and it depends on the particular Generalize procedure one considers. All
Generalize procedures presented in the next section guarantee termination (see
also [13,22,27]).

When the construction of DefsTree terminates we construct the specialized
program SpBw by applying the Fold procedure which consists in: (i) collecting
all clauses occurring in the blocks that label the arcs of DefsTree, and then
(ii) folding every non-unit clause by using a definition that labels a node of
DefsTree. Recall that, by construction, every non-unit clause occurring in a block
that labels an arc of DefsTree can be folded by a definition that labels a node
of DefsTree.

In the following Section, we will show how the specialization technique of
Example 2 can be regarded as an instance of our generic specialization algorithm.

By using the correctness results for the unfolding, folding, and clause re-
moval rules (see, for instance, [10]), we can prove the correctness of our generic
specialization algorithm, as stated by the following theorem.

Theorem 1 (Correctness of the Specialization Algorithm). Let programs
Bw and SpBw be the input and the output programs, respectively, of the special-
ization algorithm that uses any given Partition, Generalize, and Fold procedures.
Then unsafe∈M(Bw) iff unsafe∈M(SpBw).

186 Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, Valerio Senni

Input : Program Bw.
Output : Program SpBw such that unsafe ∈M(Bw) iff unsafe ∈M(SpBw).

Initialization:

DefsTree := {T {I1}−→ D1, . . . , T
{Ik}−→ Dk};

while there exists a non-recurrent definition D: newp(X) ← c(X) ∧∧ bwReach(X) in
DefsTree do

Unfolding: UnfD := {newp(X)← c(X) ∧∧ t1(X, X ′) ∧∧ bwReach(X ′), . . . ,
newp(X)← c(X) ∧∧ tm(X, X ′) ∧∧ bwReach(X ′),
newp(X)← c(X) ∧∧ u1(X), . . . ,
newp(X)← c(X) ∧∧ un(X) };

Clause Removal:
while in UnfD there exist two distinct clauses E and F such that E is a constrained

fact that subsumes F or there exists a clause F whose body has a constraint
which is not satisfiable do UnfD := UnfD− {F} end-while;

Definition Introduction:
Partition(UnfD, {B1, . . . , Bh});
for i = 1, . . . , h do

Generalize(D, Bi, DefsTree, Gi);

DefsTree := DefsTree ∪ {D Bi−→ Gi}
end-for ;

end-while;

Folding: Fold(DefsTree,SpBw)

Fig. 1. The generic specialization algorithm.

4 Partition, Generalize, and Fold Procedures

In this section we provide several definitions of the Partition, Generalize, and
Fold procedures used by the generic specialization algorithm. Let us start by
introducing the following notions.

First, note that the set of all conjunctions of equations on D can be viewed as
a finite lattice whose partial order is defined by the entailment relation �. Given
the constraints c1, . . . , cn, we define their most specific generalization, denoted
γ(c1, . . . , cn), the conjunction of: (i) the least upper bound of the conjunctions
fd(c1), . . . , fd(cn) of equations on D, and (ii) the convex hull [6] of the constraints
re(c1), . . . , re(cn) on R, which is the least (w.r.t. the � ordering) constraint h in R
such that re(ci) � h, for i = 1, . . . , n. (Note that this notion of generalization is
different from the one that is commonly used in logic programming.)

Note that, for i = 1, . . . , n, ci � γ(c1, . . . , cn). Given a set of constraints Cs =
{c1, . . . , cn}, we define the equivalence relation �fd on Cs such that, for ev-
ery c1, c2 ∈Cs, c1 �fd c2 iff fd(c1) is equivalent to fd(c2) in D. We also define
the equivalence relation �re on Cs as the reflexive, transitive closure of the re-
lation ↓R on Cs such that, for every c1, c2 ∈ Cs, c1 ↓R c2 iff re(c1) ∧∧ re(c2) is
satisfiable in R.

For example, let us consider an element a ∈ D. Let c1 be the constraint
X1 > 0 ∧∧ X2 = a and c2 be the constraint X1 < 0 ∧∧ X2 = a. Then we have that

Controlling Polyvariance for Specialization-based Verification 187

c1 �fd c2 on {c1, c2}. Now, let c3 be the constraint X1 > 0 ∧∧ X1 < 2, c4 be the
constraint X1 > 1 ∧∧ X1 < 3, and c5 be the constraint X1 > 2 ∧∧ X1 < 4. Since
c3 ↓R c4 and c4 ↓R c5, we have c3 �re c5 on {c3, c4, c5}. Note that c3
�re c5 on
{c3, c5} because c3 ∧∧ c5 is not satisfiable in R.

Partition. The Partition procedure takes as input the following set of n (≥ 1)
clauses:

UnfD := {C1 : newp(X)← c1(X, X ′) ∧∧ bwReach(X ′),
· · ·

Cm : newp(X)← cm(X, X ′) ∧∧ bwReach(X ′),
Cm+1 : newp(X)← cm+1(X, X ′),

· · ·
Cn : newp(X)← cn(X, X ′) }

where, for some m, with 0≤m≤ n, C1, . . . , Cm are not constrained facts, and
Cm+1, . . . , Cn are constrained facts. The Partition procedure returns as output a
partition {B1, . . . , Bh} of UnfD, such that Bh = {Cm+1, . . . , Cn}. The integer h
and the blocks B1, . . . , Bh−1 are computed by using one of the following partition
operators. For the operators FiniteDomain, Constraint, and FDC, the integer h
to be computed is obtained as a result of the computation of the blocks Bi’s.

(i) Singleton: h = m+1 and, for 1≤ i≤h−1, Bi ={Ci}, which means that every
non-constrained fact is in a distinct block;

(ii) FiniteDomain: for 1≤ i≤ h−1, for j, k = 1, . . . , m, two clauses Cj and Ck

belong to the same block Bi iff their finite domain constraints on the primed
variables are equivalent, that is, iff cj |X′ �fd ck|X′ on {c1|X′ , . . . , cm|X′};

(iii) Constraint : for 1≤ i≤h−1, for i, j =1, . . . , m, two clauses Cj and Ck belong
to the same block Bi iff there exists a sequence of clauses in UnfD starting
with Cj and ending with Ck such that for any two consecutive clauses in the
sequence, the conjunction of the real constraints on the primed variables is
satisfiable, that is, iff cj|X′ �re ck|X′ on {c1|X′ , . . . , cm|X′};

(iv) FDC : for 1≤ i≤h−1, for i, j =1, . . . , m, two clauses Cj and Ck belong to
the same block Bi iff they belong to the same block according to both the
FiniteDomain and the Constraint partition operator, that is, iff cj |X′ �fd

ck|X′ and cj |X′ �re ck|X′ on {c1|X′ , . . . , cm|X′};
(v) All : h = 2 and B1 = {C1, . . . , Cm}, which means that all non-constrained

facts are in a single block.

Generalize. The Generalize procedure takes as input a definition D, a block B
of clauses computed by the Partition procedure, and the tree DefsTree of def-
initions introduced so far, and returns a definition clause G. If B is a set of
constrained facts then G is the special definition denoted by the symbol �. Oth-
erwise, if B is the set {E1, . . . , Ek} of clauses and none of which is a constrained
fact, then clause G is obtained as follows.

Step 1. Let b(X ′) denote the most specific generalization γ(con(E1)|X′ , . . . ,
con(Ek)|X′).
if there exists a nearest ancestor A1 of D (possibly D itself) in DefsTree
such that A1 is of the form: newq(X ′) ← a1(X ′) ∧∧ bwReach(X ′) (modulo

188 Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, Valerio Senni

variable renaming) and a1(X ′)�fd con(D)
then banc(X ′)=γ(a1(X ′), b(X ′)) else banc(X ′)=b(X ′);

Step 2. Let us consider a generalization operator � (see [13] and the operators
Widen and WidenSum defined below).
if in DefsTree there exists a clause H : newt(X ′) ← d(X ′) ∧∧ bwReach(X ′)
(modulo variable renaming) such that banc(X ′) � d(X ′)
then G is H
else let newu be a new predicate symbol

if there exists a nearest ancestor A2 of D (possibly D itself) in DefsTree
such that A2 is a definition of the form:
newr(X ′)← a2(X ′), bwReach(X ′) and a2(X ′) �fd banc(X ′)

then G is newu(X ′)← (a2(X ′)� banc(X ′)) ∧∧ bwReach(X ′)
else G is newu(X ′)← banc(X ′) ∧∧ bwReach(X ′).

In [13] we have defined and compared several generalization operators. Among
those, now we consider the following two operators which we have used in the
experiments we have reported in the next section. Indeed, as indicated in [13],
these two operators perform better than all other operators.

Widen. Given any two constraints c and d such that c is a1 ∧∧ . . . ∧∧ am, where the
ai’s are atomic constraints, the operator Widen, denoted �W , returns the
constraint c�W d which is the conjunction of the atomic constraints of c which
are entailed by d, that is, which are in the set {ah | 1≤ h≤m and d� ah}
(see [6] for a similar widening operator used in static analysis). Note that, in
the case of our Generalize procedure, we have that fd(d) is a subconjunction
of c�W d.

WidenSum. Let us first define the thin well-quasi ordering �S . For any atomic
constraint a on R of the form q0+q1X1+. . .+qkXk�0, where � is either < or
≤, we define sumcoeff(a) to be

∑k
j=0 |qj |. Given the two atomic constraints a1

of the form p1 < 0 and a2 of the form p2 < 0, we have that a1 �S a2 iff
sumcoeff(a1)≤sumcoeff(a2). Similarly, if we are given the atomic constraints
a1 of the form p1≤0 and a2 of the form p2≤0. Given any two constraints c =
a1 ∧∧ . . . ∧∧ am and d = b1 ∧∧ . . . ∧∧ bn, where the ai’s and the bi’s are atomic
constraints, the operator WidenSum, denoted �WS, returns the constraint
c�WS d which is the conjunction of the constraints in the set {ah | 1≤h≤m
and d � ah} ∪ {bk | bk occurs in re(d) and ∃ ai occuring in re(c), bk �S ai},
which is the set of atomic constraints which either occur in c and are entailed
by d, or occur in d and are less than or equal to some atomic constraint in c,
according to the thin well-quasi ordering �S . Note that, in the case of our
Generalize procedure, we have that fd(d) is a subconjunction of c�WS d.

Our generic Partition and Generalize procedures can be instantiated to get
known specialization algorithms and abstract interpretation algorithms. In par-
ticular, (i) the technique proposed by Cousot and Halbwachs [6] can be obtained
by using the operators FiniteDomain and Widen, (ii) the specialization algo-
rithm by Peralta and Gallagher [27] can be obtained by using the operators All
and Widen, and (iii) our technique presented in [13] can be obtained by using the

Controlling Polyvariance for Specialization-based Verification 189

partition operator Singleton together with the generalization operators Widen
or WidenSum.

Fold. Let us first introduce the following definition. Given the two clauses
C : newp(X) ← c(X) ∧∧ bwReach(X) and D : newq(X) ← d(X) ∧∧ bwReach(X),
we say that C is more general than D, and by abuse of language, we write D � C,
iff d(X) � c(X). A clause C is said to be maximally general in a set S of clauses
iff for all clauses D∈S, if C � D then D � C. (Recall that the relation � is not
antisymmetric.) For the Fold procedure we have the following two options.
Immediate Fold (Im, for short): (Step 1) all clauses occurring in the labels of

the arcs of DefsTree are collected in a set F , and then (Step 2) for every
non-unit clause E in F such that E occurs in the block Bi labelling an arc
of the form D

Bi−→Di, for some clause D, E is folded using Di.
Maximally General Fold (MG, for short): (Step 1) is equal to that of Immediate

Fold procedure, and (Step 2) every non-unit clause in F is folded using a
maximally general clause in DefsTree.

Immediate Fold is simpler than Maximally General Fold, because it does not
require any comparison between definitions in DefsTree to compute a maximally
general one. Note also that a unique, most general definition for folding a clause
may not exist, that is, there exist clauses that can be folded by using two def-
initions which are incomparable with respect to the � ordering. However, the
Maximally General Fold procedure allows us to use a subset of the definitions
introduced by the specialization algorithm, thereby reducing polyvariance and
deriving specialized programs of smaller size.

As already mentioned in the previous section, the specialization technique
which we have applied in Example 2 can be obtained by instantiating our generic
specialization algorithm using the following operators: Singleton for partitioning,
Widen for generalization, and Immediate Fold for folding.

5 Experimental Evaluation

We have implemented the generic specialization algorithm presented in Section 3
using MAP [25], an experimental system for transforming constraint logic pro-
grams. The MAP system is implemented in SICStus Prolog 3.12.8 and uses the
clpr library to operate on constraints. All experiments have been performed on
an Intel Core 2 Duo E7300 2.66GHz under the Linux operating system.

We have performed the backward and forward reachability analyses of sev-
eral infinite state reactive systems taken from the literature [1,2,4,8,20,28], en-
coding, among others, mutual exclusion protocols, cache coherence protocols,
client-server systems, producer-consumer systems, array bound checking, and
Reset Petri nets.

For backward reachability we have applied the method presented in Sec-
tion 2. For forward reachability we have applied a variant of that method and
in particular, first, (i) we have encoded the forward reachability algorithm by a
constraint logic program Fw and we have specialized Fw with respect to the set

190 Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, Valerio Senni

of the unsafe states, thereby deriving a new program SpFw, and then, (ii) we
have computed the least fixpoint of the immediate consequence operator SSpFw

(associated with program SpFw).
In Tables 1 and 2 we have reported the results of our verification experiments

for backward reachability (that is, program Bw) and forward reachability (that is,
program Fw), respectively. For each example of infinite state reactive system, we
have indicated the total verification time (in milliseconds) of the non-specialized
system and of the various specialized systems obtained by applying our strategy.

The symbol ‘∞’ means that either the program specialization or the least
fixpoint construction did not terminate within 200 seconds. If the time taken is
less than 10 milliseconds, we have written the value ‘0’. Between parentheses we
have also indicated the number of predicate symbols occurring in the specialized
program. This number is a measure of the degree of polyvariance determined by
our specialization algorithm.

In the column named Input , we have indicated the time taken for com-
puting the least fixpoint of the immediate consequence operator of the input,
non-specialized program (whose definition is based on program Bw for back-
ward reachability, and program Fw for forward reachability). In the six right-
most columns, we have shown the sum of the specialization time and the time
taken for computing the least fixpoint of the immediate consequence operator
of the specialized programs obtained by using the following six pairs of par-
tition operators and generalization operators: (i) 〈All, Widen〉, called All W ,
(ii) 〈FDC, Widen〉, called FDC W , (iii) 〈Singleton, Widen〉, called Single W ,
(iv) 〈All, WidenSum〉, called All WS , (v) 〈FDC, WidenSum〉, called FDC WS ,
and (vi) 〈Singleton, WidenSum〉, called Single WS . For each example the tables
have two rows corresponding, respectively, to the Immediate Fold procedure (Im)
and Maximally General Fold procedure (MG).

If we consider precision, that is, the number of successful verifications, we
have that the best combinations of the partition procedure and the generalization
operators are: (i) FDC WS and Single WS for backward reachability, each of
which verified 54 properties out of 58 (in particular, 27 with Im and 27 with MG),
and (ii) Single WS for forward reachability, which verified 36 properties out of 58
(in particular, 18 with Im and 18 with MG).

If we compare the Generalize procedures we have that WidenSum is strictly
more precise than Widen (up to 50%). Moreover, except for a few cases (back-
ward reachability of CSM, forward reachability of Kanban), if a property cannot
be proved by using WidenSum then it cannot be proved using Widen. WidenSum
is usually more polyvariant than Widen. If we consider the verification times,
they are generally favourable to WidenSum with respect to Widen, with some
exceptions.

If we compare the partition operators we have that All is strictly less pre-
cise than the other operators: it successfully terminates in 138 cases out of 232
tests obtained by varying: (i) the given example-program, (ii) the property to be
proved (either forward reachability or backward reachability), (iii) the general-
ization operator, and (iv) the Fold procedure. However, All is the only partition

Controlling Polyvariance for Specialization-based Verification 191

operator which allows us to verify the McCarty91 examples. By using the Sin-
gleton operator, the verification terminates in 158 cases out of 232, and by using
the FDC operator, the verification successfully terminates in 159 cases out of
232. However, there are some properties (forward reachability of Peterson, In-
sertionSort and SelectionSort) which can only be proved using Singleton.

Note also that, if a property can be verified by using the FDC partition
operator, then it can be verified by using either the operator All or the operator
Singleton.

The two operators Singleton and FDC have similar polyvariance and veri-
fication times, while the operator All yields a specialized program with lower
polyvariance and requires shorter verification times than Singleton and FDC.

If we compare the two Fold procedures, we have that Maximally General
Fold for most of the examples has lower polyvariance and shorter verification
times than Immediate Fold, while the precision of the two procedures is almost
identical, except for a few cases where Maximally General Fold verifies the prop-
erty, while Immediate Fold does not (backward reachability of Bakery4, Peterson
and CSM).

6 Related Work and Conclusions

We have proposed a framework for controlling polyvariance during the special-
ization of constraint logic programs in the context of verification of infinite state
reactive systems. In our framework we can combine several techniques for intro-
ducing a set of specialized predicate definitions to be used when constructing
the specialized programs. In particular, we have considered new combinations of
techniques introduced in the area of constraint-based program analysis and pro-
gram specialization such as convex hull, widening, most specific generalization,
and well-quasi orderings (see, for instance, [6,13,22,27]).

We have performed an extensive experimentation by applying our special-
ization framework to the reachability analysis of infinite state systems. We have
considered constraint logic programs that encode both backward and forward
reachability algorithms and we have shown that program specialization improves
the termination of the computation of the least fixpoint needed for the analysis.
However, by applying different instances of our framework, we may get different
termination results and different verification times. In particular, we have pro-
vided an experimental evidence that the degree of polyvariance has an influence
on the effectiveness of our specialization-based verification method.

Our experiments confirm that, on one hand, a high degree of polyvariance
often corresponds to high precision of analysis (that is, high number of termi-
nating verifications) and, on the other hand, a low degree of polyvariance often
corresponds to short verification times. We have also determined a specific com-
bination of techniques for controlling polyvariance and provides, with respect to
our set of examples, a good balance between precision and verification time.

Other techniques for controlling polyvariance during the specialization of
logic programs have been proposed in the literature [7,13,22,26,27]. As already

192 Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, Valerio Senni

Input Fold All W FDC W Single W All WS FDC WS Single WS

Bakery2 60 Im 140 (5) 130 (36) 130 (36) 80 (6) 20 (23) 20 (23)

MG 100 (3) 110 (14) 100 (14) 80 (6) 20 (15) 20 (15)

Bakery3 2710 Im 7240 (5) 3790 (144) 3870 (144) 1100 (6) 200 (77) 150 (77)

MG 3380 (3) 2620 (64) 2190 (61) 1110 (6) 200 (60) 190 (60)

Bakery4 129900 Im ∞ 112340 (535) 111540 (539) 19340 (6) 102140 (1745) 101300 (1745)

MG 129940 (3) 37760 (292) 37010 (296) 19340 (6) 78190 (1172) 76940 (1172)

MutAst 1220 Im 4370 (6) 350 (173) 330 (173) 7850 (7) 170 (112) 150 (112)

MG 1400 (3) 350 (59) 330 (59) 1980 (3) 190 (86) 150 (86)

Peterson N 166520 Im ∞ ∞ ∞ 620 (9) 260 (22) 220 (22)

MG ∞ ∞ 167650 (3) 650 (9) 260 (22) 230 (22)

Ticket ∞ Im ∞ 30 (11) 10 (11) ∞ 20 (11) 20 (11)

MG ∞ 20 (11) 20 (11) ∞ 20 (11) 20 (11)

Berke-RISC 20 Im 80 (5) 70 (6) 30 (6) 70 (5) 50 (8) 40 (8)

MG 80 (3) 70 (3) 30 (3) 70 (5) 50 (8) 30 (8)

DEC Firefly 50 Im 140 (5) 160 (7) 100 (7) 320 (7) 30 (6) 20 (6)

MG 140 (3) 160 (3) 90 (3) 300 (5) 20 (6) 10 (6)

Futurebus+ 14890 Im 16900 (6) 45240 (14) 44340 (14) 16910 (6) 2580 (19) 2410 (19)

MG 15150 (3) 15590 (3) 14990 (3) 15140 (3) 2560 (15) 2220 (15)

Illinois Univ 70 Im 210 (5) 150 (7) 60 (7) 110 (5) 30 (6) 20 (6)

MG 190 (3) 150 (5) 70 (5) 100 (3) 30 (6) 20 (6)

MESI 60 Im 120 (5) 50 (6) 50 (6) 90 (5) 40 (7) 20 (7)

MG 90 (3) 60 (4) 20 (4) 90 (5) 40 (7) 30 (7)

MOESI 50 Im 220 (6) 190 (7) 130 (7) 250 (6) 90 (7) 50 (7)

MG 200 (3) 140 (3) 90 (3) 210 (3) 90 (5) 50 (5)

Synapse N+1 10 Im 30 (4) 20 (5) 10 (5) 30 (4) 20 (5) 20 (5)

MG 20 (3) 20 (4) 20 (4) 20 (3) 30 (4) 10 (4)

Xerox Dragon 80 Im 230 (5) 180 (7) 80 (7) 470 (7) 60 (8) 30 (8)

MG 240 (3) 170 (5) 60 (5) 470 (5) 60 (8) 20 (8)

Barber 420 Im 290 (5) 5170 (31) 3210 (35) 750 (6) 900 (44) 300 (43)

MG 270 (3) 3080 (6) 690 (6) 750 (6) 930 (44) 290 (43)

B-Buffer 20 Im 170 (5) 400 (11) 280 (11) 210 (6) 4490 (75) 3230 (75)

MG 150 (3) 300 (3) 170 (3) 210 (6) 4550 (75) 3310 (75)

U-Buffer 20 Im 100 (6) 200 (12) 150 (12) 70 (6) 210 (12) 130 (12)

MG 100 (3) 150 (4) 100 (4) 60 (3) 140 (4) 110 (4)

CSM 188110 Im ∞ ∞ ∞ ∞ 9870 (146) 6920 (154)

MG 195700 (3) 203290 (3) 186980 (3) ∞ 10310 (146) 7010 (154)

Insert Sort 40 Im 90 (7) 60 (23) 60 (23) 130 (8) 90 (28) 80 (28)

MG 110 (7) 60 (9) 50 (9) 150 (8) 100 (14) 100 (14)

Select Sort ∞ Im ∞ ∞ ∞ ∞ 220 (35) 170 (32)

MG ∞ ∞ ∞ ∞ 250 (19) 200 (19)

Light Control 20 Im 60 (5) 20 (9) 10 (9) 50 (5) 20 (9) 20 (9)

MG 50 (3) 20 (7) 10 (7) 50 (3) 20 (7) 10 (7)

R-Petri Nets ∞ Im ∞ ∞ ∞ 20 (5) 10 (5) 20 (5)

MG ∞ ∞ ∞ 0 (3) 0 (3) 10 (3)

GB 1750 Im 4780 (6) 3300 (10) 3300 (10) 6520 (6) 2190 (10) 2190 (10)

MG 1870 (3) 1840 (4) 1840 (4) 1870 (3) 2070 (5) 2070 (5)

Kanban ∞ Im ∞ ∞ ∞ ∞ 8310 (162) 8170 (162)

MG ∞ ∞ ∞ ∞ 8390 (162) 8320 (162)

McCarthy 91 ∞ Im ∞ ∞ ∞ 4130 (104) ∞ ∞
MG ∞ ∞ ∞ 4120 (3) ∞ ∞

Scheduler ∞ Im 4020 (5) 5770 (20) 5700 (20) 17530 (7) 3220 (91) 3120 (91)

MG 2230 (3) 4730 (15) 4610 (15) 12420 (3) 3320 (83) 3220 (83)

Train ∞ Im 1710 (6) 1340 (14) 1330 (14) 3030 (8) 20250 (299) 19850 (299)

MG 1700 (5) 970 (6) 940 (6) 3020 (7) 15730 (166) 15270 (166)

TTP ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Consistency ∞ Im ∞ ∞ ∞ 350 (13) 160 (20) 160 (21)

MG ∞ ∞ ∞ 370 (13) 160 (20) 140 (21)

no. of successes 20 Im 19 21 21 24 27 27

MG 21 22 23 24 27 27

Table 1. Verification Results using Backward Reachability.

Controlling Polyvariance for Specialization-based Verification 193

Input All W FDC W Single W All WS FDC WS Single WS

Bakery2 ∞ Im 20 (5) ∞ ∞ 30 (5) 20 (20) 20 (20)

MG 20 (5) ∞ ∞ 30 (5) 30 (16) 20 (16)

Bakery3 ∞ Im ∞ ∞ ∞ ∞ 1380 (223) 1190 (240)

MG ∞ ∞ ∞ ∞ 1450 (200) 1270 (213)

Bakery4 ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

MutAst 370 Im 420 (4) 1790 (190) 1720 (190) 410 (4) 280 (141) 280 (141)

MG 400 (3) 780 (51) 730 (51) 390 (3) 310 (135) 270 (135)

Peterson N 630 Im ∞ ∞ 1220 (6) ∞ ∞ 8000 (80)

MG ∞ ∞ 730 (3) ∞ ∞ 8040 (80)

Ticket 50 Im 60 (4) 240 (30) 210 (30) 60 (4) 210 (26) 180 (26)

MG 50 (3) 210 (11) 180 (11) 50 (3) 230 (17) 200 (17)

Berke-RISC ∞ Im 40 (3) 50 (3) 10 (4) 40 (3) 40 (3) 20 (4)

MG 40 (3) 40 (3) 10 (4) 40 (3) 40 (3) 10 (4)

DEC Firefly ∞ Im 110 (3) 130 (3) ∞ 110 (3) 100 (3) 60 (9)

MG 100 (3) 120 (3) ∞ 120 (3) 120 (3) 70 (9)

Futurebus+ ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Illinois Univ ∞ Im 150 (3) 150 (3) ∞ 140 (3) 150 (3) 70 (8)

MG 140 (3) 140 (3) ∞ 140 (3) 140 (3) 60 (8)

MESI ∞ Im 90 (3) 90 (3) ∞ 90 (3) 90 (3) ∞
MG 90 (3) 100 (3) ∞ 90 (3) 90 (3) ∞

MOESI ∞ Im 130 (3) 130 (3) ∞ 130 (3) 130 (3) ∞
MG 130 (3) 130 (3) ∞ 120 (3) 150 (3) ∞

Synapse N+1 ∞ Im 10 (3) 20 (3) 0 (4) 20 (3) 20 (3) 10 (4)

MG 20 (3) 20 (3) 0 (4) 20 (3) 20 (3) 10 (4)

Xerox Dragon ∞ Im 180 (3) 190 (3) ∞ 190 (3) 210 (3) 80 (8)

MG 180 (3) 190 (3) ∞ 180 (3) 190 (3) 70 (8)

Barber ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

B-Buffer ∞ Im ∞ 50 (4) 20 (4) ∞ 50 (4) 20 (4)

MG ∞ 50 (4) 20 (4) ∞ 50 (4) 20 (4)

U-Buffer ∞ Im ∞ 210 (8) 70 (8) ∞ 190 (8) 70 (8)

MG ∞ 230 (8) 80 (8) ∞ 230 (8) 80 (8)

CSM ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Insert Sort ∞ Im ∞ ∞ 10 (14) ∞ ∞ 20 (14)

MG ∞ ∞ 30 (14) ∞ ∞ 30 (14)

Select Sort ∞ Im ∞ ∞ 180 (37) ∞ ∞ 310 (47)

MG ∞ ∞ 180 (37) ∞ ∞ 320 (45)

Light Control ∞ Im ∞ 30 (18) 20 (18) ∞ 30 (18) 20 (18)

MG ∞ 30 (18) 30 (18) ∞ 30 (18) 20 (18)

R-Petri Nets ∞ Im ∞ ∞ ∞ 0 (6) 10 (6) 0 (6)

MG ∞ ∞ ∞ 0 (6) 0 (6) 0 (6)

GB ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Kanban 44860 Im 46840 (4) 46860 (4) 56100 (13) ∞ ∞ ∞
MG 45060 (3) 45210 (3) 44130 (3) ∞ ∞ ∞

McCarthy 91 ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Scheduler 840 Im 910 (3) 910 (4) 1750 (32) 930 (3) 920 (4) 127370 (530)

MG 940 (3) 910 (4) 1110 (4) 940 (3) 900 (4) 127400 (530)

Train ∞ Im ∞ ∞ ∞ ∞ ∞ 410 (51)

MG ∞ ∞ ∞ ∞ ∞ 400 (51)

TTP ∞ Im ∞ ∞ ∞ 650 (4) 1140 (15) ∞
MG ∞ ∞ ∞ 660 (4) 1180 (14) ∞

Consistency ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

no. of successes 5 Im 12 14 12 13 17 18

MG 12 14 12 13 17 18

Table 2. Verification Results using Forward Reachability.

194 Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, Valerio Senni

mentioned, the techniques presented in [13,27] can be considered as instances of
our framework, while [22,26] do not consider constraints, which are of primary
concern in this paper. Our framework generalizes and improves the framework
of [13], by introducing partitioning and folding operators which, as shown in
Section 5, increase the precision and the performance of the verification process.
The offline specialization approach followed by [7] is based on a preliminary
binding time analysis to decide when to unfold a call and when to introduce a
new predicate definition. In the context of verification of infinite state reactive
systems considered here, due to the very simple structure of the program to be
specialized, deciding whether or not to unfold a call is not a relevant issue, and
in our approach the binding time analysis is not performed.

As a future work we plan to continue our experiments on a larger set of
infinite state reactive systems so as to enhance and better evaluate the spe-
cialization framework presented here. We also plan to extend our approach to a
framework for the specialization of constraint logic programs outside the context
of verification of infinite state reactive systems.

Acknowledgements

This work has been partially supported by PRIN-MIUR and by a joint project
between CNR (Italy) and CNRS (France). The last author has been supported by
an ERCIM grant during his stay at LORIA-INRIA. Thanks to Laurent Fribourg
and John Gallagher for many stimulating conversations.

References

1. A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reachability anal-
ysis of complex systems. In Proceedings of CAV 2001, Lecture Notes in Computer
Science 2102, pages 368–372. Springer, 2001.

2. G. Banda and J. P. Gallagher. Analysis of linear hybrid systems in CLP. In
Proceedings of LOPSTR 2008, Lecture Notes in Computer Science 5438, pages
55–70. Springer, 2009.

3. G. Banda and J. P. Gallagher. Constraint-based abstract semantics for temporal
logic: A direct approach to design and implementation. In Proceedings of LPAR
2010, Lecture Notes in Artificial Intelligence 6355, pages 27–45. Springer, 2010.

4. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Acceleration from the-
ory to practice. International Journal on Software Tools for Technology Transfer,
10(5):401–424, 2008.

5. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

6. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the Fifth ACM Symposium on Principles
of Programming Languages (POPL’78), pages 84–96. ACM Press, 1978.

7. S.-J. Craig and M. Leuschel. A compiler generator for constraint logic programs.
In M. Broy and A. V. Zamulin, editors, 5th Ershov Memorial Conference on Per-
spectives of Systems Informatics, PSI 2003, Lecture Notes in Computer Science
2890, pages 148–161. Springer, 2003.

8. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Inter-
national Journal on Software Tools for Technology Transfer, 3(3):250–270, 2001.

Controlling Polyvariance for Specialization-based Verification 195

9. J. Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Informatica, 34(2):85–107, 1997.

10. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-
puter Science, 166:101–146, 1996.

11. F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for specializ-
ing constraint logic programs. In Proceedings of LOPSTR ’00, Lecture Notes in
Computer Science 2042, pages 125–146. Springer-Verlag, 2001.

12. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite
state systems by specializing constraint logic programs. In Proceedings of VCL’01,
Technical Report DSSE-TR-2001-3, pages 85–96. University of Southampton, UK,
2001.

13. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Program specialization
for verifying infinite state systems: An experimental evaluation. In Proceedings
of LOPSTR 2010, Lecture Notes in Computer Science Vol. 6564, pages 164–183.
Springer, 2011.

14. G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In
M. Morari and L. Thiele, editors, Hybrid Systems: Computation and Control, 8th
International Workshop, HSCC 2005, Lecture Notes in Computer Science 3414,
pages 258–273. Springer, 2005.

15. L. Fribourg. Constraint logic programming applied to model checking. In A. Bossi,
editor, Proceedings of the 9th International Workshop on Logic-based Program Syn-
thesis and Transformation (LOPSTR ’99), Venezia, Italy, Lecture Notes in Com-
puter Science 1817, pages 31–42. Springer-Verlag, 2000.

16. J. P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of the
1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Pro-
gram Manipulation, PEPM ’93, Copenhagen, Denmark, pages 88–98. ACM Press,
1993.

17. T. J. Hickey and D. A. Smith. Towards the partial evaluation of CLP languages.
In Proceedings of the 1991 ACM Symposium on Partial Evaluation and Seman-
tics Based Program Manipulation, PEPM ’91, New Haven, CT, USA, SIGPLAN
Notices, 26, 9, pages 43–51. ACM Press, 1991.

18. J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The semantics of constraint logic
programming. Journal of Logic Programming, 37:1–46, 1998.

19. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

20. LASH. homepage: http://www.montefiore.ulg.ac.be/∼boigelot/research/lash.

21. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial
deduction: Control issues. Theory and Practice of Logic Programming, 2(4&5):461–
515, 2002.

22. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalization and poly-
variance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems, 20(1):208–258, 1998.

23. M. Leuschel and T. Massart. Infinite state model checking by abstract interpreta-
tion and program specialization. In Proceedings of LOPSTR ’99, Lecture Notes in
Computer Science 1817, pages 63–82. Springer, 2000.

24. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming.
Journal of Logic Programming, 11:217–242, 1991.

25. MAP. The MAP transformation system.
Available from http://www.iasi.cnr.it/∼proietti/system.html, 1995–2010.

196 Fabio Fioravanti, Alberto Pettorossi, Maurizio Proietti, Valerio Senni

26. C. Ochoa, G. Puebla, and M. V. Hermenegildo. Removing superfluous versions
in polyvariant specialization of prolog programs. In Proceedings of LOPSTR ’05,
Lecture Notes in Computer Science 3961, pages 80–97. Springer, 2006.

27. J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP
programs. In Proceedings of LOPSTR ’02, Lecture Notes in Computer Science
2664, pages 90–108. Springer, 2003.

28. T. Yavuz-Kahveci and T. Bultan. Action Language Verifier: An infinite-state model
checker for reactive software specifications. Formal Methods in System Design,
35(3):325–367, 2009.

Controlling Polyvariance for Specialization-based Verification 197

Finding Partitions of Arguments with Dung’s
Properties via SCSPs

Stefano Bistarelli1,2, Paola Campli3, and Francesco Santini1

1 Dipartimento di Matematica e Informatica, Università di Perugia, Italy
[bista,francesco.santini]@dmi.unipg.it

2 Istituto di Informatica e Telematica (CNR), Pisa, Italy
[stefano.bistarelli]@iit.cnr.it

3 Dipartimento di Scienze, Università G.d’Annunzio di Chieti-Pescara, Italy
campli@sci.unich.it

Abstract. Forming coalition structures allows agents to join their forces
to achieve a common task. We suggest it would be interesting to look
for homogeneous groups which follow distinct lines of thought. For this
reason, we extend the Dung Argumentation Framework in order to deal
with coalitions of arguments. The initial set of arguments is partitioned
into subsets (or coalitions). Each coalition represents a different line of
thought, but all the found coalitions show the same property inherited by
Dung, e.g. all the coalitions in the partition are admissible (or conflict-
free, complete, stable). Some problems in weighted argumentation are
NP complete; we use (soft) constraints as a formal approach to reason
about coalitions and to model all these problems in the same framework.
Semiring algebraic structures can be used to model different optimiza-
tion criteria for the obtained coalitions. To implement this mapping and
practically find its solutions we use JaCoP, a Java constraint solver, and
we test the code over a small-world network.

1 Introduction and Motivations

A coalition structure is a temporary alliance or partnering of groups in order to
achieve a common purpose. Forming coalitions with other members of similar
values, interests and goals, allow agents to combine their resources and become
more powerful than when they each acted alone [12]. To form a successful coali-
tion, the recognition of compatible interests and common lines of thought is
needed, since the goal of different agents can be shared by multiple parties.

The abstract nature of Dung’s seminal theory [9] of argumentation accounts
for its widespread application for various species of non-monotonic reasoning. A
Dung argumentation framework (see Sect. 2) is classically instantiated by argu-
ments and a binary conflict based attack relation, defined by some underlying
logical theory. The justified arguments under different extensional semantics (e.g.
conflict-free ones) are then evaluated, and the claims of these arguments define
the inferences of the underlying theory. The aim of this paper is to partition a set
of arguments into coalition structures of arguments [8, 1, 6]. A classical scenario

could be represented by the need to aggregate a set of distinct arguments into
different lines of thought. Suppose, for example, to have some statements belong-
ing to candidates of different political parties; it would be interesting to check
how consistent their ideas are. For example, “We do not want immigrants with
the right to vote” is clearly closer to “Immigration must be stopped”, than to
“We need a multicultural and open society in order to enrich the life of everyone
and boost our economy”. In general, cooperating groups, referred to as coalition
structures [16], have been thoroughly investigated in AI and Game Theory and
have proved to be useful in both real-world economic scenarios and Multi-agent
Systems [16, 19, 2]. The basic idea behind this work is to start from a single
set of arguments and partition them to several agents, with the condition that
each subset has to show the same properties defined by Dung, e.g. admissibil-
ity [9]. Some applications might be task allocation problem (let tasks be the
agents), sensor network problems (agents must form groups), distributed winner
determination in combinatorial auctions, agents grouping to handle work-flows
(just-in-time incorporation) [16, 19, 2]. In order to model and solve the proposed
extended problems we use (Soft) Constraint Programming ((S)CP) [18] (see
Sect. 3), which is a powerful paradigm for solving combinatorial problems that
draws on a wide range of techniques from AI, Databases, Programming Lan-
guages, and Operations Research [18]. The idea of the semiring-based constraint
formalism presented in [4, 3] was to further extend the classical constraint notion
by adding the concept of a structure representing the levels of satisfiability of
the constraints. Such a structure is similar to a semiring (see Sec. 3). Problems
defined according to the semiring-based framework are called Soft Constraint
Satisfaction Problems (SCSPs) [4, 3, 18]. There already exist many efficient tech-
niques, as constraint propagation [18], to solve such complex problems. The solu-
tion of the obtained SCSP represents the partition of the arguments (see Sec. 4)
where each subset (i.e. coalition) of arguments has the same property originally
defined by Dung in [9], e.g. each coalition in the partition is admissible. Semi-
rings can be used to relax conflict-free partitions, by allowing a certain degree
of conflicts inside the coalitions, by representing a weight (or preference) associ-
ated with each attack between arguments (see Sec. 5 - 6). At last (in Sec. 7), we
show an implementation of a crisp CSP (equivalent to use a Boolean semiring
in SCSPs) with the Java Constraint Programming solver (JaCoP) [15] and we
test it over a small-world network randomly generated with the Java Universal
Network/Graph Framework (JUNG) [17].

2 Dung Argumentation

Dung proposed an abstract framework for argumentation in which he focuses
on the definition of the status (attacked / defended) of arguments [9]. It can
be assumed that a set of arguments and the different conflicts among them are
given.

Definition 1 ([9]). An Argumentation Framework (AF) is a pair 〈A, R〉 of a
set A of arguments and a binary relation R on A called the attack relation.

200 Stefano Bistarelli, Paola Campli, Francesco Santini

∀ai, aj ∈ A, aiRaj means that ai attacks aj. An AF may be represented by
a directed graph (the interaction graph) whose nodes are arguments and edges
represent the attack relation. A set of arguments B attacks an argument a if a is
attacked by an argument of B. A set of arguments B attacks a set of arguments
C if there is an argument b ∈ B which attacks an argument c ∈ C.

a b c
Sunny Rainy and

windy

Mild
Breeze

Fig. 1: A classical AF using weather forecast; e.g. b attacks c and viceversa.

In Fig. 1 we show an example of AF represented as an interaction graph.
Dung [9] gave several semantics of “acceptability”, which produce none, one or
several acceptable sets of arguments, called extensions. The stable semantics is
only defined via the notion of attacks:

Definition 2 ([9]). A set B ⊆ A is conflict-free iff for no two arguments a
and b in B, a attacks b. A conflict-free set B ⊆ A is a stable extension iff each
argument not in B is attacked by an argument in B.

The other semantics for “acceptability” rely upon the concept of defense. An
admissible set of arguments according to Dung must be a conflict-free set which
defends all its elements. Formally:

Definition 3 ([9]). An argument b is defended by a set B ⊆ A (or B defends
b) iff for any argument a ∈ A, if a attacks b then B attacks a. A conflict-free set
B ⊆ A is admissible iff each argument in B is defended by B

Besides the stable semantics, one semantics refining admissibility has been
introduced by Dung [9].

Definition 4 ([9]). An admissible B ⊆ A is a complete extension iff each ar-
gument which is defended by B is in B.

In Fig. 2 we show an example of a stable (A), admissible (B) but not complete
(due to x6) and complete (C) extension.

3 Semirings and Soft Constraints

A semiring [4, 3] S is a tuple 〈A,+,×,0,1〉 where A is a set with two special
elements 0,1 ∈ A (respectively the bottom and top elements of A) and with two
operations + and × that satisfy certain properties: + is defined over (possibly
infinite) sets of elements of A and is commutative, associative and idempotent;

Finding Partitions of Arguments with Dung’s Properties via SCSPs 201

X4

X
2

X3

X
1

X5

(A)

X
6

X7

X
4

X
2

X
3

X
1

X
5

(B)

X
6

X
7

X
4

X
2

X
3

X
1

X
5

(C)

X
6

X
7

Fig. 2: A stable (A), an admissible (B) and a complete (C) extension (clearly also conflict-free).

it is closed, 0 is its unit element and 1 is its absorbing element; × is closed,
associative, commutative and distributes over +, 1 is its unit element and 0 is
its absorbing element (for the exhaustive definition, please refer to [4]). The +
operation defines a partial order ≤S over A such that a ≤S b iff a+b = b; we say
that a ≤S b if b represents a value better than a. Moreover, + and× are monotone
on ≤S , 0 is its min and 1 its max, 〈A,≤S〉 is a complete lattice and + is its lub.
A soft constraint [4, 3] may be seen as a constraint where each instantiation of its
variables has an associated preference. Given S = 〈A,+,×,0,1〉 and an ordered
set of variables V over a finite domain D, a soft constraint is a function which,
given an assignment η : V → D of the variables, returns a value of the semiring.
Using this notation C = η → A is the set of all possible constraints that can be
built starting from S, D and V . Any function in C depends on the assignment
of only a finite subset of V . For instance, a binary constraint cx,y over variables
x and y, is a function cx,y : V → D → A, but it depends only on the assignment
of variables {x, y} ⊆ V (the support, or scope, of the constraint). Note that
cη[v := d1] means cη′ where η′ is η modified with the assignment v := d1. Notice
that cη is the application of a constraint function c : V → D → A to a function
η : V → D; what we obtain is a semiring value cη = a. ā represents the constraint
functions associating a to all assignments of domain values. Given the set C, the
combination function ⊗ : C × C → C is defined as (c1 ⊗ c2)η = c1η × c2η [4,
3]. The ⊗ builds a new constraint which associates with each tuple of domain
values for such variables a semiring element which is obtained by multiplying
the elements associated by the original constraints to the appropriate sub-tuples.
Given a constraint c ∈ C and a variable v ∈ V , the projection [4, 3] of c over
V −{v}, written c ⇓(V \{v}) is the constraint c′ such that c′η =

∑
d∈D cη[v := d].

Informally, projecting means eliminating some variables from the support.
An SCSP [3] is defined as P = 〈C〉 where C is the set of constraints.

The best level of consistency notion defined as blevel(P) = Sol(P) ⇓∅, where
Sol(P) =

⊗
C [3]. A problem P is α-consistent if blevel(P) = α [3]; P is instead

simply “consistent” iff there exists α >S 0 such that P is α-consistent [3]. P is
inconsistent if it is not consistent.

An SCSP Example. Figure 3 shows a weighted SCSP as a graph: the
Weighted semiring is used, i.e. 〈R+ ∪∞,min, +̂, ∞, 0〉 (+̂ is the arithmetic plus
operation). Variables and constraints are represented respectively by nodes and
arcs (unary for c1 and c3, and binary for c2), and semiring values are written to
the right of each tuple, D = {a, b}. The solution of the CSP in Fig. 3 associates

202 Stefano Bistarelli, Paola Campli, Francesco Santini

X Y

c1 c3

c2

<a> 1

 9

<a> 5

 5

<a,a> 5

<a,b> 1

<b,a> 2

<b,b> 2

Fig. 3: An SCSP based on a Weighted semiring.

a semiring element to every domain value of variables X and Y by combining
all the constraints together, i.e. Sol(P) =

⊗
C. For instance, for the tuple

〈a, a〉 (that is, X = Y = a), we have to compute the sum of 1 (which is the
value assigned to X = a in constraint c1), 5 (which is the value assigned to
〈X = a, Y = a〉 in c2) and 5 (which is the value for Y = a in c3). Hence, the
resulting value for this tuple is 11. For the other tuples, 〈a, b〉 → 7, 〈b, a〉 → 16
and 〈b, b〉 → 16. The blevel for the example in Fig. 3 is 7, related to the solution
X = a, Y = b.

4 Extending Dung Argumentation to Coalitions

Given the set of arguments A, the problem of coalition formation consists in
selecting an appropriate partition of A, G = {B1, . . . ,Bn} (|G| = |A| if each ar-
gument forms a coalition on its own), such that

⋃
Bi∈GBi = A and Bi ∩Bj = ∅,

if i 6= j; clearly, ∀i.Bi 6= ∅. In this section we extend Dung’s semantics (see
Sec. 2) in order to deal with a partition of arguments, that is, we cluster the
arguments into different subsets representing distinct lines of thought. An ex-
ample representing the difference between the original framework [9] and our
extension is illustrated in Fig. 4: Fig. 4 (A) represents a conflict-free extension
as described in Def. 3, while Fig. 4 (B) represents a conflict-free partition of
coalitions, since each coalition is conflict-free (see Def. 5). Thus, while in Dung
it is sufficient to find only one set with the conflict-free property, we want to
find a set of conflict-free sets that represents a partition of the given arguments;
we can compute partitions by considering the other properties as well, i.e. ad-
missible, complete and stable semantics. Notice that, in general, we can have
a combinatorial number of partitions for a given set of arguments [7, 16]. For
example, instead of P1 = {{x1, x2, x3}, {x4, x5, }, {x6, x7, x8, x9}} we can have
P2 = {{x1, x2, x3, x4}, {x5}, {x6, x7, x8, x9}}. We can have 21147 different par-
titions for the 9 elements in Fig. 4 (B): this number is called Bell Number and

is recursively computed as Bn+1 =
n∑

k=0

(
n

k

)
Bk [7] (with B0 = B1 = 1). Clearly,

not all of these partition are (e.g.) conflict-free.
In the following, we extend the definitions given in Sec. 2 to deal with coali-

tions.

Finding Partitions of Arguments with Dung’s Properties via SCSPs 203

X
6

X
8

X
7

X
9

X
4

X
5

X
2

X
3

X1

X
6

X
8

X
7

X
9

X
4

X
5

X
2

X
3

X
1

(A) (B)

Fig. 4: Differences between classical Dung AF (A) and the extended partitioned framework (B).

Definition 5. A partition of coalitions G = {B1,B2, . . . , Bn} is conflict-free
iff for each Bi ∈ G, Bi is conflict-free, i.e. ∀a, b ∈ Bi.(a, b) 6∈ R: no attacking
arguments inside the same coalition.

From the argumentation theory point of view, finding a conflict-free partition
of coalitions corresponds to partitioning the arguments into coherent subsets, in
order to find feasible lines of thought which do not internally attack themselves.
Now we revise the concept of attack/defence among coalitions and arguments
and the notion of stable partitions of coalitions:

X5

X
7

X
6

X8

X4

X2

X3

X1

(A)

X5
X

7

X8
X

4

X
2

X
3

X
1

(B)

X
4

X
2 X

3

X
1

X
5

(C)

B
1

B
1

B
1

B
2

B
2

B
2

B
3

X
6

X
6 X7 B

3

B
4

Fig. 5: A stable (A), an admissible and complete (B) and an admissible but not complete (C)
partitions of coalitions.

Definition 6. A coalition Bi attacks another coalition Bj if one of its elements
attacks at least one element in Bj, i.e. ∃a ∈ Bi, b ∈ Bj s.t. aR b. Bi defends an
attacked argument a, e.g. bR a, if ∃c ∈ Bi s.t. cR b.

Definition 7. A conflict-free partition G = {B1,B2, . . . , Bn} is stable iff for
each coalition Bi ∈ G, all its elements a ∈ Bi are attacked by all the other
coalitions Bj with j 6= i, i.e. ∀a ∈ Bi, ∃b ∈ Bj .bR a (∀j 6= i).

204 Stefano Bistarelli, Paola Campli, Francesco Santini

Fig. 5 (A) represents a stable partition: each argument in B2 (i.e. x4) is at-
tacked by at least one argument in B1 (i.e. x3) and one argument in B3 (i.e.
x6), and the same also holds for the arguments in B2 and B3. To have a stable
partition means that each of the arguments cannot be moved from one coali-
tion to another without inducing a conflict in the new coalition. In the next
two definitions we respectively extend the concept of admissible and complete
extensions.

However different definitions for stable partitions can also be defined, for
instance one could require that each argument has to be attacked by some (rather
than all of the) other coalitions.

Definition 8. A conflict-free partition G = {B1,B2, . . . , Bn} of coalitions is
admissible iff for each argument a ∈ Bi attacked by b ∈ Bj (i.e. bR a), ∃c ∈ Bi
that attacks b ∈ Bj (i.e. cR b), that is each Bi defends all its arguments.

According to Dung’s definition of admissible extension, “the set of all argu-
ments accepted by a rational agent is a set of arguments which can defend itself
against all attacks on it” [9]. Notice that if only one argument a in the interac-
tion graph has no grandparents, it is not possible to obtain even one admissible
partition: no argument in A is able to defend a. In Def. 8, we have naturally
extended the definition of admissible extension [9] to coalitions: since each coali-
tion represents the line of thought of an agent, each rational agent is able to
defend its line of thought because it counter-attacks all its attacking lines.

Fig. 5 (B) represents an admissible partition as it is conflict-free and both
B1 and B2 defend themselves: x5 is defended by x6 and for the attack performed
by x6 ∈ B2, x2 and x3 are defended by x2.

Definition 9. An admissible partition G = {B1,B2, . . . , Bn} is a complete
partition of coalitions iff each argument a which is defended by Bi is in Bi (i.e.
a ∈ Bi).

Fig. 5 (B) is a complete partition because all the elements defended by B2

(i.e. x5, x8) belong to B2 and all elements defended by B1 (x2, x3) belong to
B1. Figure 5 (C) represents an admissible but not complete partition because
x6 is defended also by coalitions B1 (via x1) and B2 (via x4) but belongs to B3

(defending it via x7). Intuitively, the notion of complete partition captures the
rational agents who believe in every argument they can defend [9].

In Th. 1 we prove that each of the coalitions in every possible conflict-free
partition is a conflict-free extension as defined by Dung [9]. Respectively, we can
prove the same property for admissible, complete and stable partitions.

Theorem 1. Given an AF 〈A, R〉 as in Def. 1 and
– given the set of all CFE conflict-free extensions which can be obtained over

an interaction graph by using Dung’s semantics [9] (see also Sec. 2), each
CFP conflict-free partition as defined in Def. 5 is a subset of them, i.e.
CFP ⊆ CFE.

– given the set of all AE admissible extensions [9], each AP admissible parti-
tion as defined in Def. 8 is a subset of them, i.e. AP ⊆ AE.

Finding Partitions of Arguments with Dung’s Properties via SCSPs 205

– given the set of all CE complete extensions [9], each CP complete partition
as defined in Def. 9 is a subset of them, i.e. CP ⊆ CE.

– given the set of all SE stable extensions [9], each SP stable partition as
defined in Def. 7 is a subset of them, i.e. SP ⊆ SE.

We can now define the hierarchy of the set inclusions among the proposed
partitions like Dung has shown for set inclusions among classical extensions [9]:

Theorem 2. Given the CFPS, APS, CPS and SPS respectively the set of
all conflict-free, admissible, complete and stable partitions, we have that SPS ⊆
CPS ⊆ AS ⊆ CFPS.

These two theorems can be proved by reasoning on the sets of classical exten-
sions defined in [9]: the partitions, as defined in this paper, directly inherit their
properties. Notice that since our aim is to find partitions and not classical exten-
sions, it is possible that, given the same set of arguments, a stable (for example)
extension exists, but a stable partition may not be possible. Let us consider
the following example: A = {a, b, c, d, e} and R = {(b, c), (c, d), (d, e), (e, b)}. Ac-
cording to Dung’s stable semantics, this framework has two stable extensions:
{a, b, d} and {a, c, e}; however, it has no stable partition since the argument a is
not attacked and it cannot be in two sets. Even if the situation in which more
agents agree about an argument might be possible in several scenarios, we want
an argument to be held by exactly one agent, that is, the one who first declared
it. This is not a limitation, because our goal is to simultaneously form distinct
stable extensions within the same set of arguments, which represent different
lines of thought to be assigned to different agents. An application in the real
world corresponds to the partitioning of arguments to find the difference among
political parties. Indeed, even if an argument might be put forward by several
political parties, it is necessary that this argument belongs only to one coalition.

5 Weighted Partitions

Weighted AFs extend Dung’s AFs by adding weight values to every edge in the
attack graph, intuitively corresponding to the strength of the attack, or equiva-
lently, how reluctant we would be to disregard it [5, 10]. In this section we define
a quantitative framework where attacks have an associated preference/weight
and, consequently, also the computation of the coalitions as presented in this
paper has an associated weight representing the level of inconsistency we toler-
ate in the solution: more specifically, “how much conflict” we tolerate inside a
conflict-free partition, which can now include attacking arguments in the same
coalition. Modeling this kind of problems as SCSPs (see Sec. 3) leads to a par-
tition that optimizes the criteria defined by the chosen semiring, which is used
to mathematically represent the attack weights.

Fig. 6 represents weighted attack relationships among arguments; in this
example A = {a, b, c}, aR b and cR b, moreover, each of these two attack rela-
tionships is associated with a fuzzy weight (in [0, 1]) representing the strength

206 Stefano Bistarelli, Paola Campli, Francesco Santini

of the attack: a attacks b with more strength (i.e. 0.5) than c attacks b (i.e. 0.9).
In this case 0 represents the strongest possible attack and 1 the weakest one.

A B C
0.5 0.9

Fig. 6: A fuzzy Argumentation
Framework with fuzzy scores
modeling the attack strength.

Many other classical weighted AFs in literature
can be modeled with semirings [5]. An argument
can be seen as a chain of possible events that makes
the hypothesis true. The credibility of a hypothe-
sis can then be measured by the total probability
that it is supported by arguments. The proper se-
miring to solve this problem consists in the Proba-
bilistic semiring [3]: 〈[0..1],max, ×̂, 0, 1〉, where the
arithmetic multiplication (i.e. ×̂) is used to compose
the probability values together (assuming that the
probabilities being composed are independent). The
Fuzzy Argumentation [5] approach enriches the ex-
pressive power of the classical argumentation model
by allowing to represent the relative strength of the attack relationships between
arguments, as well as the degree to which arguments are accepted. In this case,
the Fuzzy semiring 〈[0..1],max,min, 0, 1〉 can be used (e.g. in Fig. 6). In addition,
the Weighted semiring 〈R+ ∪ ∞,min, +̂,∞, 0〉, where +̂ is the arithmetic plus
(0 =∞ and 1 = 0), can model the (e.g. money) cost of the attack: for example,
the number of votes in support of the attack [10]. By using the Boolean semiring
〈{true, false},∨,∧, false, true〉 we can cast the classic AF originally defined
by Dung [9] in the same semiring-based framework (0 = false,1 = true). The
implementation in Sec. 7 models the use of a Boolean semiring, since it adopts
crisp constraints. Definition 10 rephrases the notion of AF given by Dung (see
Sec. 2) into semiring-based AF, i.e. an AFS :

Definition 10 ([5]). A semiring-based Argumentation Framework (AFS) is a
quadruple 〈A, R,W, S〉, where S is a semiring 〈A,+,×,0,1〉, A is a set of ar-
guments, R the attack binary relation on A, and W : A × A −→ A a binary
function called the weight function. Given a, b ∈ A, ∀(a, b) ∈ R, W (a, b) = s
means that a attacks b with a strength level s ∈ A.

In Def. 11 we define the notion of α-conflict-free partition: conflicts inside
the same coalition can be now part of the solution until a cost threshold α is
met, and not worse:

Definition 11. Given a semiring-based AFS, a partition of coalitions G = {B1,B2, . . . ,Bn}
is α-conflict-free for AFS iff

∏

∀Bi∈G.b,c∈Bi

W (b, c) ≥S α (the
∏

uses the × of the

semiring).

In Fig. 7 there is an example of a 0.5-conflict-free partition using a Fuzzy
semiring, i.e. the × used to compose the weights corresponds to min. Notice that
only the attacks within the same coalition are considered: min(0.6, 0.7, 0.5) =
0.5.

Proposition 1. If a partition is α1-conflict-free, then the same partition is also
α2-conflict-free if α1 <S α2.

Finding Partitions of Arguments with Dung’s Properties via SCSPs 207

For instance, in Weighted semirings a 3-conflict-free partitions is also 4-
conflict-free. In Def. 12 we extend with weights also the other kinds of partitions.

Definition 12. Given an AFS, a partition of coalitions G = {B1,B2, . . . ,Bn}
can be defined as α-stable (or α-admissible or α-complete) by only replacing
conflict-free partitions with α-conflict-free partitions in Def. 7 (or Def. 8 or
Def. 9).

In Prop. 2 we relate the weighted partitions with those not weighted presented
in Sec. 4.

Proposition 2. Iff a partition is 1-conflict-free (or 1-stable, 1-admissible, 1-
complete), then the same partition is also conflict-free (or stable, admissible,
complete) as shown in Sec. 4.

As a proof sketch, no attacks are present in the same coalition since 1 means
“no attack”, being the top element of the semiring.

X
5 X

7

X
4

X
2

X
3

X
1

B
1

B
2

X
6

0.6

0.7
0.5

0.2

Fig. 7: A 0.5-conflict-free partition by using the Fuzzy semiring, i.e. min(0.6, 0.7, 0.5) = 0.5. The
attack between x3 and x5 is not considered since they belong to different coalitions.

6 Mapping Partition Problems to SCSPs

In this section we show a mapping from the AFS extended to coalitions (see
Sec. 5) to SCSPs (see Sec. 3), i.e.M : AFS → SCSP .M is described as follows:
given an AFS as described in Sec. 5, we define a variable for each argument ai ∈
A, i.e. V = {a1, a2, . . . , an}. The value of a variable represents the coalition to
which argument ai belongs: i.e. each variable domain is D = {1, n}. For example
if a1 = 2 it means that the first argument belongs to the second coalition. We
can have a maximum of n coalitions, that is all singletons.

In the following explanation, “b attacks a” means that b is a parent of a in
the corresponding interaction graph, and “c attacks b attacks a” means that c
is a grandparent of a. For the following constraint classes we consider a AFS =
〈A, R,W, S〉 where S = 〈A,+,×,0,1〉 and s ∈ A:

1. Conflict-free constraints. Since we want to find an α-conflict-free parti-
tion, if aiRaj and W (ai, aj) = s we need to assign a s preference to the
solution that includes both ai and aj in the same coalition of the partition:
cai,aj (ai = k, aj = k) = s. Otherwise cai,aj (ai = k, aj = l) = 1 (with l 6= k).

208 Stefano Bistarelli, Paola Campli, Francesco Santini

2. Admissible constraints. For the admissibility of a partition, if ai has
several grandparents ag1, ag2, . . . , agk the parent af , we need to add a k+ 1-
ary constraint cai,ag1,...,agk

(ai = h, ag1 = j1, . . . , agk = jk) = 0 if ∀ji, ji 6= h
(1 otherwise). This is because at least a grandparent must be taken in the
same coalition, in order to defend ai from his parent af . Notice that, if an
argument is not attacked (i.e. has no parents), it can be taken or not in any
admissible set. Moreover, if ai has a parent but no grandparents, it is not
possible to find any admissible partition, that is the SCSP is inconsistent
(see Sec. 3).

3. Complete constraints. If we have an argument ai with multiple grand-
children as1, as2, . . . , ask, we need to add the constraint cai,as1,...,ask

(ai =
j, as1 = j, . . . , ask = j) = 1 (0 otherwise). In words, if ai is taken in a
coalition j, all of its grandchildren must be included in the same coalition
because j has to include all the defended arguments.

4. Stable constraints. They can be represented with a constraint such that
for each pair of arguments ai, aj belonging to two different coalitions, re-
spectively k and z, at least one of the attacks to aj has to come from an
argument in coalition k: if b1, b2, . . . bn are all the arguments that attack aj ,
cai=k,aj 6=k,b1,b2,...,bn((b1 = k) ∨ (b2 = k) ∨ · · · ∨ (bn = k)) = 1 (0 otherwise).
Therefore, we model stable constraints with disjunctive constraints, which
are difficult to solve.

Notice that in M only conflict-free constraints are soft in the strict sense,
while the other constraints are associated with 0 (not admitted) or 1 (admitted)
values of the semiring set.

Theorem 3 (Solution equivalence). Given an AFS = 〈A, R,W, S〉, the so-
lutions of the related SCSP obtained with the mapping M correspond to:
– all the α-conflict-free partitions of coalitions by using conflict-free constraints;
– all the α-stable partitions by using stable and conflict-free constraints;
– all the α-admissible partitions by using admissible, and conflict-free con-

straints;
– all the α-complete partitions by using complete and conflict-free constraints.

Conflict-free, stable, admissible and complete partitions can be found by
searching for 1-consistent solutions in the respective problems defined in Th. 3,
as defined in Prop. 2. Notice that finding 1-conflict-free partitions is equivalent
to well-known graph coloring problems which have been deeply studied also in
constraint programming [18], where no two adjacent vertices share the same
color:

Proposition 3. The problem of finding a conflict-free partition of coalitions
corresponds to finding a vertex-coloring partition of a graph [18], where each
node of the same color belongs to the same coalition in a 1-conflict-free partition.
The minimum number of colors needed to solve the problem corresponds to the
minimum number of coalitions in a possible partition.

Finding Partitions of Arguments with Dung’s Properties via SCSPs 209

X
4

X
1

X
5

X
3

X
2

Fig. 8: An interaction graph.

In Fig. 8 we can see an example of clas-
sical (i.e. the attacks are not weighted) in-
teraction graph. Only for this example we
have 15 conflict-free partitions reported in
Tab. 1. Among these conflict-free partitions,
P1, P2, P3, P4, P5 are also admissible parti-
tions and P1 is also the only one complete and
stable partition; these partitions have been
obtained with the implementation in Sec. 7.

P1 = {{x1, x3, x4}, {x2, x5}} P2 = {{x1, x3, x4}, {x2}, {x5}} P3 = {{x1, x3}, {x2, x4}, {x5}}
P4 = {{x1, x3}, {x2, x5}, {x4}} P5 = {{x1, x3}, {x2}, {x4}, {x5}} P6 = {{x1, x4}, {x2, x5}, {x3}}
P7 = {{x1, x4}, {x2}, {x3}, {x5}} P8 = {{x1, x5}, {x2, x4}, {x3}} P9 = {{x1}, {x2, x4}, {x3}, {x5}}
P10 = {{x1, x5}, {x2}, {x3, x4}} P11 = {{x1, }, {x2, x5}, {x3, x4}} P12 = {{x1}, {x2}, {x3, x4}, {x5}}
P13 = {{x1, x5}, {x2}, {x3}, {x4}} P14 = {{x1}, {x2, x5}, {x3}, {x4}} P15 = {{x1}, {x2}, {x3}, {x4}, {x5}}

Table 1: The list of all the conflict-free partitions of coalitions for the example in Fig. 8.

7 Implementation in JaCoP

The Java Constraint Programming solver [15] (JaCoP) is a Java library which
provides a Finite Domain Constraint Programming paradigm [18].

To practically develop and test our model, we adopted the Java Universal
Network/Graph Framework (JUNG) [17], a software library for the modeling,
generation, analysis and visualization of graphs. Interaction graphs, where nodes
are arguments and edges are attacks (see Sec. 2), clearly represent a kind of
social network and consequently show the related properties [6]. Therefore, for
the following tests we used the KleinbergSmallWorldGenerator class [17, 14] in
JUNG, which randomly generates am×n lattice with small-world properties [14];
each node has 4 local connections and 1 long range connection chosen randomly.
An example of such random graphs with 25 nodes is shown in Fig. 9.

In this first implementation we decided to only implement 1-conflict-free
partitions, i.e. we do not consider weights on the attacks, and therefore we only
need the crisp constraints of JaCoP. With this tool we can immediately check
if a given partition is conflict-free, admissible, complete or stable. Moreover, we
can exhaustively generate the partitions with such given properties: since the
problem is O(nn) [16] (where n is the number of arguments) we limit the im-
plementation to a partial search. In particular, we used the Limited Discrepancy
Search (LDS), which is a kind of Depth First Search procedure adopting the
method proposed in [11]. If a given number of different decisions along a search
path is exhausted, then backtracking is initiated [15, 11]. Each time during the
search, we select the variable which has most constraints assigned to it and we
try the median from its current domain. Moreover, we set a timeout of 60 sec. to

210 Stefano Bistarelli, Paola Campli, Francesco Santini

Fig. 9: A small-world network with 25 nodes generated with JUNG by using the KleinbergSmall-
WorldGenerator class [17, 14].

interrupt the search procedure and to report the number of solutions found only
in that interval; we ran our experiments over 3 different random graphs with
9, 25 and 100 nodes. The results are shown in Tab. 2: it reports the number of
found conflict-free and stable partitions (which limit the number of the other ad-
missible and complete partitions as defined in Th. 2), the number of constraints
used to represent the problem and the measured max depth of the search tree.
Notice that, within the 60 sec. timeout, the proposed partial search is able to find
only one stable partition for 100 nodes; also the reported number of conflict-free
solutions in Tab. 2 is less for 100 than for 25 nodes. Therefore, further constraint
solving techniques need to be used to improve these performance (left to future
work in Sec. 9).

Nodes Attacks CFPS SPS #constr. Max Depth
9 45 123 8 ∼220 11
25 125 495984 119543 ∼1440 61
100 500 92562 1 ∼20600 218

Table 2: The test and the related statistics on three different small-world graphs : CFPS and SPS
respectively are all the found conflict-free and stable partitions.

Notice that, in order to prevent symmetrically equivalent solutions we have
also implemented symmetry breaking constraints for graph coloring as explained
in [13] (see Prop. 3 for the analogies): any value permutation is a value symmetry
in the coalition assignment of arguments.

8 Related Work and Comparison

The framework of Dung for argumentation is extended by Amgoud in [1] with
a preference relation between elements; more in detail, Amgoud [1] provides the
semantics (conflict-free, stable and preferred ones) of a coalition structure and a
proof theory for testing whether a coalition is in the set of acceptable coalitions.
An application of the model is also provided for the problem of task allocation

Finding Partitions of Arguments with Dung’s Properties via SCSPs 211

among partitions of autonomous agents. With respect to the work in this pa-
per, the view in [1] is not focused on generating partitions of arguments, but
on directly checking the property of already given coalition structures. Further-
more, [1] has no implementation to practically find solutions, as we instead do in
Sec. 7. Moreover, the method to compute the weights of coalitions is not quan-
titative (but it is only qualitative) and parametric, as we are alternatively able
to represent with semirings. In [8] an extension of the Alternating-time Tempo-
ral Logic (ATL) for modeling coalitions through argumentation is presented: a
merge between ATL and the coalitional framework is obtained in order to ex-
press that agents are able to form a coalition which can successfully achieve a
given property; the notions of defence and conflict-free are defined in terms of
defeat rather than attack and preferences of arguments are given in a qualitative
way (instead of quantitative as in our paper); to compute the desired classes of
coalitions a model checker can be used; however, with such techniques, expo-
nential complexity can be hardly faced while constraint programming provides
a lot of techniques to tackle combinatorial problems [18]. In [6], social view-
points (a model for goal based reasoning) are used to argue about coalitions in
argumentation theory. The attack relation is based on the goal that agents have
to achieve, that is, a coalition attacks another coalition if they share the same
goal; this work does not provide a computational framework and only qualita-
tive preferences over arguments are considered. In [5] a common computational
and quantitative framework is presented, where attacks (and consequently, also
the computation of the classical Dung’s semantics) have an associated weight
to represent how much inconsistency we tolerate in the solution. Our work ex-
tends [5] by considering partitions of arguments and showing an implementation
in JaCoP (no implementation is given in [5]) with related tests on small-world
graphs. Partitions of arguments implies redefining the whole (argumentation)
theory concepts w.r.t [5], e.g. stability.

9 Summary and Future Work

We extended classical argumentation frameworks of [9] to the problem of forming
coalitions of arguments, partitioning all the arguments of a given starting set. We
redefined the classical definitions of Dung’s extensions (conflict-free, admissible,
stable and complete ones) in order to consider a partition of all the arguments
into multiple coalitions, and modeled the problem of finding such coalitions with
SCSPs [4, 3, 18]: this semiring-based formalism can be used to relax the con-
cept of conflict-free partitions in order to allow some inconsistency (i.e. attacks)
within the same coalition. The proposed quantitative framework can be used
also to solve classical (i.e. crisp) CSPs. We have also solved a problem example
considering only 1-solutions with JaCoP [15] and then we performed tests on
a small-world network randomly generated with [17]. Starting from a single set
of arguments, the goal has been to partition it into multiple coalitions with the
same features (e.g. stability or admissibility) without discarding any argument.
In the future we want to implement α-conflict-free, α-stable, α-admissible and

212 Stefano Bistarelli, Paola Campli, Francesco Santini

α-complete partitions in JaCoP, for α <S 1. Moreover, we want to improve
the performance obtained in Sec. 7 by testing different solvers and constraint
techniques (e.g. by taking the inspiration from [16]).

References

1. L. Amgoud. An argumentation-based model for reasoning about coalition struc-
tures. In ArgMAS05, volume 4049 of LNCS, pages 217–228. Springer, 2005.

2. K. R. Apt and A. Witzel. A generic approach to coalition formation. CoRR,
abs/0709.0435, 2007.

3. S. Bistarelli. Semirings for Soft Constraint Solving and Programming, volume 2962
of LNCS. Springer, 2004.

4. S. Bistarelli, U. Montanari, and F. Rossi. Semiring-based Constraint Solving and
Optimization. Journal of the ACM, 44(2):201–236, March 1997.

5. S. Bistarelli and F. Santini. A common computational framework for semiring-
based argumentation systems. In ECAI’10, volume 215, pages 131–136. IOS Press,
2010.

6. G. Boella, L. van der Torre, and S. Villata. Social viewpoints for arguing about
coalitions. In PRIMA, volume 5357 of LNCS, pages 66–77. Springer, 2008.

7. K. P. Bogart. Introductory Combinatorics. Academic Press, Inc., Orlando, FL,
USA, 2000.

8. N. Bulling, J. Dix, and C. I. Chesñevar. Modelling coalitions: Atl + argumentation.
pages 681–688. IFAAMAS, 2008.

9. P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artif. Intell.,
77(2):321–357, 1995.

10. P. E. Dunne, A. Hunter, P. McBurney, S. Parsons, and M. Wooldridge. Inconsis-
tency tolerance in weighted argument systems. pages 851–858. IFAAMS, 2009.

11. W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In IJCAI (1),
pages 607–615, 1995.

12. B. Horling and V. Lesser. A survey of multi-agent organizational paradigms.
Knowl. Eng. Rev., 19(4):281–316, 2004.

13. G. Katsirelos and T. Walsh. Dynamic symmetry breaking constraints. In Workshop
on Modeling and Solving Problems with Constraints (at ECAI08), pages 39–44.
Informal Proc., 2008.

14. J. Kleinberg. Navigation in a small world. Nature, 406:845, 2000.
15. K. Kuchcinski and R. Szymanek. Jacop - java constraint programming solver,

2001. http://jacop.osolpro.com/.
16. N. Ohta, V. Conitzer, R. Ichimura, Y. Sakurai, A. Iwasaki, and M. Yokoo. Coalition

structure generation utilizing compact characteristic function representations. In
CP, volume 5732 of LNCS, pages 623–638. Springer, 2009.

17. J. O’Madadhain, D. Fisher, S. White, and Y. Boey. The JUNG (Java Universal
Network/Graph) framework. Technical report, UC Irvine, 2003.

18. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming. Else-
vier Science Inc., NY, USA, 2006.

19. O. Shehory and S. Kraus. Task allocation via coalition formation among au-
tonomous agents. In IJCAI (1), pages 655–661, 1995.

Finding Partitions of Arguments with Dung’s Properties via SCSPs 213

A Tabled Prolog Program for Solving Sokoban

Neng-Fa Zhou1 and Agostino Dovier2

1 Department of Computer and Information Science,
CUNY Brooklyn College & Graduate Center, USA,

zhou@sci.brooklyn.cuny.edu
2 Dipartimento di Matematica e Informatica,

Università di Udine, Udine, Italy,
agostino.dovier@uniud.it

Abstract. This paper presents our program in B-Prolog submitted to
the third ASP solver competition for the Sokoban problem. This pro-
gram, based on dynamic programming, treats Sokoban as a generalized
shortest path problem. It divides a problem into independent subprob-
lems and uses mode-directed tabling to store subproblems and their an-
swers. This program is very simple but quite efficient. Without use of any
sophisticated domain knowledge, it easily solved 11 of the 15 instances
used in the competition.

1 Introduction

Sokoban is a type of transport puzzle, in which the player finds a plan for the
Sokoban (means warehouse-keeper in Japanese) to push all the boxes into the
designated areas. This problem has been shown to be NP-hard and has raised
great interest because of its relation to robot motion planning [6]. This problem
has been used as a benchmark in the Answer Set Programming competition [5,
4] and International Planning competition3, and solutions for ASP solvers and
PDDL are available. In [15], an IDA∗-based program is presented with several
domain-dependent enhancements.

This paper presents the program in B-Prolog, called the BPSolver program
below, submitted to the third ASP solver competition [4]. The BPSolver program
is based on the dynamic programming approach and uses mode-directed tabling
[18] to store subproblems and their answers. The program was built after failed
attempts to use CLP(FD) and the planning languages B [12] and BMV [8] for the
problem (see Section 6). The BPSolver program is very simple (only a few lines
of code) but quite efficient. In the competition, the BPSolver program solved
11 of the 15 instances of which the hardest instance took only 33 seconds, and
failed to solve the remaining four instances due to lack of table space.

As far as we know, the BPSolver program is the first to apply the dynamic
programming approach to the Sokoban problem. The BPSolver program treats
Sokoban as a generalized shortest path problem where the locations of objects

3 http://ipc.informatik.uni-freiburg.de/Domains

particular to a subproblem are tabled. The BPSolver program does not employ
any sophisticated domain knowledge. It only checks for two simple deadlock
cases: one is that a box is stuck in a corner and the other is that two boxes next
to each other are stuck by a wall. With sophisticated domain knowledge, the
BPSolver program is expected to perform much better.

The remainder of the paper is structured as follows: Section 2 gives a detailed
description of the Sokoban problem; Section 3 introduces tabling, and in par-
ticular mode-directed tabling, as implemented in B-Prolog; Section 4 explains
the BPSolver program line by line; Section 5 presents the competition results;
Section 6 compares with related work and points out possible improvements;
and Section 7 concludes the paper.

2 The Problem Description

The following is an adapted description of the Sokoban problem used in the ASP
solver competition.4

Sokoban is a type of transport puzzle invented by Hiroyuki Imabayashi in
1980 and published by the Japanese company Thinking Rabbit, Inc. in 1982.
“Sokoban” means “warehouse-keeper” in Japanese. The puzzle consists of a maze
which has two types of squares: inaccessible wall squares and accessible floor
squares. Several boxes are initially placed on some of the floor squares and the
same number of floor squares are designated as storage squares. There is also
a man (the Sokoban) whose duty is to move all the boxes to the designated
storage squares. A floor square is free if it is not occupied by either a box or
the man. The man can walk around by moving from his current position to any
adjacent free floor square. He can also push a box into an adjacent free square,
but in order to do so he needs to be able to get to the free square behind the
box. The goal of the puzzle is to find a shortest plan to push all the boxes to the
designated storage squares. To reduce the number of steps, the Sokoban moves
and the successive sequence of pushes in the same direction are considered as an
atomic action.

A problem instance is given by the following relations:

– right(L1, L2): location L2 is immediately to the right of location L1.
– top(L1, L2): location L2 is immediately on the top of location L1.
– box(L): location L initially holds a box.
– sokoban(L): the man is initially at location L.
– storage(L): location L is a storage square.

In this setting, the wall squares are completely ignored and the adjacency relation
of the floor squares is given by the right and top predicates. This input is well
suited for Prolog. According to the ASP competition requirements, the output
should be represented by atoms of the form push(L1,Dir,L2,Time), where L1
and L2 are two locations, L2 is reachable from L1 going through the direction

4 https://www.mat.unical.it/aspcomp2011

216 Neng-Fa Zhou, Agostino Dovier

Dir (left, right, up, or down), and Time is an integer greater than 0 (bounded
the further input predicate step). For each admissible value of time exactly one
push action must occur. We also allow a slight variation of this predicate where
the time information is left implicit and a consecutive sequence of push is stored
in a list that, in fact, represents a plan.

Fig. 1. A Sokoban problem.

Figure 1 shows an example problem where the storage squares have dots on
them. This state is represented by the following facts:

top(c2r5,c2r4). right(c3r2,c4r2). right(c3r6,c4r6).

top(c2r6,c2r5). right(c4r2,c5r2). right(c4r6,c5r6).

top(c3r3,c3r2). right(c5r2,c6r2).

top(c3r4,c3r3). right(c6r3,c7r3). box(c6r3).

top(c3r5,c3r4). right(c2r4,c3r4). box(c5r4).

top(c3r6,c3r5). right(c3r4,c4r4). box(c5r5).

top(c5r5,c5r4). right(c4r4,c5r4).

top(c5r6,c5r5). right(c5r4,c6r4). storage(c3r3).

top(c6r3,c6r2). right(c6r4,c7r4). storage(c3r4).

top(c6r4,c6r3). right(c2r5,c3r5). storage(c4r4).

top(c6r5,c6r4). right(c5r5,c6r5).

top(c7r4,c7r3). right(c6r5,c7r5). sokoban(c4r6).

top(c7r5,c7r4). right(c2r6,c3r6).

The following gives a plan of 13 steps for the problem:

[push(c6r3,down,c6r5), push(c5r4,left,c3r4), push(c3r4,down,c3r5),

push(c5r5,up,c5r4), push(c6r5,left,c5r5), push(c5r4,right,c6r4),

push(c5r5,up,c5r4), push(c6r4,up,c6r3), push(c5r4,left,c4r4),

push(c6r3,down,c6r4), push(c3r5,up,c3r3), push(c4r4,left,c3r4),

push(c6r4,left,c4r4)]

3 Tabling in B-Prolog

Tabling [17] has become a well-known and useful feature of many Prolog systems.
The idea of tabling is to memorize answers to tabled subgoals and use the answers

A Tabled Prolog Program for Solving Sokoban 217

to resolve subsequent variant or subsumed subgoals. This idea resembles the
dynamic programming idea of reusing solutions to overlapping sub-problems
and, naturally, tabling is amenable to dynamic programming problems.

B-Prolog is a tabled Prolog system that is based on linear tabling [19], allows
variant subgoals to share answers, and uses the local strategy [9] (also called
lazy strategy [19]) to return answers. In B-Prolog, tabled predicates are declared
explicitly by declarations in the following form:

:-table P1/N1,...,Pk/Nk

where each Pi (i ∈ {1, . . . , k}) is a predicate symbol and Ni is an integer that
denotes the arity of Pi.

Consider, for example, the tabled predicate computing Fibonacci numbers:

:-table fib/2.

fib(0, 1).

fib(1, 1).

fib(N, F):-N>1,

N1 is N-1,

N2 is N-2,

fib(N1, F1),

fib(N2, F2),

F is F1+F2.

Without tabling, the subgoal fib(N,X)would spawn 2N subgoals, many of which
are variants. With tabling, however, the time complexity drops to linear since
the same variant subgoal is resolved only once.

For a tabled predicate, all the arguments of a tabled subgoal are used in vari-
ant checking and all answers are tabled. This table-all approach is problematic
for many dynamic programming problems such as those that require computa-
tion of aggregates. Mode-directed tabling [13, 18] amounts to using table modes
to instruct the system on how to table subgoals and their answers. In B-Prolog,
a table mode declaration takes the following form:

:-table p(M1,...,Mn):C.

where p/n is a predicate symbol, C, called a cardinality limit, is an integer which
limits the number of answers to be tabled for p/n, and each Mi (i ∈ {1, . . . , k})
is a mode which can be min, max, +, or -. When C is 1, it can be omitted together
with the preceding ‘:’. For each predicate, only one table mode declaration can
be given. In the current implementation in B-Prolog, only one argument in a
tabled predicate can have the mode min or max. Since an optimized argument
can be a compound term and the built-in @</2 is used to select better answers
for compound terms, this restriction is not essential.

The mode + is called input, - output, min minimized, and max maximized. An
argument with the mode min or max is called optimized. An optimized argument
is assumed to be output. The system uses only input arguments in variant check-
ing of tabled subgoals, ignoring all other arguments. Notice that a table mode

218 Neng-Fa Zhou, Agostino Dovier

does not tell the instantiation state of an argument. Nevertheless, normally an
input argument is ground and an output argument is a variable.

A mode declaration not only instructs the system on what arguments are
used in variant checking, it also guides it in tabling answers. After an answer of a
tabled subgoal is produced, the system tables it unconditionally if the cardinality
limit is not reached yet. When the cardinality limit has been reached, however,
the system tables the answer only if it is better than some existing answer in
terms of the optimized argument. If no argument is optimized, all new answers
are discarded once the cardinality limit has been reached.

Mode-directed tabling is very useful for declarative description of dynamic
programming problems. The following predicate finds a path with the minimal
weight between a pair of nodes in a directed graph.

:-table sp(+,+,-,min).

sp(X,Y,[(X,Y)],W) :-

edge(X,Y,W).

sp(X,Y,[(X,Z)|Path],W) :-

edge(X,Z,W1),

sp(Z,Y,Path,W2),

W is W1+W2.

The predicate edge(X,Y,W) defines a given weighted directed graph, where W is
the weight of the edge from node X to node Y. The predicate sp(X,Y,Path,W)
states that Path is a path from X to Y with the smallest weight W. Notice that
whenever the predicate sp/4 is called, the first two arguments are assumed to
be instantiated. So for each pair of nodes, only one answer is tabled.

4 The Program

In this section, we explain the BPSolver program. The program treats the
Sokoban problem as a generalized shortest path problem. For a state, if it is
the goal state in which every box is in a storage location, it is done. Otherwise,
the program chooses an intermediate state and splits the problem into two sub-
problems, one transforming the current state to the intermediate one and the
other transforming the intermediate one to the goal state. All the states are
tabled so that the same subproblem is solved only once.

4.1 Library and helper predicates

Before we show the program, we give the library and helper predicates used in
the program. For each helper predicate written as part of the program, we give
its definition.

– member(X, L): succeeds when X is a member of the list L. It can be used
to check if a given element is a member of a list and it can also be used to
nondeterministically select an element from a list.

A Tabled Prolog Program for Solving Sokoban 219

– select(X, L, R): the same as member(X, L) except that it binds R to the
rest of the list after X is selected from L.

– neib(Loc1, Loc2, Dir): Loc2 is the next location of Loc1 along the direction
Dir. It is defined as follows in terms of the given predicates top/2 and
right/2:

:-table neib/3.

neib(Loc1,Loc2,up):-top(Loc1,Loc2).

neib(Loc1,Loc2,down):-top(Loc2,Loc1).

neib(Loc1,Loc2,right):-right(Loc1,Loc2).

neib(Loc1,Loc2,left):-right(Loc2,Loc1).

The predicate is tabled for better performance.
– insert ordered(X,L1,L2): inserts X into a sorted list L1, resulting in a

new sorted list L2.

insert_ordered(X,[],[X]).

insert_ordered(X,[Y|Ys],[X,Y|Ys]):-

X @=<Y,!.

insert_ordered(X,[Y|Ys],[Y|Ordered]):-

insert_ordered(X,Ys,Ordered).

– goal reached(L): every location in L is a storage location.

goal_reached([]).

goal_reached([Loc|Locs]):-

storage(Loc),

goal_reached(Locs).

This can be defined equivalently using the foreach construct of B-Prolog as
follows:

goal_reached(Locs):-

foreach(Loc in Locs, storage(Loc)).

– corner(Loc): succeeds if Loc is a corner location. No box can be moved to
a corner unless it is a storage square.

:-table corner/1.

corner(X) :- \+ noncorner(X).

noncorner(X) :- top(_,X),top(X,_).

noncorner(X) :- right(_,X),right(X,_).

This predicate is tabled. For the problem instance shown in Figure 1, for ex-
ample, the table will contain seven possible subgoals including corner(c2r4)
and corner(c3r2).

– stuck(Loc1, Loc2): two boxes in Loc1 and Loc2 constitute a deadlock if they
are next to each other by a wall, unless both locations are storage squares.

:-table stuck/2.

stuck(X,Y):-

(right(X,Y);right(Y,X)),

(\+ storage(X); \+ storage(Y)),

220 Neng-Fa Zhou, Agostino Dovier

(\+ top(X,_), \+ top(Y,_);

\+ top(_,X), \+ top(_,Y)),!.

stuck(X,Y):-

(top(X,Y);top(Y,X)),

(\+ storage(X); \+ storage(Y)),

(\+ right(X,_), \+ right(Y,_);

\+ right(_,X), \+ right(_,Y)),!.

For example, for the problem instance shown in Figure 1, the subgoal stuck(c3r2,c4r2)
succeeds and so does stuck(c4r2,c3r2).

4.2 The main program

As already said, the main idea behind the main program reported in Figure 2 is
to implement a tabled version of a generalization of the shortest path problem.
The subgoal

plan_sokoban(SokobanLoc, BoxLocs, Plan, Len)

finds a plan Plan with the minimal length Len for the current state, where
SokobanLoc is the location of the man and BoxLocs is a list of box locations.
For example, for the problem instance shown in Figure 1, the subgoal would look
like

plan_sokoban(c4r6,[c5r4,c5r5,c6r3],Plan,Len).

The predicate is tabled under control by the mode plan sokoban(+,+,-,min),
which means that only one plan with the minimal length is tabled for each
different state. The list BoxLocs is sorted in lexicographic order to make tabling
more effective.

When the goal has been reached (goal reached(BoxLocs) succeeds), an
empty plan is returned. Otherwise, the second rule selects a box location BoxLoc
from BoxLocs and a destination location DestLoc that can be reached from
BoxLoc in the direction Dir (up, down, left, or right), and adds the action
push(BoxLoc,Dir,DestLoc) into the plan. Only feasible actions are added.
An action push(BoxLoc,Dir,DestLoc) is feasible if (1) the previous location
PrevNeibLoc of BoxLoc in the direction Dir is free; (2) the man can walk to
this location (reachable by sokoban); and (3) the location DestLoc is a good
destination that does not result in a deadlock. The subgoal choose dest non-
deterministically chooses a destination DestLoc from the free squares ahead of
BoxLoc in the direction Dir. After pushing the box at BoxLoc to DestLoc, the
man moves to NewSokobanLoc which is the previous square of DestLoc.

The predicate reachable by sokoban checks if there is a path of free squares
from one location to another. Again, tabling is used to prevent loops and avoid
resolving the same subgoal more than once.

The predicate good dest checks whether or not a location is a good desti-
nation for a box. A location Loc is a good destination if (1) it is not occupied

A Tabled Prolog Program for Solving Sokoban 221

:-table plan_sokoban(+,+,-,min).

plan_sokoban(_SokobanLoc,BoxLocs,Plan,Len):-

goal_reached(BoxLocs),!,

Plan=[],Len=0.

plan_sokoban(SokobanLoc,BoxLocs,[push(BoxLoc,Dir,DestLoc)|Plan],Len):-

select(BoxLoc,BoxLocs,BoxLocs1),

neib(PrevNeibLoc,BoxLoc,Dir),

\+ member(PrevNeibLoc,BoxLocs1),

neib(BoxLoc,NextNeibLoc,Dir),

good_dest(NextNeibLoc,BoxLocs1),

reachable_by_sokoban(SokobanLoc,PrevNeibLoc,BoxLocs),

choose_dest(BoxLoc,NextNeibLoc,Dir,DestLoc,NewSokobanLoc,BoxLocs1),

insert_ordered(DestLoc,BoxLocs1,NewBoxLocs),

plan_sokoban(NewSokobanLoc,NewBoxLocs,Plan,Len1),

Len is Len1+1.

:-table reachable_by_sokoban/3.

reachable_by_sokoban(Loc,Loc,_BoxLocs).

reachable_by_sokoban(Loc1,Loc2,BoxLocs):-

neib(Loc1,Loc3,_),

\+ member(Loc3,BoxLocs),

reachable_by_sokoban(Loc3,Loc2,BoxLocs).

good_dest(Loc,BoxLocs):-

\+ member(Loc,BoxLocs),

(corner(Loc)->storage(Loc);true),

foreach(BoxLoc in BoxLocs, \+ stuck(BoxLoc,Loc)).

choose_dest(Loc,NextLoc,_Dir,Dest,NewSokobanLoc,_BoxLocs):-

Dest=NextLoc, NewSokobanLoc=BoxLoc.

choose_dest(Loc,NextLoc,Dir,Dest,NewSokobanLoc,BoxLocs):-

neib(NextLoc,NextNextLoc,Dir),

good_dest(NextNextLoc,BoxLocs),

choose_dest(NextLoc,NextNextLoc,Dir,Dest,NewSokobanLoc,BoxLocs).

Fig. 2. The main program

222 Neng-Fa Zhou, Agostino Dovier

by any box; (2) it is not a corner unless it is a storage square; and (3) moving a
box to Loc does not result in a deadlock. As mentioned above, two boxes next to
each other by a wall constitute a deadlock unless the two locations are storage
squares. There are more sophisticated deadlock cases that involve more than two
locations [15], but these cases are not considered here.

5 The Competition Results

Sokoban was one of the benchmarks of the 2011 ASP competition [4]. The main
scope of the competition is to challenge different solvers on declarative encodings.
In particular, in the System Track different ASP solvers were required to run on a
proposed encoding in Answer Set Programming (pure declarative code, no opti-
mization). In the next Section we will briefly sketch this modeling. It is a decision
version of the problem where a plan of a given length is looked for. The allowed
actions are push of a block in the four directions. Moreover, the move of the
Sokoban for reaching (if possible) a block is supposed to happen instantaneously
immediately before the successive push move. Most of the ASP solvers behave
quite well on the proposed instances. It must be observed, however, that the
instances were not so large (the more difficult were of 6 boxes/20 moves). In the
Model and Solve competition, competitors were allowed to encode directly the
problem allowing some domain information. In this case a minimum length plan
is looked for. Most of the submitted programs are variants of the one proposed
for the System Track; for this approach, best performances have been obtained
by the family of Clasp solvers [10] (http://potassco.sourceforge.net/) and
by EZCSP [1] (http://marcy.cjb.net/ezcsp/index.html).

The BPSolver program is available at: www.sci.brooklyn.cuny.edu/~zhou/
asp11/ Table 1 gives the CPU times of the actual runs in the third ASP solver
competition. In comparison, the result of Clasp, the solver that won this bench-
mark, is also shown. For the solved instances, BPSolver is actually a little faster
than Clasp on average. BPSolver failed to solve four of the instances due to lack
of table space.

6 Related Work

The Sokoban problem is a typical planning problem where a set of admissible ac-
tions might affect the value of some fluents that globally determine a state. This
kind of problems are naturally encoded using Action Description Languages such
as STRIPS, B, and PDDL. Before starting the encoding one needs to carefully
choose the atomic actions allowed for the Sokoban and their duration.

The simplest choice (finest granularity) is that at each time step the Sokoban
is allowed to do a single move, or a single push of a box, in one of the four
direction up, down, left, and right; the duration of the move is 1. This is
the basic encoding of the Sokoban problem (see, e.g. http://ipc.informatik.
uni-freiburg.de/Domains); it is simple and elegant and the non deterministic
branching in the search is limited to 4. Any state can be represented by 3ℓ

A Tabled Prolog Program for Solving Sokoban 223

Table 1. Competition results (CPU time, seconds).

Instance BPSolver Clasp

1-sokoban-optimization-0-0.asp 0.58 0.06
13-sokoban-optimization-0-0.asp 0.06 0.74
18-sokoban-optimization-0-0.asp 0.00 9.80
20-sokoban-optimization-0-0.asp 33.57 13.24
24-sokoban-optimization-0-0.asp 2.66 3.52
27-sokoban-optimization-0-0.asp 0.78 1.16
29-sokoban-optimization-0-0.asp 0.78 2.92
33-sokoban-optimization-0-0.asp 1.96 26.74
37-sokoban-optimization-0-0.asp 0.38 8.52
4-sokoban-optimization-0-0.asp Mem Out 0.62
43-sokoban-optimization-0-0.asp Mem Out 35.67
45-sokoban-optimization-0-0.asp Mem Out 9.30
47-sokoban-optimization-0-0.asp Mem Out 18.66
5-sokoban-optimization-0-0.asp 0.00 0.16
9-sokoban-optimization-0-0.asp 0.00 2.12

fluents of the form free(L), box in(L), sokoban in(L), where L is one of the ℓ
admitted cells. The actions affect these fluents. However, with this encoding, a
lot of steps are needed either to push a block without changing directions or to
reach the next block to be pushed. This increases the number of steps necessary
for the plan and, since the size of the search tree grows exponentially in this
number, it is rather difficult to solve non-trivial instances.

As already said, the granularity chosen for the ASP competition is coarser.
As soon as there is a path from the Sokoban position to the desired side of a
block, the move action is left implicit (it takes zero time). Just a unique family
of push actions are admitted, parametric on the starting From and arrival To
points of the block (aligned in a given direction D). A push of any number of
steps in the same direction is viewed as an atomic action. If, on the one side,
this allows to dramatically decrease the number of (macro) actions needed for
executing the plan, on the other side, it generates new problems. The first is that
the branching is now increased. The second, more subtle, is that the modeling
language needs to be able to deal with a dynamic notion of reachability.

Basically, for stating that the action push(From,D,To) be executable, we
need to require that: box in(From), that all the cells L between From and To
are free, and, morevoer, that the Sokoban can reach the cell adjacent to From
in the direction D, external to the segment [From,To]. Let us call S1 this cell, we
need to require that reachable(S1) (namely that the cell is currently reachable
from the Sokoban).

We need therefore to introduce ℓ additional Boolean fluents reachable(L)
and to deal with them. This can be done using static causal laws (or rules) that
are not allowed in all Action Description Languages. We should write two rules
of the form (using the syntax of the language B):

224 Neng-Fa Zhou, Agostino Dovier

sokoban_in(A) caused reachable(A).

reachable(B) and free(C) caused reachable(C) if adjacent(B,C).

The semantics of an Action Description Language in presence of static causal
laws becomes complex [12, 8] and is related to the notion of Answer Set [11]. As
shown in detail in [7] B programs can be either

– interpreted using constraint (logic) programming, or
– automatically translated in Answer Set Programming and then solved using

an ASP solver.

The former encoding is also studied in a slight different context, by other authors
(e.g., [2]); however, static laws are not considered. The encoding implemented
in [7] deals with static causal laws, but the proposed implementation does not en-
sure correctness for some classes of static causal laws. Other encodings are viable,
but they would introduce too many constraints. Intuitively, this happens when
rules introduce loops of implications between literals. In the case of Sokoban,
simultaneous un-justified changes of fluent values might satisfy the constraints,
the Sokoban can reach unreachable cells, and not-allowed push moves can be
executed. The same problem was pointed out in [16] where authors translated
a ground ASP Program into a SAT encoding. In presence of such kind of loops,
solutions of the SAT formula obtained are not admissible answer sets. The prob-
lem can be avoided introducing the so-called loop-formulas but their number
can grow exponentially. Unfortunately, the above definition of reachability as
static causal laws introduces these undesirable loops and therefore a CLP(FD)
approach for solving it in this way (e.g., using B-Prolog) is not feasible.

As far as the latter approach is concerned, it works correctly on a modeling in
B based on the ideas above.5 It is well-known that the main problem of Answer
Set Programming is the size of the ground version of the program that is com-
puted in the first stage of the solution’s search. We experimentally observe that
this size is bigger (typically, twice) than the size of the ASP program written by
the Clasp group that won the competition. A direct encoding of this problem
in ASP, of course, produces clever code. Let us say some words about this pro-
gram. First of all, it focuses on 2ℓ Boolean fluents box and sokoban, repeated for
each time step (the fluent free is left implicit). The reachability relation (called
route) is encoded directly in ASP (in a similar way as done above in B) and it is
parametric on time steps. Push move is split into push from, push, and push to.
This allows us to reduce the grounding. The push from relation is defined to be
a function w.r.t. the time step (and defined only if the goal has not yet been
reached):

1 { push_from(L,D,S): loc(L): direction(D) } 1 :-

step(S), not goal(S).

Namely, for each step S that in which the goal has not yet been reached, just
one move is allowed (one location and one direction are selected). Constraints
5 The encoding is available in http://www.dimi.uniud.it/dovier/CLPASP/BBMVLAST.

A Tabled Prolog Program for Solving Sokoban 225

are added to ensure action executability. If push from is enabled, then the length
of the move is non deterministically chosen and the consequent effects on fluents
are determined. Constraints are also added to eliminate useless push moves;
this reduces either the size of the corresponding ground program or the search
space. As already said, the size of the ground program and the time needed to
compute it are strictly less than those needed for the program automatically
obtained from B. However, the running time after grounding (both in Clasp) are
comparable on the instances of the ASP competition.

In AI literature, Andreas Junghanns and Jonathan Schaeffer in [15] pointed
out that the Sokoban problem is interesting for several reasons: in general it is
difficult to find a tight lower bound for the number of moves, there is the prob-
lem of a deadlock (e.g. when a box is pushed to a corner), and, moreover, the
branching factor is very high (considering macro moves). The same authors then
published some improving solutions to the problem in the context of single agent
planning, summarized in a paper with Adi Botea and Martin Müller [3]. In par-
ticular, they exploited an abstraction based on tunnels and rooms of the Sokoban
warehouse that allowed to obtain good performances. In [14] the authors show
how to develop a domain-independent heuristics for cost-optimal planning. They
apply this idea to the Sokoban, and test a STRIPS encoding of the Sokoban on a
collection, called “microban”, developed by David W. Skinner and available from
http://users.bentonrea.com/~sasquatch/sokoban/. The STRIPS encoding
used is based on the finest granularity approach (simple move), but reachability
and other techniques are used as heuristics for sequences of atomic moves. They
choose a collection of moderate instances and they are able to solve the 70% of
them. Interestingly, they are able to find plans of length 290 (atomic actions) on
instance 140 in half of an hour of computation.

Apart from academic contributions to this challenging puzzle we would like
to point out two working solvers available on the web:

– Sokoban Puzzle Solver http://codecola.net/sps/sps.htm, developed (in
2003–2005) by Faris Serdar Taşel is basically a generate and test solver for
Sokoban. An executable file for Windows is downloadable, but extra details
on the implementation are not available. In spite of its apparent simplicity,
it solves in acceptable time most the instances available from that web page.

– Sokoban Automatic Solver http://www.ic-net.or.jp/home/takaken/e/
soko/index.html, developed (in 2003–2008) by Ken’ichiro Takahashi is an-
other solver for Windows. It finds solutions that are not ensured to be opti-
mal. It allows two options: (1) brute force (generate and test) and (2) using
analysis. The second options allows faster executions but the author gives
no idea on how this analysis is performed.

7 Concluding Remarks

This paper has presented the BPSolver program for solving the Sokoban problem.
This program has demonstrated for the first time that dynamic programming is

226 Neng-Fa Zhou, Agostino Dovier

a viable approach to the problem and mode-directed tabling is effective. With-
out using sophisticated domain knowledge, this program is able to solve some
interesting instances that our other program in B, interpreted using CLP(FD)
have failed to solve. As shown in the competition results, this program is as
competitive as the Clasp program for the instances that are not so memory
demanding.

The BPSolver program basically explores all possible states including states
that can never occur in an optimal solution: a way for improving it is to con-
sider more deadlock states such as those involving multiple blocks [15] to be
filtered out. Moreover, some domain knowledge such as the topological infor-
mation should be exploited to reduce the graph. Lastly, heuristics should be
employed to select a box to move and a destination to move the box to. Ideally,
a path that leads to a goal state should be explored as early as possible.

We believe that reasonable sized planning problems can benefit of the same
technique presented.

Acknowledgement

We really thank Andrea Formisano for his wise advice in the B encoding of the
Sokoban. Neng-Fa Zhou was supported in part by NSF (No.1018006). Agostino
Dovier is partially supported by INdAM-GNCS 2011 and PRIN 20089M932N.

References

1. Marcello Balduccini. Splitting a cr-prolog program. In LPNMR, pages 17–29, 2009.
2. R. Barták and D. Toropila. Reformulating constraint models for classical planning.

In David Wilson and H. Chad Lane, editors, FLAIRS’08: Twenty-First Interna-
tional Florida Artificial Intelligence Research Society Conference, pages 525–530.
AAAI Press, 2008.

3. Adi Botea, Martin Müller, and Jonathan Schaeffer. Using abstraction for planning
in sokoban. In Computers and Games, pages 360–375, 2002.

4. Francesco Calimeri, Giovambattista Ianni, Francesco Ricca, Mario Alviano, Anna-
maria Bria, Gelsomina Catalano, Susanna Cozza, Wolfgang Faber, Onofrio Feb-
braro, Nicola Leone, Marco Manna, Alessandra Martello, Claudio Panetta, Simona
Perri, Kristian Reale, Maria Carmela Santoro, Marco Sirianni, Giorgio Terracina,
and Pierfrancesco Veltri. The third answer set programming competition. In LP-
NMR, pages 388–403, 2011.

5. Marc Denecker, Joost Vennekens, Stephen Bond, Martin Gebser, and Miroslaw
Truszczynski. The second answer set programming competition. In LPNMR,
pages 637–654, 2009.

6. Dorit Dor and Uri Zwick. Sokoban and other motion planning problems. Compu-
tational Geometry: Theory and Applications, 13:215–228, 1995.

7. Agostino Dovier, Andrea Formisano, and Enrico Pontelli. Perspectives on Logic-
based Approaches for Reasoning About Actions and Change. In Logic Program-
ming, Knowledge Representation, and Nonmonotonic Reasoning, Essays Dedicated
to Michael Gelfond on the Occasion of His 65th Birthday, volume 6565 of LNCS,
pages 259–279. Springer, 2011.

A Tabled Prolog Program for Solving Sokoban 227

8. Agostino Dovier, Andrea Formisano, and Enrico Pontelli. Multivalued action lan-
guages with constraints in CLP(FD). TPLP, 10(2):167–235, 2010.

9. Juliana Freire, Terrance Swift, and David Scott Warren. Beyond depth-first: Im-
proving tabled logic programs through alternative scheduling strategies. Journal
of Functional and Logic Programming, 1998.

10. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten
Schaub, and Sven Thiele. Engineering an incremental asp solver. In ICLP, pages
190–205, 2008.

11. Michael Gelfond and Vladimir Lifschitz. The stable model semantics for logic
programming. In Proceedings of the Joint International Conference and Symposium
on Logic Programming (JICSLP), pages 1070–1080, 1988.

12. Michael Gelfond and Vladimir Lifschitz. Action languages. Electron. Trans. Artif.
Intell., 2:193–210, 1998.

13. Hai-Feng Guo and Gopal Gupta. Simplifying dynamic programming via mode-
directed tabling. Softw., Pract. Exper., 38(1):75–94, 2008.

14. Patrik Haslum, Adi Botea, Malte Helmert, Blai Bonet, and Sven Koenig. Domain-
independent construction of pattern database heuristics for cost-optimal planning.
In AAAI, pages 1007–1012, 2007.

15. Andreas Junghanns and Jonathan Schaeffer. Sokoban: Enhancing general single-
agent search methods using domain knowledge. Artif. Intell., 129(1-2):219–251,
2001.

16. Fangzhen Lin and Yuting Zhao. ASSAT: Computing answer sets of a logic program
by SAT solvers. Artificial Intelligence, 157(1–2):115–137, 2004.

17. David Scott Warren. Memoing for logic programs. Comm. of the ACM, Special
Section on Logic Programming, 35:93–111, 1992.

18. Neng-Fa Zhou, Yoshitaka Kameya, and Taisuke Sato. Mode-directed tabling for
dynamic programming, machine learning, and constraint solving. In ICTAI, pages
213–218, 2010.

19. Neng-Fa Zhou, Taisuke Sato, and Yi-Dong Shen. Linear tabling strategies and
optimizations. TPLP, 8(1):81–109, 2008.

228 Neng-Fa Zhou, Agostino Dovier

EM over Binary Decision Diagrams for
Probabilistic Logic Programs

Elena Bellodi and Fabrizio Riguzzi

ENDIF – Università di Ferrara – Via Saragat, 1 – 44122 Ferrara, Italy.
{elena.bellodi,fabrizio.riguzzi}@unife.it

Abstract. Recently much work in Machine Learning has concentrated
on representation languages able to combine aspects of logic and prob-
ability, leading to the birth of a whole field called Statistical Relational
Learning. In this paper we present a technique for parameter learning
targeted to a family of formalisms where uncertainty is represented us-
ing Logic Programming techniques - the so-called Probabilistic Logic
Programs such as ICL, PRISM, ProbLog and LPAD. Since their equiv-
alent Bayesian networks contain hidden variables, an EM algorithm is
adopted. In order to speed the computation, expectations are computed
directly on the Binary Decision Diagrams that are built for inference.
The resulting system, called EMBLEM for “EM over Bdds for proba-
bilistic Logic programs Efficient Mining”, has been applied to a number
of datasets and showed good performances both in terms of speed and
memory usage.

Keywords: Statistical Relational Learning, Probabilistic Logic Program-
ming, Distribution Semantics, Logic Programs with Annotated Disjunctions,
Expectation Maximization

1 Introduction

Machine Learning has seen the development of the field of Statistical Relational
Learning (SRL) where logical-statistical languages are used in order to effec-
tively learn in complex domains involving relations and uncertainty. They have
been successfully applied in social networks analysis, entity recognition, collec-
tive classification and information extraction, to name a few.

Similarly, a large number of works in Logic Programming have attempted
to combine logic and probability, among which the distribution semantics [21]
is a prominent approach. This semantics underlies for example PRISM [21],
the Independent Choice Logic [14], Logic Programs with Annotated Disjunc-
tions (LPADs) [29], ProbLog [4] and CP-logic [27]. The approach is particularly
appealing because efficient inference algorithms appeared [4,17], which adopt
Binary Decision Diagrams (BDDs).

In this paper we present the EMBLEM system for “EM over Bdds for prob-
abilistic Logic programs Efficient Mining” [1] that learns parameters of proba-
bilistic logic programs under the distribution semantics by using an Expectation

Maximization (EM) algorithm. Such an algorithm is a popular tool in statisti-
cal estimation problems involving incomplete data: it is an iterative method to
estimate some unknown parameters Θ of a model, given a dataset where some
of the data is missing. The aim is to find maximum likelihood or maximum a
posteriori (MAP) estimates of Θ [13]. EM alternates between performing an ex-
pectation (E) step, where the missing data are estimated given the observed data
and current estimate of the model parameters, and a maximization (M) step,
which computes the parameters maximizing the likelihood of the data given the
sufficient statistics on the data computed in the E step. The translation of the
probabilistic programs into graphical models requires the use of hidden variables
(see Section 3) and therefore of EM: the main characteristic of our system is the
computation of the values of expectations using BDDs.

Since there are transformations with linear complexity that can convert a
program in a language under the distribution semantics into the others [28],
we will use LPADs for their general syntax. EMBLEM has been tested on the
IMDB, Cora and UW-CSE datasets and compared with RIB [20], LeProbLog [4],
Alchemy [15] and CEM, an implementation of EM based on [17].

The paper is organized as follows. Section 2 presents LPADs and Section
3 describes EMBLEM. Section 4 discusses related works. Section 5 shows the
results of the experiments performed and Section 6 concludes the paper.

2 Logic Programs with Annotated Disjunctions

Formally a Logic Program with Annotated Disjunctions [29] consists of a finite
set of annotated disjunctive clauses. An annotated disjunctive clause Ci is of the
form hi1 : Πi1; . . . ;hini

: Πini
: −bi1, . . . , bimi

. In such a clause hi1, . . . hini
are

logical atoms and bi1, . . . , bimi are logical literals, Πi1, . . . ,Πini are real numbers
in the interval [0, 1] such that

∑ni

k=1Πik ≤ 1. bi1, . . . , bimi is called the body and
is indicated with body(Ci). Note that if ni = 1 and Πi1 = 1 the clause corre-
sponds to a non-disjunctive clause. If

∑ni

k=1Πik < 1, the head of the annotated
disjunctive clause implicitly contains an extra atom null that does not appear
in the body of any clause and whose annotation is 1−∑ni

k=1Πik. We denote by
ground(T) the grounding of an LPAD T .

An atomic choice is a triple (Ci, θj , k) where Ci ∈ T , θj is a substitution
that grounds Ci and k ∈ {1, . . . , ni}. (Ci, θj , k) means that, for the ground
clause Ciθj , the head hik was chosen. In practice Ciθj corresponds to a random
variable Xij and an atomic choice (Ci, θj , k) to an assignment Xij = k. A set of
atomic choices κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈ κ⇒ i = j, i.e., only one
head is selected for a ground clause. A composite choice κ is a consistent set of
atomic choices. The probability P (κ) of a composite choice κ is the product of
the probabilities of the individual atomic choices, i.e. P (κ) =

∏
(Ci,θj ,k)∈κΠik.

A selection σ is a composite choice that, for each clause Ciθj in ground(T),
contains an atomic choice (Ci, θj , k). We denote the set of all selections σ of a
program T by ST . A selection σ identifies a normal logic program wσ defined
as wσ = {(hik ← body(Ci))θj |(Ci, θj , k) ∈ σ}. wσ is called a world of T . Since

230 Elena Bellodi, Fabrizio Riguzzi

selections are composite choices we can assign a probability to possible worlds:
P (wσ) = P (σ) =

∏
(Ci,θj ,k)∈σΠik.

We consider only sound LPADs, in which every possible world has a total
well-founded model. In the following we write wσ |= Q to mean that the query
Q is true in the well-founded model of the program wσ.

The probability of a query Q according to an LPAD T is given by

P (Q) =
∑

σ∈E(Q)

P (σ) (1)

where we define E(Q) as {σ ∈ ST , wσ |= Q}, the set of selections corresponding
to worlds where the query is true.

To reduce the computational cost of answering queries in our experiments,
random variables can be directly associated to clauses rather than to their ground
instantiations: atomic choices then take the form (Ci, k), meaning that head hik
is selected from program clause Ci, i.e., that Xi = k.

Example 1. The following LPAD T encodes a very simple model of the develop-
ment of an epidemic or pandemic:

C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X), cold.
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

Clause C1 has two groundings, C1θ1 with θ1 = {X/david} and C1θ2 with θ2 =
{X/robert}, so there are two random variables X11 and X12; C2 has only one
grounding that is associated to the variable X21. X11 and X12 have three values
since C1 has three head atoms (epidemic, pandemic, null); similarly X21 has
two values since C2 has two head atoms (cold, null).

The worlds in which a query is true can be represented using a Multivalued Deci-
sion Diagram (MDD) [25]. An MDD represents a function f(X) taking Boolean
values on a set of multivalued variables X by means of a rooted graph that
has one level for each variable. Each node is associated to the variable of its
level and has one child for each possible value of the variable. The leaves store
either 0 or 1. Given values for all the variables X, we can compute the value
of f(X) by traversing the graph starting from the root and returning the value
associated to the leaf that is reached. A MDD can be used to represent the set
E(Q) by considering the multivalued variables Xijs associated to the Ciθjs of
ground(T). Xij has values {1, . . . , ni} and the atomic choice (Ci, θj , k) corre-
sponds to the propositional equation Xij = k. If we represent with an MDD the
function f(X) =

∨
σ∈E(Q)

∧
(Ci,θj ,k)∈σXij = k, then the MDD will have a path

to a 1-leaf for each world where Q is true. While building MDDs, simplification
operations can be applied that delete or merge nodes. Merging is performed
when the diagram contains two identical sub-diagrams, while deletion is per-
formed when all arcs from a node point to the same node. In this way a reduced
MDD is obtained with respect to a Multivalued Decision Tree (MDT), i.e., a
MDD in which every node has a single parent, all the children belong to the

EM over Binary Decision Diagrams for Probabilistic Logic Programs 231

level immediately below and all the variables have at least one node. For ex-
ample, the reduced MDD corresponding to the query epidemic from Example
1 is shown in Figure 1(a). The labels on the edges represent the values of the
variable associated to the node.

X11
�� ���� ��

1
2

3

X12
�� ���� ��

1

2

3

�� ���� ��
1kkkkkkkkkkkkk

2 3X21
�� ���� ��

1
2

TTTTTTTTTTTTT

1 0
(a) MDD.

X111
�� ���� ��n1 R

H
;

X121
�� ���� ��n2

�
�
�
�
�

X211
�� ���� ��n3 Y V T R O L

1 0
(b) BDD.

Fig. 1. Decision diagrams for Example 1.

It is often unfeasible to find all the worlds where the query is true so inference
algorithms find instead explanations for it, i.e. composite choices such that the
query is true in all the worlds whose selections are a superset of them. Expla-
nations however, differently from possible worlds, are not necessarily mutually
exclusive with respect to each other, but exploiting the fact that MDDs split
paths on the basis of the values of a variable and the branches are mutually
disjoint so a dynamic programming algorithm can be applied for computing the
probability.

Most packages for the manipulation of decision diagrams are however re-
stricted to work on Binary Decision Diagrams, i.e., decision diagrams where all
the variables are Boolean. A node n in a BDD has two children: the 1-child, in-
dicated with child1(n), and the 0-child, indicated with child0(n). The 0-branch,
the one going to the 0-child, is drawn with a dashed line.

To work on MDDs with a BDD package we must represent multivalued vari-
ables by means of binary variables. For a multivalued variable Xij , correspond-
ing to ground clause Ciθj , having ni values, we use ni − 1 Boolean variables
Xij1, . . . , Xijni−1 and we represent the equation Xij = k for k = 1, . . . ni − 1
by means of the conjunction Xij1 ∧ Xij2 ∧ . . . ∧ Xijk−1 ∧ Xijk, and the equa-
tion Xij = ni by means of the conjunction Xij1 ∧ Xij2 ∧ . . . ∧ Xijni−1. Figure
1(b) shows the reduced BDD corresponding to the MDD in Figure 1(a). BDDs
can be used for computing the probability of queries by associating to each
Boolean variable Xijk a parameter πik that represents P (Xijk = 1). If we de-
fine g(i) = {j|θj is a substitution grounding Ci} then P (Xijk = 1) = πik for all
j ∈ g(i). The parameters are obtained from those of multivalued variables in
this way:

πi1 = Πi1

232 Elena Bellodi, Fabrizio Riguzzi

. . .

πik =
Πik∏k−1

j=1 (1− πij)
. . .

up to k = ni − 1.

3 EMBLEM

EMBLEM applies the algorithm for performing EM over BDDs, proposed in
[26,9,10,8], to the problem of learning the parameters of an LPAD. EMBLEM
takes as input a number of goals that represent the examples and for each one
generates the BDD encoding its explanations. The examples are organized in
a set of interpretations (sets of ground facts) each describing a portion of the
domain of interest. The queries correspond to ground atoms in an interpreta-
tion whose predicate has been indicated as “target” by the user. The predi-
cates can be treated as closed-world or open-world. In the first case the body
of clauses is resolved only with facts in the interpretation, in the second case
it is resolved both with facts in the interpretation and with clauses in the the-
ory. If the last option is set and the theory is cyclic, we use a depth bound on
SLD-derivations to avoid going into infinite loops, as proposed by [6]. Given the
program containing only the clauses C1 and C2 from Example 1 and the interpre-
tation {epidemic, flu(david), f lu(robert)}, we obtain the BDD in Figure 1(b)
that represents the query epidemic. A value of 1 for the Boolean variables X111

and X121 means that, for the ground clauses C1θ1 and C1θ2, the head h11 =
epidemic is chosen, regardless of the other variables for the clause (X112, X122)
that are in fact omitted from the diagram.

Then EMBLEM enters the EM cycle, in which the steps of expectation and
maximization are repeated until the log-likelihood of the examples reaches a local
maximum. The necessity of exploiting EM depends on the fact that, to determine
the parameters Πik, the number of times that a head hik has been chosen is
required. The information about which selection was used in the derivation of a
goal is unknown, so the random variables are hidden and we compute expected
counts. For a single example Q:

– Expectation: computes E[cik0|Q] and E[cik1|Q] for all rules Ci and k =
1, . . . , ni−1, where cikx is the number of times a variable Xijk takes value x
for x ∈ {0, 1}, with j in g(i). E[cikx|Q] is given by

∑
j∈g(i) P (Xijk = x|Q).

– Maximization: computes πik for all rules Ci and k = 1, . . . , ni − 1.

πik =
E[cik1|Q]

E[cik0|Q] + E[cik1|Q]
(2)

If we have more than one example the contributions of each example simply sum
up when computing E[cijx].

EM over Binary Decision Diagrams for Probabilistic Logic Programs 233

P (Xijk = x|Q) is given by P (Xijk = x|Q) = P (Xijk=x,Q)
P (Q) with

P (Xijk = x,Q) =
∑

σ∈ST

P (Q,Xijk = x, σ)

=
∑

σ∈ST

P (Q|σ)P (Xijk = x|σ)P (σ)

=
∑

σ∈E(Q)

P (Xijk = x|σ)P (σ)

where P (Xijk = 1|σ) = 1 if (Ci, θj , k) ∈ σ for k = 1, . . . , ni − 1 and 0 otherwise.
Since there is a one to one correspondence between the possible worlds where

Q is true and the paths to a 1 leaf in a Binary Decision Tree (a MDT with binary
variables),

P (Xijk = x,Q) =
∑

ρ∈R(Q)

P (Xijk = x|ρ)
∏

d∈ρ
π(d)

where ρ is a path, and if σ corresponds to ρ, then P (Xijk = x|σ)=P (Xijk = x|ρ).
R(Q) is the set of paths in the BDD for query Q that lead to a 1 leaf, d is an
edge of ρ and π(d) is the probability associated to the edge: if d is the 1-branch
from a node associated to a variable Xijk, then π(d) = πik, if d is the 0-branch
from a node associated to a variable Xijk, then π(d) = 1− πik.

Now consider a BDT in which only the merge rule is applied, fusing together
identical sub-diagrams. The resulting diagram, that we call Complete Binary
Decision Diagram (CBDD), is such that every path contains a node for every
level. For a CBDD, P (Xijk = x,Q) can be further expanded as

P (Xijk = x,Q) =
∑

ρ∈R(Q),(Xijk=x)∈ρ

∏

d∈ρ
π(d)

where (Xijk = x) ∈ ρ means that ρ contains an x-edge from a node associated
to Xijk. We can then write

P (Xijk = x,Q) =
∑

n∈N(Q),v(n)=Xijk,ρn∈Rn(Q),ρn∈Rn(Q,x)

∏

d∈ρn

π(d)
∏

d∈ρn

π(d)

where N(Q) is the set of nodes of the CBDD, v(n) is the variable associated to
node n, Rn(Q) is the set containing the paths from the root to n and Rn(Q, x)
is the set of paths from n to the 1 leaf through its x-child.

P (Xijk = x,Q) =
∑

n∈N(Q),v(n)=Xijk

∑

ρn∈Rn(Q)

∑

ρn∈Rn(Q,x)

∏

d∈ρn

π(d)
∏

d∈ρn

π(d)

=
∑

n∈N(Q),v(n)=Xijk

∑

ρn∈Rn(Q)

∏

d∈ρn

π(d)
∑

ρn∈Rn(Q,x)

∏

d∈ρn

π(d)

=
∑

n∈N(Q),v(n)=Xijk

F (n)B(childx(n))πikx

234 Elena Bellodi, Fabrizio Riguzzi

where πikx is πik if x=1 and (1−πik) if x=0. F (n) is the forward probability [10],
the probability mass of the paths from the root to n, while B(n) is the backward
probability [10], the probability mass of paths from n to the 1 leaf. If root is the
root of a tree for a query Q then B(root) = P (Q).

The expression F (n)B(childx(n))πikx represents the sum of the probabilities
of all the paths passing through the x-edge of node n and is indicated with ex(n).
Thus

P (Xijk = x,Q) =
∑

n∈N(Q),v(n)=Xijk

ex(n) (3)

For the case of a BDD, i.e., a diagram obtained by applying also the deletion rule,
Formula 3 is no longer valid since also paths where there is no node associated to
Xijk can contribute to P (Xijk = x,Q). These paths might have been obtained
from a BDD having a node m associated to variable Xijk that is a descendant
of node n along the 0-branch and whose outgoing edges both point to child0(n).
The correction of formula (3) to take into account this aspect is applied in the
Expectation step.

EMBLEM’s main procedure consists of a cycle in which the procedures Ex-
pectation and Maximization are repeatedly called. Procedure Expectation
returns the log likelihood of the data that is used in the stopping criterion:
EMBLEM stops when the difference between the log likelihood of the current
iteration and the one of the previous iteration drops below a threshold ε or when
this difference is below a fraction δ of the current log likelihood.

Procedure Expectation takes as input a list of BDDs, one for each example,
and computes the expectations for each one, i.e. P (Xijk = x,Q) for all variables
Xijk in the BDD and values x ∈ {0, 1}. In the procedure we use ηx(i, k) to
indicate

∑
j∈g(i) P (Xijk = x,Q). Expectation first calls GetForward and

GetBackward that compute the forward, the backward probability of nodes
and ηx(i, k) for non-deleted paths only. Then it updates ηx(i, k) to take into
account deleted paths. The expectations are updated in this way: for all rules i
and for k = 1 to ni − 1, E[cikx] = E[cikx] + ηx(i, k)/P (Q).

Procedure Maximization computes the parameters values for the next EM
iteration, as specified in (2).

Procedure GetForward traverses the diagram one level at a time starting
from the root level, where F(root)=1, and for each node n it computes its contri-
bution to the forward probabilities of its children. Then the forward probabilities
of both children are updated in this way: F (childx(node)) = F (childx(node)) +
F (node) · πikx.

Function GetBackward computes the backward probability of nodes by
traversing recursively the tree from the leaves to the root. When the calls of
GetBackward for both children of a node n return, we have all the information
that is needed to compute the ex values and the value of ηx(i, k) for non-deleted
paths. An array ς is used here to store the contributions of the deleted paths by
starting from the root level and accumulating ς(l) for the various levels l.

A fully detailed description of EMBLEM together with an example of its
execution can be found in [1].

EM over Binary Decision Diagrams for Probabilistic Logic Programs 235

4 Related Works

Our work has close connection with various other works. [9,10] proposed an EM
algorithm for learning the parameters of Boolean random variables given obser-
vations of the values of a Boolean function over them, represented by a BDD.
EMBLEM is an application of that algorithm to probabilistic logic programs. In-
dependently, also [26] proposed an EM algorithm over BDD to learn parameters
for the CPT-L language.[7] presented the CoPrEM algorithm that performs
EM over BDDs for the ProbLog language.

Approaches for learning probabilistic logic programs can be classified into
three categories: those that employ constraint techniques (such as [16,18]), those
that use EM and those that adopt gradient descent.

Among the approaches that use EM, [12] first proposed to use it to induce pa-
rameters and the Structural EM algorithm to induce ground LPADs structures.
Their EM algorithm however works on the underlying Bayesian network. RIB
[20] performs parameter learning using the information bottleneck approach,
which is an extension of EM targeted especially towards hidden variables. The
PRISM system [21,22] is one of the first learning algorithms based on EM.

Among the works that use a gradient descent technique, LeProbLog [5,6]
finds the parameters of a ProbLog program that minimize the Mean Squared
Error of the probability of queries and uses BDD to compute the gradient.

Alchemy [15] is a state of the art SRL system that offers various tools for infer-
ence, weight learning and structure learning of Markov Logic Networks (MLNs).
MLNs differ significantly from the languages under the distribution semantics
since they extend first-order logic by attaching weights to logical formulas, re-
flecting “how strong” they are, but do not allow to exploit logic programming
techniques.

5 Experiments

EMBLEM has been tested over three real world datasets: IMDB1, UW-CSE2 [23]
and Cora3 [23]. We implemented EMBLEM in Yap Prolog4 and we compared it
with RIB [20]; CEM, an implementation of EM based on the cplint inference li-
brary [17,19]; LeProblog [5,6] and Alchemy [15]. All experiments were performed
on Linux machines with an Intel Core 2 Duo E6550 (2333 MHz) processor and
4 GB of RAM.

To compare our results with LeProbLog we exploited the translation of
LPADs into ProbLog proposed in [3], for Alchemy we exploited the translation
between LPADs and MLNs used in [20].

For the probabilistic logic programming systems (EMBLEM, RIB, CEM and
LeProbLog) we consider various options. The first consists in choosing between
1 http://alchemy.cs.washington.edu/data/imdb
2 http://alchemy.cs.washington.edu/data/uw-cse
3 http://alchemy.cs.washington.edu/data/cora
4 http://www.dcc.fc.up.pt/~vsc/Yap

236 Elena Bellodi, Fabrizio Riguzzi

associating a distinct random variable to each grounding of a probabilistic clause
or a single random variable to a non-ground probabilistic clause expressing
whether the clause is used or not. The latter case makes the problem easier. The
second option is concerned with imposing a limit on the depth of derivations
as done in [6], thus eliminating explanations associated to derivations exceed-
ing the depth limit. This is necessary for problems that contain cyclic clauses,
such as transitive closure clauses. The third option involves setting the num-
ber of restarts for EM based algorithms. All experiments for probabilistic logic
programming systems have been performed using open-world predicates.

IMDB regards movies, actors, directors and movie genres and it is divided
into five mega-examples. We performed training on four mega-examples and test-
ing on the remaining one. Then we drew a Precision-Recall curve and computed
the Area Under the Curve (AUCPR) using the method reported in [2]. We de-
fined 4 different LPADs, two for predicting the target predicate sameperson/2,
and two for predicting samemovie/2. We had one positive example for each fact
that is true in the data, while we sampled from the complete set of false facts
three times the number of true instances in order to generate negative examples.

For predicting sameperson/2 we used the same LPAD of [20]:

sameperson(X,Y):p:- movie(M,X),movie(M,Y).
sameperson(X,Y):p:- actor(X),actor(Y),workedunder(X,Z),

workedunder(Y,Z).
sameperson(X,Y):p:- gender(X,Z),gender(Y,Z).
sameperson(X,Y):p:- director(X),director(Y),genre(X,Z),genre(Y,Z).

where p is a placeholder meaning the parameter must be learned. We ran EM-
BLEM on it with the following settings: no depth bound, random variables
associated to instantiations of clauses and a number of restarts chosen to match
the execution time of EMBLEM with that of the fastest other algorithm.

The queries that LeProbLog takes as input are obtained by annotating with
1.0 each positive example for sameperson/2 and with 0.0 each negative exam-
ple for sameperson/2. We ran LeProbLog for a maximum of 100 iterations or
until the difference in Mean Squared Error (MSE) between two iterations got
smaller than 10−5; this setting was used in all the following experiments as well.
For Alchemy we always used the preconditioned rescaled conjugate gradient dis-
criminative algorithm [11]. For this experiments we specified sameperson/2 as
the only non-evidence predicate.

A second LPAD has been created to evaluate the performance of the algo-
rithms when some atoms are unseen:

sameperson_pos(X,Y):p:- movie(M,X),movie(M,Y).
sameperson_pos(X,Y):p:- actor(X),actor(Y),

workedunder(X,Z),workedunder(Y,Z).
sameperson_pos(X,Y):p:- director(X),director(Y),genre(X,Z),

genre(Y,Z).
sameperson_neg(X,Y):p:- movie(M,X),movie(M,Y).
sameperson_neg(X,Y):p:- actor(X),actor(Y),

EM over Binary Decision Diagrams for Probabilistic Logic Programs 237

workedunder(X,Z),workedunder(Y,Z).
sameperson_neg(X,Y):p:- director(X),director(Y),genre(X,Z),

genre(Y,Z).
sameperson(X,Y):p:- \+ sameperson_pos(X,Y), sameperson_neg(X,Y).
sameperson(X,Y):p:- \+ sameperson_pos(X,Y),\+ sameperson_neg(X,Y).
sameperson(X,Y):p:- sameperson_pos(X,Y), sameperson_neg(X,Y).
sameperson(X,Y):p:- sameperson_pos(X,Y), \+ sameperson_neg(X,Y).

The sameperson_pos/2 and sameperson_neg/2 predicates are unseen in the
data. Settings are the same as the ones for the previous LPAD. In this experiment
Alchemy was run with the −withEM option that turns on EM learning.

Table 1 shows the AUCPR averaged over the five folds for EMBLEM, RIB,
LeProbLog, CEM and Alchemy. Results for the two LPADs are shown respec-
tively in the IMDB-SP and IMDBu-SP rows. Table 2 shows the learning times
in hours.

For predicting samemovie/2 we used the LPAD:

samemovie(X,Y):p:- movie(X,M),movie(Y,M),actor(M).
samemovie(X,Y):p:- movie(X,M),movie(Y,M),director(M).
samemovie(X,Y):p:- movie(X,A),movie(Y,B),actor(A),director(B),

workedunder(A,B).
samemovie(X,Y):p:- movie(X,A),movie(Y,B),director(A),director(B),

genre(A,G),genre(B,G).

To test the behaviour when unseen predicates are present, we transformed the
program for samemovie/2 as we did for sameperson/2, thus introducing the
unseen predicates samemovie pos/2 and samemovie neg/2. We ran EMBLEM
on them with no depth bound, one variable for each instantiation of the rules
and one random restart. With regard to LeProbLog and Alchemy, we ran them
with the same settings as IMDB-SP and IMDBu-SP, by replacing sameperson
with samemovie.

Table 1 shows, in the IMDB-SM and IMDBu-SM rows, the average AUCPR
for EMBLEM, LeProblog and Alchemy. For RIB and CEM we obtained a lack of
memory error (indicated with “me”); Table 2 shows the learning times in hours.

The Cora database contains citations to computer science research papers.
For each citation we know the title, authors, venue and the words that appear in
them. The task is to determine which citations are referring to the same paper,
by predicting the predicate samebib(cit1,cit2).

From the MLN proposed in [24]5 we obtained two LPADs. The first contains
559 rules and differs from the direct translation of the MLN because rules in-
volving words are instantiated with the different constants, only positive literals
for the hasword predicates are used and transitive rules are not included:

samebib(B,C):p:- author(B,D),author(C,E),sameauthor(D,E).
samebib(B,C):p:- title(B,D),title(C,E),sametitle(D,E).
samebib(B,C):p:- venue(B,D),venue(C,E),samevenue(D,E).

5 http://alchemy.cs.washington.edu/mlns/er

238 Elena Bellodi, Fabrizio Riguzzi

samevenue(B,C):p:-haswordvenue(B,word_06),haswordvenue(C,word_06).
...
sametitle(B,C):p:-haswordtitle(B,word_10),haswordtitle(C,word_10).
....
sameauthor(B,C):p:- haswordauthor(B,word_a),

haswordauthor(C,word_a).
.....

The dots stand for the rules for all the possible words. The Cora dataset com-
prises five mega-examples each containing facts for the four predicates
samebib/2, samevenue/2, sametitle/2 and sameauthor/2, which have been
set as target predicates. We used as negative examples those contained in the
Alchemy dataset. We ran EMBLEM on this LPAD with no depth bound, a single
variable for each instantiation of the rules and a number of restarts chosen to
match the execution time of EMBLEM with that of the fastest other algorithm.

The second LPAD adds to the previous one four transitive rules of the form

samebib(A,B):p :- samebib(A,C),samebib(C,B).

for every target predicate, for a total of 563 rules. In this case we had to run
EMBLEM with a depth bound equal to two and a single variable for each non-
-ground rule; the number of restarts was one. As for LeProbLog, we separately
learned the four predicates because learning the whole theory at once would
give a lack of memory error. We annotated with 1.0 each positive example for
samebib/2, sameauthor/2, sametitle/2, samevenue/2 and with 0.0 the nega-
tive examples for the same predicates. As for Alchemy we learned weights with
the four predicates as the non-evidence predicates. Table 1 shows in the Cora
and CoraT (Cora transitive) rows the average AUCPR obtained by training on
four mega-examples and testing on the remaining one. CEM and Alchemy on
CoraT gave a lack of memory error while RIB was not applicable because it was
not possible to split the input examples into smaller independent interpretations
as required by RIB.

The UW-CSE dataset contains information about the Computer Science de-
partment of the University of Washington through 22 different predicates, such
as yearsInProgram/2, advisedBy/2, taughtBy/3 and is split into five mega-
-examples. The goal here is to predict the advisedBy/2 predicate, namely the
fact that a person is advised by another person: this was our target predicate.
The negative examples have been generated by considering all couple of persons
(a,b) where a and b appear in an advisedby/2 fact in the data and by adding
a negative example advisedby(a,b) if it is not in the data.

The theory used was obtained from the MLN of [23]6. It contains 86 rules,
such as for instance:

advisedby(S, P) :p :- courselevel(C,level_500),taughtby(C,P,Q),
ta(C, S, Q).

6 http://alchemy.cs.washington.edu/mlns/uw-cse

EM over Binary Decision Diagrams for Probabilistic Logic Programs 239

We ran EMBLEM on it with a single variable for each instantiation of a rule, a
depth bound of two and one random restart.

The annotated queries that LeProbLog takes as input have been created by
annotating with 1.0 each positive example for advisedby/2 and with 0.0 the
negative examples. As for Alchemy, we learned weights with advisedby/2 as
the only non-evidence predicate. Table 1 shows the AUCPR averaged over the
five mega-examples for all the algorithms.

Table 3 shows the p-value of a paired two-tailed t-test at the 5% significance
level of the difference in AUCPR between EMBLEM and RIB/LeProbLog/CEM/
Alchemy (significant differences in bold).

Table 1. Results of the experiments on all datasets. IMDBu refers to the IMDB dataset
with the theory containing unseen predicates. CoraT refers to the theory containing
transitive rules. Numbers in parenthesis followed by r mean the number of random
restarts (when different from one) to reach the area specified. “me” means memory
error during learning. AUCPR is the area under the precision-recall curve averaged
over the five folds. R is RIB, L is LeProbLog, C is CEM, A is Alchemy.

Dataset
AUCPR

EMBLEM R L C A

IMDB-SP 0.202(500r) 0.199 0.096 0.202 0.107

IMDBu-SP 0.175(40r) 0.166 0.134 0.120 0.020

IMDB-SM 1.000 me 0.933 0.537 0.820

IMDBu-SM 1.000 me 0.933 0.515 0.338

Cora 0.995(120r) 0.939 0.905 0.995 0.469

CoraT 0.991 no 0.970 me me

UW-CSE 0.883 0.588 0.270 0.644 0.294

Table 2. Execution time in hours of the experiments on all datasets. R is RIB, L is
LeProbLog, C is CEM and A is Alchemy.

Dataset
Time(h)

EMBLEM R L C A

IMDB-SP 0.01 0.016 0.35 0.01 1.54

IMDBu-SP 0.01 0.0098 0.23 0.012 1.54

IMDB-SM 0.00036 me 0.005 0.0051 0.0026

IMDBu-SM 3.22 me 0.0121 0.0467 0.0108

Cora 2.48 2.49 13.25 11.95 1.30

CoraT 0.38 no 4.61 me me

UW-CSE 2.81 0.56 1.49 0.53 1.95

From the results we can observe that over IMDB EMBLEM has comparable
performances with CEM for IMDB-SP, with similar execution time. On IMDBu-
SP it has better performances than all other systems, with a learning time equal

240 Elena Bellodi, Fabrizio Riguzzi

Table 3. Results of t-test on all datasets. p is the p-value of a paired two-tailed t-test
(significant differences at the 5% level in bold) between EMBLEM and all the others.
R is RIB, L is LeProbLog, C is CEM, A is Alchemy.

Dataset
p

EMBLEM-R EMBLEM-L EMBLEM-C EMBLEM-A

IMDB-SP 0.2167 0.0126 0.3739 0.0134

IMDBu-SP 0.1276 0.1995 0.001 4.5234e-005

IMDB-SM me 0.3739 0.0241 0.1790

IMDBu-SM me 0.3739 0.2780 2.2270e-004

Cora 0.011 0.0729 1 0.0068

CoraT no 0.0464 me me

UW-CSE 0.0054 1.5017e-004 0.0088 4.9921e-004

to the fastest other algorithm. On IMDB-SM it reaches the highest area value
in less time (only one restart is needed). On IMDBu-SM it still reaches the
highest area with one restart but with a longer execution time. Over Cora it has
comparable performances with the best other system CEM but in a significantly
lower time and over CoraT is one of the few systems to be able to complete
learning, with better performances in terms of area and time. Over UW-CSE it
has significant better performances with respect to all the algorithms.

Memory errors, that we encountered with some systems over certain datasets,
have to be ascribed to the memory needs of the systems; for instance, some of
them are not able to manage the LPAD for CoraT because its transitive rules
generate large BDDs.

6 Conclusions

We have proposed a technique which applies an EM algorithm for learning the
parameters of Logic Programs with Annotated Disjunctions. It can be applied
to all languages that are based on the distribution semantics and exploits the
BDDs that are built during inference to efficiently compute the expectations for
hidden variables.

We executed the algorithm over the real datasets IMDB, UW-CSE and Cora,
and evaluated its performances - together with those of four other probabilistic
systems - through the AUCPR and AUCROC. These results show that EM-
BLEM uses less memory than RIB, CEM and Alchemy, allowing it to solve
larger problems, as one can see from Table ?? where, for some datasets, not all
the mentioned algorithms are able to terminate. Moreover its speed allows to
perform a high number of restarts making it escape local maxima and achieve
higher AUCPR.

EMBLEM is available in the cplint package in the source tree of Yap Pro-
log and information on its use can be found at http://sites.google.com/a/
unife.it/ml/emblem.

EM over Binary Decision Diagrams for Probabilistic Logic Programs 241

In the future we plan to extend EMBLEM for learning the structure of LPADs
by combining the standard Expectation Maximization algorithm, which opti-
mizes parameters, with structure search for model selection.

References

1. Bellodi, E., Riguzzi, F.: EM over binary decision diagrams for probabilistic logic
programs. Tech. Rep. CS-2011-01, ENDIF, Università di Ferrara, Italy (2011)

2. Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC
curves. In: Cohen, W.W., Moore, A. (eds.) Proceedings of the 23rd International
Conference on Machine Learning. ACM International Conference Proceeding Se-
ries, vol. 148, pp. 233–240. ACM (2006)

3. De Raedt, L., Demoen, B., Fierens, D., Gutmann, B., Janssens, G., Kimmig, A.,
Landwehr, N., Mantadelis, T., Meert, W., Rocha, R., Santos Costa, V., Thon, I.,
Vennekens, J.: Towards digesting the alphabet-soup of statistical relational learn-
ing. In: Roy, D., Winn, J., McAllester, D., Mansinghka, V., Tenenbaum, J. (eds.)
Proceedings of the 1st Workshop on Probabilistic Programming: Universal Lan-
guages, Systems and Applications, in NIPS (2008)

4. De Raedt, L., Kimmig, A., Toivonen, H.: ProbLog: A probabilistic prolog and its
application in link discovery. In: Veloso, M.M. (ed.) Proceedings of the 20th In-
ternational Joint Conference on Artificial Intelligence. pp. 2462–2467. AAAI Press
(2007)

5. Gutmann, B., Kimmig, A., Kersting, K., Raedt, L.D.: Parameter learning in prob-
abilistic databases: A least squares approach. In: Daelemans, W., Goethals, B.,
Morik, K. (eds.) Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases. LNCS, vol. 5211, pp. 473–488. Springer
(2008)

6. Gutmann, B., Kimmig, A., Kersting, K., Raedt, L.: Parameter estimation in
ProbLog from annotated queries. Tech. Rep. CW 583, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium (2010)

7. Gutmann, B., Thon, I., De Raedt, L.: Learning the parameters of probabilistic
logic programs from interpretations. Tech. Rep. CW 584, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium (June 2010)

8. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating abduc-
tive hypotheses using an em algorithm on bdds. In: Boutilier, C. (ed.) Proceedings
of the 21st International Joint Conference on Artificial Intelligence (IJCAI). pp.
810–815. Morgan Kaufmann Publishers Inc. (2009)

9. Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the em algo-
rithm by bdds. In: Zelezn, F., Lavra, N. (eds.) Late Breaking Papers of the 18th
International Conference on Inductive Logic Programming. pp. 44–49 (2008)

10. Ishihata, M., Kameya, Y., Sato, T., Minato, S.: Propositionalizing the em algorithm
by bdds. Tech. Rep. TR08-0004, Dept. of Computer Science, Tokyo Institute of
Technology (2008)

11. Lowd, D., Domingos, P.: Efficient weight learning for Markov logic networks. In:
Kok, J.N., Koronacki, J., de Mántaras, R.L., Matwin, S., Mladenic, D., Skowron, A.
(eds.) Proceedings of the 18th European Conference on Machine Learning. LNCS,
vol. 4702, pp. 200–211. Springer (2007)

12. Meert, W., Struyf, J., Blockeel, H.: Learning ground CP-Logic theories by leverag-
ing Bayesian network learning techniques. Fundamenta Informaticae 89(1), 131–
160 (2008)

242 Elena Bellodi, Fabrizio Riguzzi

13. Neapolitan, R.: Learning Bayesian Networks. Prentice Hall, Upper Saddle River,
NJ (2003)

14. Poole, D.: The Independent Choice Logic for modelling multiple agents under
uncertainty. Artificial Intelligence 94(1-2), 7–56 (1997)

15. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2),
107–136 (2006)

16. Riguzzi, F.: ALLPAD: Approximate learning of logic programs with annotated
disjunctions. In: Muggleton, S., Otero, R.P., Tamaddoni-Nezhad, A. (eds.) Pro-
ceedings of the 16th International Conference on Inductive Logic Programming.
LNCS, vol. 4455, pp. 43–45. Springer (2007)

17. Riguzzi, F.: A top-down interpreter for LPAD and CP-Logic. In: Basili, R.,
Pazienza, M.T. (eds.) Proceedings of the 10th Congress of the Italian Association
for Artificial Intelligence. LNCS, vol. 4733, pp. 109–120. Springer (2007)

18. Riguzzi, F.: ALLPAD: approximate learning of logic programs with annotated
disjunctions. Machine Learning 70(2-3), 207–223 (2008)

19. Riguzzi, F.: Extended semantics and inference for the Independent Choice Logic.
Logic Journal of the IGPL 17(6), 589–629 (2009)

20. Riguzzi, F., Mauro, N.D.: Applying the information bottleneck to statistical rela-
tional learning. Machine Learning (2011), to appear

21. Sato, T.: A statistical learning method for logic programs with distribution se-
mantics. In: Sterling, L. (ed.) Proceedings of the 12th International Conference on
Logic Programming. pp. 715–729. MIT Press (1995)

22. Sato, T., Kameya, Y.: Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research 15, 391–454 (2001)

23. Singla, P., Domingos, P.: Discriminative training of Markov logic networks. In:
Veloso, M.M., Kambhampati, S. (eds.) Proceedings of the 20th National Confer-
ence on Artificial Intelligence and the 17th Innovative Applications of Artificial
Intelligence Conference. pp. 868–873. AAAI Press/The MIT Press (2005)

24. Singla, P., Domingos, P.: Entity resolution with Markov logic. In: Proceedings
of the 6th IEEE International Conference on Data Mining. pp. 572–582. IEEE
Computer Society (2006)

25. Thayse, A., Davio, M., Deschamps, J.P.: Optimization of multivalued decision
algorithms. In: International Symposium on Multiple-Valued Logic. pp. 171–178.
IEEE Computer Society Press (1978)

26. Thon, I., Landwehr, N., Raedt, L.D.: A simple model for sequences of relational
state descriptions. In: Daelemans, W., Goethals, B., Morik, K. (eds.) Proceedings
of the European conference on Machine Learning and Knowledge Discovery in
Databases (ECML/PKDD 2008)- Part II. Lecture Notes in Computer Science,
vol. 5212, pp. 506–521. Springer-Verlag (2008)

27. Vennekens, J., Denecker, M., Bruynooghe, M.: Cp-logic: A language of causal prob-
abilistic events and its relation to logic programming. Theory and Practice of Logic
Programming 9(3), 245–308 (2009)

28. Vennekens, J., Verbaeten, S.: Logic programs with annotated disjunctions. Tech.
Rep. CW386, Department of Computer Science, Katholieke Universiteit Leuven,
Belgium (2003)

29. Vennekens, J., Verbaeten, S., Bruynooghe, M.: Logic programs with annotated
disjunctions. In: Demoen, B., Lifschitz, V. (eds.) Proceedings of the 20th Interna-
tional Conference on Logic Programming. LNCS, vol. 3131, pp. 195–209. Springer
(2004)

EM over Binary Decision Diagrams for Probabilistic Logic Programs 243

Synthesizing Concurrent Programs using

Answer Set Programming

Emanuele De Angelis1, Alberto Pettorossi2, and Maurizio Proietti3

1 Dipartimento di Scienze, University ‘G. D’Annunzio’, Pescara, Italy
deangelis@sci.unich.it

2 DISP, University of Rome Tor Vergata, Italy
pettorossi@disp.uniroma2.it

3 CNR-IASI, Rome, Italy
proietti@iasi.cnr.it

Abstract. We address the problem of the automatic synthesis of con-
current programs within a framework based on Answer Set Programming
(ASP). The concurrent program to be synthesized is specified by provid-
ing both the behavioural and the structural properties it should satisfy.
Behavioural properties, such as safety and liveness properties, are speci-
fied by using formulas of the Computation Tree Logic, which are encoded
as a logic program. Structural properties, such as the symmetry of pro-
cesses, are also encoded as a logic program. Then, the program which is
the union of these two encodings, is given as input to an ASP system
which returns as output a set of answer sets. Finally, each answer set is
decoded into a synthesized program that, by construction, satisfies the
desired behavioural and structural properties.

1 Introduction

We consider concurrent programs consisting of finite sets of processes which
interact with each other through communication protocols. Such protocols are
based on a set of instructions, called synchronization instructions, operating on
shared variables ranging over finite domains. The communication protocols are
realized in a distributed manner, that is, every process includes one or more
regions of code consisting of synchronization instructions, responsible for the
interaction between processes.

Even for a small number of processes, communication protocols which guar-
antee a desired behaviour of the concurrent programs may be hard to design. In
this paper we propose a method for automatically synthesizing correct concur-
rent programs starting from the formal specification of their desired behaviour.

Methods for the automatic synthesis of concurrent programs from temporal
logic specifications have been proposed in the past by Clarke and Emerson [6],
Manna and Wolper [16], and Attie and Emerson [1,2]. All these authors reduce
the task of synthesizing a concurrent program to the task of synthesizing the
synchronization instructions of each process. We follow their approach and ev-
erything which is irrelevant to the synchronization among processes, is abstracted
away and each process is considered to be a finite state automaton.

We introduce a framework, based on logic programming, for the automatic
synthesis of concurrent programs. We assume that the behavioural properties of
the concurrent programs, such as safety and liveness properties, are specified
by using formulas of the Computation Tree Logic (CTL for short), which is a
very popular propositional temporal logic over branching time structures (see, for
instance, [5,6]). This temporal, behavioural specification ϕ is encoded as a set Πϕ

of clauses. We also assume that the processes to be synthesized satisfy suitable
structural properties, such as a symmetry property, and that those properties can
be encoded as a set ΠΣ of clauses. Structural properties cannot be easily specified
by using CTL formulas and we use, instead, a simple algebraic structure that
we will present in the paper. Thus, the specification of a concurrent program to
be synthesized consists of a logic program Π = Πϕ ∪ΠΣ which encodes both the
behavioural and the structural properties that the concurrent program should
satisfy.

We show that every answer set (that is, every stable model) of the program Π
represents a concurrent program satisfying the given specification. Thus, by using
an Answer Set Programming (ASP) system, such as DLV [9] or smodels [20],
which computes the answer sets of logic programs, we can synthesize concurrent
programs which enjoy some desired properties.

We have performed some synthesis experiments and, in particular, we have
synthesized some mutual exclusion protocols which are guaranteed to enjoy var-
ious properties, such as (i) bounded overtaking, (ii) absence of starvation, and
(iii) maximal reactivity (their formal definition will be given in the paper). We
finally compare our results with those presented in [1,2,12].

The paper is structured as follows. In Section 2 we recall some preliminary
notions and terminology. In Section 3 we present our framework for synthesizing
concurrent programs and we define the notion of a symmetric concurrent pro-
gram. In Section 4 we describe our synthesis procedure and the logic program
which we use for the synthesis. In Section 5 we present some examples of syn-
thesis of symmetric concurrent programs. Finally, in Section 6 we discuss the
related work and some topics that can be investigated in the future.

2 Preliminaries

Let us recall some basic notions and terminology we will use. We present: (i) the
syntax of (a variant of) the guarded commands [7] which are used for defining
concurrent programs, (ii) some basic notions of group theory which are required
for defining symmetric concurrent programs, (iii) the syntax and the semantics
of the Computation Tree Logic, and (iv) the syntax and the semantics of Answer
Set Programming, which is the framework we use for our synthesis method.
Guarded commands. In our variant of the guarded commands we consider two
basic sets: (i) variables, v in Var , each ranging over a finite domain Dv, and
(ii) guards, g in Guard , of the form: g ::= true | false | v = d | ¬ g | g1 ∧∧ g2,
with v ∈ Var and d ∈ Dv. We also have the following derived sets whose def-
initions are mutually recursive: (iii) commands, c in Command , of the form:

246 Emanuele De Angelis, Alberto Pettorossi, Maurizio Proietti

c ::= skip | v := d | c1 ; c2 | if gc fi | do gc od , where ‘;’ denotes the sequential
composition of commands, and (iv) guarded commands, gc in GCommand , of
the form: gc ::= g→ c | gc1 8 gc2 , where ‘8’ denotes the parallel composition of
guarded commands.

The execution of if gc1 8 . . . 8 gcn fi is performed as follows: one of the
guarded commands g→ c in {gc1, . . . , gcn} whose guard g evaluates to true is
chosen, then c is executed; otherwise, if no guard in {gc1, . . . , gcn} evaluates to
true then the whole command if . . . fi terminates with failure.

The execution of do gc1 8 . . . 8 gcn od is performed as follows: one of the
guarded commands g → c in {gc1, . . . , gcn} whose guard g evaluates to true is
chosen, then c is executed and the whole command do . . . od is executed again;
otherwise, if no guard in {gc1, . . . , gcn} evaluates to true then the execution
proceeds with the next command.
Symmetric Groups. A group G is a pair 〈S , ◦〉, where S is given a set and ◦ is
a binary operation on S satisfying the following axioms: (i) ∀x, y ∈ S. x ◦ y ∈
S (closure), (ii) ∀x , y, z ∈ S . (x ◦ y) ◦ z =x ◦ (y ◦ z) (associativity), (iii) ∃e ∈
S. ∀x ∈ S.e ◦ x = x ◦ e = x (identity element), and (iv) ∀x ∈ S. ∃y ∈ S. x ◦ y =
y ◦ x = e (inverse element). The order of a group G is the cardinality of S. For
any x ∈ S, for any n ≥ 0, we write xn to denote the term x ◦ . . . ◦ x with n
occurrences of x. We stipulate that x0 is e.

A group G is said to be cyclic iff there exists an element x ∈ S, called a
generator, such that S = {xn | n ≥ 0}. We write Gx to denote the cyclic group
generated by x.

We denote by Perm(S) the set of all permutations (that is, bijections) on
the set S. Perm(S) is a group whose operation ◦ is function composition and the
identity e is the identity permutation, denoted id. The order of a permutation p
on a finite set S is the smallest natural number n such that pn = id .
Computation Tree Logic. Computation Tree Logic (CTL) is a propositional
branching time temporal logic [5].

Let Elem be a finite set of elementary propositions ranged over by b. The
syntax of a CTL formula ϕ is as follows:

ϕ ::= b | ϕ1 ∧∧ ϕ2 | ¬ϕ | EXϕ | EGϕ | E[ϕ1 U ϕ2]
Let us introduce the following abbreviations: (i) ϕ1 ∨∨ ϕ2 for ¬(¬ϕ1 ∧∧ ¬ϕ2),
(ii) EFϕ for E[true U f] (iii) AGϕ for ¬EF¬ϕ, (iv) AFϕ for ¬EG¬ϕ, (v) A[ϕ1 U ϕ2]
for ¬E[¬ϕ2 U (¬ϕ1 ∧∧ ¬ϕ2)] ∧∧ ¬EG¬ϕ2, (vi) AX ϕ for ¬EX¬ϕ, (vii) A[ϕ1 R ϕ2]
for ¬E[¬ϕ1 U¬ϕ2], and (viii) E[ϕ1 R ϕ2] for ¬A[¬ϕ1 U¬ϕ2].

We define the semantics of CTL by giving a Kripke structureK = 〈S, S0, λ, R〉,
where: (i) S is a finite set of states, (ii) S0 ⊆ S is a set of initial states,
(iii) R ⊆ S × S is a total transition relation (thus, ∀u ∈ S, ∃v∈S, 〈u, v〉 ∈R),
and (iv) λ :S→P(Elem) is a total, labelling function that assigns to every state
s ∈ S a subset λ(s) of the set Elem .

For reasons of simplicity, when the set of the initial states is a singleton {u},
we will feel free to identify {u} with u.

A path π in K from a state is an infinite sequence 〈s0, s1, . . .〉 of states such
that, for all i ≥ 0, 〈si, si+1〉 ∈ R. For i≥ 0, we denote by πi the i-th element

Synthesizing Concurrent Programs using Answer Set Programming 247

of π. The fact that a CTL formula ϕ holds in a state s of a Kripke structure K
will be denoted by K, s � ϕ. For any CTL formula ϕ and state s, we define the
relation K, s � ϕ as follows:
K, s � b iff b ∈ λ(s)
K, s � ¬ϕ iff K, s � ϕ does not hold
K, s � ϕ1 ∧∧ ϕ2 iff K, s � ϕ1 and K, s � ϕ2

K, s � EXϕ iff there exists 〈s, t〉 ∈ R such that K, t � ϕ
K, s � E[ϕ1 U ϕ2] iff there exists a path π = 〈s, s1, . . .〉 in K and i≥0

such that K, πi � ϕ2 and for all 0≤j <i, K, πj � ϕ1

K, s � EGϕ iff there exists a path π such that
π0 =s and for all i≥0, K, πi � ϕ

2.1 Answer Set Programming

Answer set programming (ASP) is a declarative programming paradigm based
on the answer set semantics of logic programs [10,14]. We assume the version of
ASP with function symbols [3]. Now let us recall some basic definitions of ASP.
For those not recalled here we refer to [3,10,14,15]. A rule r is an implication of
the form:

a1 ∨∨ . . . ∨∨ ak ← ak+1 ∧∧ . . . ∧∧ am ∧∧ notam+1 ∧∧ . . . ∧∧ notan

where a1, . . . , ak, . . . , an (for k≥0, n≥k) are atoms and ‘not’ denotes negation as
failure [11]. Given a rule r, we define the following sets: head(r) = {a1, . . . , ak},
pos(r) = {ak+1, . . . , am}, and neg(r) = {am+1, . . . , an}. An integrity constraint
is a rule r such that head(r) = ∅. A logic program is a set of rules. When we
write a rule with variables, we actually mean all the ground instances of that
rule.

An interpretation I of a program Π is a subset of the Herbrand base. The
Gelfond-Lifschitz transformation of a program Π with respect to an interpreta-
tion I is the program ΠI = {head(r)← pos(r) | r ∈ Π ∧∧ neg(r) ∩ I = ∅}. An
interpretation M is said to be an answer set of Π iff M is the least Herbrand
model of ΠM . The answer set semantics of Π assigns to Π a set of answer sets,
denoted ans(Π). Given an answer set M ∈ ans(Π) and an atom a, we write
M |= a to denote that a ∈M .

3 Specifying Concurrent Programs

Let P = {P1, . . . , Pk} be a finite set of processes. With every process Pi ∈ P
we associate a variable si, called the local state, ranging over a finite domain L,
which is the same for all processes. The variable si can be tested and modified
by Pi only. All processes may test and modify also a shared variable x, which
ranges over a finite domain D.

A concurrent program consists of a finite set P of processes that are executed
in parallel and interact with each other through a communication protocol re-
alized by a set of commands acting on the shared variable x. Here is the formal
definition of a concurrent program.

248 Emanuele De Angelis, Alberto Pettorossi, Maurizio Proietti

Definition 1 (k-Process Concurrent Program). Let L be a set of local
states and D be a domain of the shared variable x. For any k > 1, a k -process
concurrent program C is a command of the form:

C : s1 := l1; . . . ; sk := lk; x :=d0; do P1 8 . . . 8 Pk od

where s1, . . . , sk, x ∈Var , l1, . . . , lk ∈L, and d0∈D.
Every process Pi in P1 8 . . . 8 Pk is a guarded command of the form:

Pi : true → if gc1 8 . . . 8 gcn fi

Every guarded command gc in gc1 8 . . . 8 gcn is of the form:

gc : si = l ∧∧ x=d → si := l′; x :=d′;

where l, l′ ∈ L and d, d′ ∈ D. �

We shall use the guarded command si = l ∧∧ x = d → skip as a shorthand for
si = l ∧∧ x= d → si := l; x := d. The command s1 := l1; . . . ; sk := lk; x := d0; is
called initialization of C.

Example 1. Let L be the set {t, u} and D be the set {0, 1}. A 2-process concur-
rent program C is:

s1 := t; s2 := t; x := 0 ; do P1 8 P2 od

where P1 and P2 are defined as follows:

P1 : true → if P2 : true → if
s1=t ∧∧ x=0→ s1 :=u; x :=0; s2=t ∧∧ x=1→ s2 :=u; x :=1;

8 s1=t ∧∧ x=1→ skip; 8 s2=t ∧∧ x=0→ skip;
8 s1=u ∧∧ x=0→ s1 :=t; x :=1; 8 s2=u ∧∧ x=1→ s2 :=t; x :=0;

fi fi

This program is the familiar program for two processes, each of which either
‘thinks’ in its noncritical section (si =t) or ‘uses a resource’ in its critical section
(si = u). The shared variable x gives each process its turn to enter the critical
section: if x=0, process P1 is in its critical section, and if x=1, process P2 is in
its critical section. �

Now we introduce the semantics of concurrent programs by using Kripke
structures. We model a state u of a k-process concurrent program C by a
(k+1)-tuple 〈l1, . . . , lk, d〉, where: (i) the first k components are the values of
the local state variables s1, . . . , sk, and (ii) d is the value of the shared vari-
able x.

Definition 2 (Kripke Structure Associated with a k-Process Concur-
rent Program). Let C be a k -process concurrent program of the form

C : s1 := l1; . . . ; sk := lk; x :=d0; do P1 8 . . . 8 Pk od

where the li’s belong to L and d0 belongs to D. The Kripke structure K associated
with C is the 4-tuple 〈S, S0, R, λ〉, where:
(i) the set S of states is Lk ×D,
(ii) the set S0 of initial states is the singleton {〈l1, . . . , lk, d0〉},

Synthesizing Concurrent Programs using Answer Set Programming 249

(iii) the set R ⊆ S×S of transitions
{〈u, v〉 | i, j∈{1, . . . , k} ∧∧ si = l ∧∧ x=d→ si := l′; x :=d′ in Pi ∧∧

u(si)= l ∧∧ u(x)=d ∧∧ v(si)= l′ ∧∧ v(x)=d′ ∧∧ u 6= v ∧∧
∀j 6= i, u(sj)=v(sj)},

where for all states t∈S, for all variables x∈Var , t(x) denotes the value of
the variable x in t, and

(iv) for all states t of the form 〈l1, . . . , lk, d〉, the value λ(t) is defined to be
{s1 = l1, . . . , sk = lk, x=d}.
The set Elem of the elementary propositions is the set

⋃
t∈S λ(t). �

We make the following assumptions about k -process concurrent programs.
(i) Since, by definition, the transition relation R of any Kripke structure is total,
we have that every concurrent program C we consider, is nonterminating, in the
sense that, in every state there exists a process Pi of C and a guarded command
g→c of Pi such that: (i.1) g evaluates to true, and (i.2) c cannot be abbreviated
to skip. This assumption restricts the class of concurrent programs we consider.
(ii) Every k-process concurrent program consists of deterministic processes, that
is, for i=1, . . . , k, in every state, at most one guard of the guarded commands
of process Pi evaluates to true (a similar assumption is made in [17]).

Note that the usual assumption that every guarded command is executed
atomically (in the sense that only one process at a time among the processes of a
concurrent program is selected and executed) is taken into account in an implicit
way when constructing the transition relation R of the Kripke structure.

Example 2. Given the 2-process symmetric concurrent program C of Example 1,
the associated Kripke structure 〈S, {s0}, R, λ〉 is depicted in Figure 1. We depict
it as a graph whose nodes are the states in S and whose edges represent the
transitions in R. The set S of states includes the four state depicted in Figure 1
and also the states 〈t, u, 0〉, 〈u, t, 1〉, 〈u, u, 0〉, and 〈u, u, 1〉, which have not been
depicted because they are not reachable from the initial state 〈t, t, 0〉. Each
transition from state u to state v is associated with the guarded command g → c
whose guard g evaluates to true in u. For the labelling function λ, we have that
λ(〈t, t, 0〉) is {s1 =t, s2=t, x=0} and, similarly, for the other states. �

Having defined the Kripke structure associated with a given program, now
we can define the notion of a program satisfying a given behavioural property.

Definition 3 (Satisfaction relation for a Concurrent Program). Let C
be a k -process concurrent program, K be the Kripke structure associated with C,
s0 be the initial state of K, and ϕ be a CTL formula. We say that C satisfies ϕ,
denoted C |= ϕ, iff K, s0 |= ϕ. �

Example 3. Let us consider the 2-process concurrent program C defined in Ex-
ample 1. We associate with the local states t (short for ‘think’) and u (short for
‘use’) two regions of code, called the noncritical section and the critical section,
respectively. We require that the region of code associated with state u should
be executed in a mutually exclusive way. This is formalized by the CTL formula

250 Emanuele De Angelis, Alberto Pettorossi, Maurizio Proietti

〈u, t, 0〉

〈t, t, 0〉 〈t, t, 1〉

〈t, u, 1〉

s1 =t ∧∧ x=0 → s1 :=u; x :=0 s1 =u ∧∧ x=0 → s1 :=t; x :=1

s2 =t ∧∧ x=1 → s2 :=u; x :=1s2 =u ∧∧ x=1 → s2 :=t; x :=0

Fig. 1. The transition relation R of the Kripke structure K = 〈S, {s0}, R, λ〉 associated
with the concurrent program C of Example 1. The initial state s0 is 〈t, t, 0〉. The arcs
are labelled by the guarded commands which are responsible for the transition.

ϕ =def AG[¬(s1 = u ∧∧ s2 = u)], and we have that C |= ϕ holds because for
the Kripke structure K of Example 2 (see Figure 1), we have that K, s0 |= ϕ
(indeed, there is no path starting from the initial state s0 = 〈t, t, 0〉 which leads
the system to either the state 〈u, u, 0〉 or the state 〈u, u, 1〉). �

Often, in our setting a k -concurrent program consists of symmetric processes,
the symmetry being determined by the fact that, for any two processes Pi and Pj ,
for i 6=j, we have that Pj can be obtained from Pi by permuting the values of the
shared variable x in the guarded commands. Indeed, as shown in Example 1, the
guarded commands in P2 can be obtained from those in P1 by interchanging 0
and 1. In practice, the property of symmetry is very common in many concur-
rent programs, and our task is precisely the one of automatically synthesizing
symmetric processes. This observation motivates a notion of symmetry which we
now introduce by using cyclic groups. A similar approach has been followed for
the automated verification of concurrent systems in [8].

Definition 4 (k-Generating Function). Given an integer k>1, and a finite
domain D, we say that f ∈Perm(D) is a k-generating function iff either f = id
or f is a generator of a cyclic group Gf = {id , f, f2, . . . , fk−1} of order k. �

Let us introduce the following notation. Given a guarded command gc of the
form:

si = l ∧∧ x=d → si := l′; x :=d′;
and a k-generating function f , we denote by f(gc) the guarded command:

s(i modk)+1 = l ∧∧ x=f(d) → s(i mod k)+1 := l′; x :=f(d′);

Definition 5 (k-Process Symmetric Concurrent Program). Given a
k-generating function f, a k-process symmetric concurrent program C is a com-
mand of the form:

C : s1 := l0; . . . ; sk := l0; x :=d0; do P1 8 . . . 8 Pk od

where, for all processes Pi, for all guarded commands gc, gc is in Pi iff f(gc) is
in P(i modk)+1 . �

Synthesizing Concurrent Programs using Answer Set Programming 251

Example 4. Let us consider the 2-process concurrent program C of Example 1.
The group Perm(D) of permutations over D = {0, 1} is made out of the fol-
lowing two permutations only: f1 = {〈0, 0〉, 〈1, 1〉} and f2 = {〈0, 1〉, 〈1, 0〉}. The
2-generating function f2 shows that the concurrent program C is symmetric.

P1 : true → if P2 : true → if
s1=t ∧∧ x=0→ s1:=u; x :=0; s2=t ∧∧ x=f2(0)→ s2:=u; x:=f2(0);

8 s1=t ∧∧ x=1→ skip; 8 s2=t ∧∧ x=f2(1)→ skip;
8 s1=u ∧∧ x=0→ s1:=t; x :=1; 8 s2=u ∧∧ x=f2(0)→ s2:=t; x:=f2(1);

fi fi �

By definition, one can generate a k-process symmetric concurrent program C
from one of the processes in C by applying the generating function f . Moreover,
it is often the case that all processes of a given program C also share additional
structural properties, besides those determined by f . For instance, in the case
of Example 4, we have that both process P1 and P2 may move from the local
state t to the local state u, or from t to t, or from u to t. These additional
structural properties define a local transition relation T ⊆ L×L which together
with the k -generating function f , defines a so called symmetric program structure
Σ = 〈f, T 〉. A pair 〈l, l′〉 in T will also be denoted by l 7→ l′.

Our synthesis problem can be defined as follows.

Definition 6 (Synthesis Problem of a k-Process Symmetric Concur-
rent Program). The synthesis problem of a k-process symmetric concurrent
program C starting from: (i) a CTL formula ϕ, and (ii) a symmetric program
structure Σ = 〈f, T 〉, where f is a k-generating function and T is a local tran-
sition relation, consists in finding C such that C |= ϕ holds. �

Note that there exists a CTL formula that characterizes the set of initial
states. In particular, the initial state 〈l1, . . . , lk, d0〉 can be characterized by the
CTL formula s1 = l1 ∧∧ . . . ∧∧ sk = lk ∧∧ x = d0, where we assume that each
conjunct belongs to Elem. However, for reasons of simplicity, we assume that
the initial state s0 is given to our synthesis procedure as an additional input (see
clause 1 of the logic program Πϕ of Definition 7).

4 Synthesising Concurrent Programs

In this section we present our synthesis procedure based on ASP. We encode
the desired behavioural property ϕ of our k -process concurrent program to be
synthesized as a logic programs Πϕ, and the desired structural property Σ as a
logic programs ΠΣ . Programs Πϕ and ΠΣ are defined in the following Definition 7
and 8, respectively.

Definition 7 (Logic program encoding a behavioural property). Let ϕ
be a CTL formula expressing a behavioural property. The logic program Πϕ

encoding ϕ is as follows:
1. ← not sat(s0, ϕ)

252 Emanuele De Angelis, Alberto Pettorossi, Maurizio Proietti

2. sat(U, F)← elem(F, U)
3. sat(U, not(F))← not sat(U, F)
4. sat(U, and(F1, F2))← sat(U, F1) ∧∧ sat(U, F2)
5. sat(U, ex(F))← tr(U, V) ∧∧ sat(V, F)
6. sat(U, eu(F1, F2))← sat(U, F2)
7. sat(U, eu(F1, F2))← sat(U, F1) ∧∧ tr(U, V) ∧∧ sat(V, eu(F1, F2))
8. sat(U, eg(F))← satpath(U, V, F) ∧∧ satpath(V, V, F)
9. satpath(U, V, F)← sat(U, F) ∧∧ tr(U, V) ∧∧ sat(V, F)

10. satpath(U, Z, F)← sat(U, F) ∧∧ tr(U, V) ∧∧ satpath(V, Z, F)
11.1 tr(s(S1, . . . , Sk, X), s(S′

1, . . . , S
′
k, X ′))← reachable(s(S1, . . . , Sk, X)) ∧∧
gc(1, S1, X, S′

1, X
′) ∧∧ 〈S1, X〉 6=〈S′

1, X
′〉

· · ·
11.k tr(s(S1, . . . , Sk, X), s(S′

1, . . . , S
′
k, X ′))← reachable(s(S1, . . . , Sk, X)) ∧∧
gc(k, Sk, X, S′

k, X ′) ∧∧ 〈Sk, X〉 6=〈S′
k, X ′〉

12. ← not out(S) ∧∧ reachable(S)
13. out(S)← tr(S, Z)
14. reachable(s0)←
15. reachable(S)← tr(Z, S)

where the predicates are defined as follows: (i) sat(U, F) holds iff the formula F
holds in state U , (ii) elem(b, u) holds iff b∈λ(u), that is, the elementary propo-
sition b holds in state u, (iii) satpath(U, V, F) holds iff there exists a path
from state U to state V such that every state in that path satisfies the for-
mula F , (iv) tr(s(S1, . . . , Sk, X), s(S′

1, . . . , S
′
k, X ′)) holds iff the pair of states

〈〈S1, . . . , Sk, X〉, 〈S′
1, . . . , S

′
k, X ′〉〉 belongs to the transition relation R of the

Kripke structure associated with the program C to be synthesized, and (v) the
predicates out and reachable force the relation R to be total (in particular, out(S)
holds iff from state S there is an outgoing edge, and reachable(S) holds iff there
is a path from the initial state s0 to state S.) �

Rule 1 is required for ensuring that ϕ holds in the initial state s0 representing the
initialization s1 := l0; . . . ; sk := l0; x :=d0 of the k -process symmetric concurrent
program to be synthesized. Rule 11.i defines the interleaved execution of the
guarded commands, that is, for all states U and V, tr(U, V) holds iff U is a
reachable state, and there exists a guarded command gc of process Pi whose
guard evaluates to true in U and whose execution leads from state U to state V .

Definition 8 (Logic program encoding a structural property). Let L be
the set of local states and D be the domain of the shared variable. Let Σ = 〈f, T 〉
be a symmetric program structure of a k -process symmetric concurrent program.
The logic program ΠΣ is defined as follows:

1.1
∨
〈S′,X′〉∈Next(〈S1,X〉) gc(1, S1, X, S′, X ′)← reachable(S1, S2, . . . , Sk, X)

1.2 ← gc(1, S, X, S′, X ′) ∧∧ gc(1, S, X, S′′, X ′′) ∧∧ 〈S′, X ′〉 6=〈S′′, X ′′〉
2.1 gc(2, S, f(X), S′, f(X ′))← gc(1, S, X, S′, X ′)

2.2 ← gc(2, S, X, S′, X ′) ∧∧ not ps(2, S, X)

Synthesizing Concurrent Programs using Answer Set Programming 253

2.3 ps(2, S2, X)← reachable(S1, S2, . . . , Sk, X)
. . .

k.1 gc(k, S, f(X), S′, f(X ′))← gc(k−1, S, X, S′, X ′)
k.2 ← gc(k, S, X, S′, X ′) ∧∧ not ps(k, S, X)
k.3 ps(k, Sk, X)← reachable(S1, S2, . . . , Sk, X)

where: (i) gc(i, S, X, S′, X ′) holds iff si = l ∧∧ x= d → si := l′; x := d′ is in Pi,
(ii) f is a k -generating function, (iii) ps(i, S, X) holds iff there exists a reachable
state of the form 〈S1, . . . , Si−1, S, Si+1, . . . , Sk, X〉, and (iv) for all l∈L, d∈D,
Next(l, d) = {〈l′, d′〉 | l 7→ l′ ∈ T ∧∧ d′ ∈ D}. �

Rules 1.1 and 1.2 generate a set of guarded commands for process P1. The
disjunction in the head of Rule 1.1 is over all possible guarded commands that P1

may execute. The set of those guarded commands is defined using the sets
Next(l, d), one for each l ∈ L and d ∈ D. The integrity constraint 1.2 enforces
the generation of a set of guarded commands in which any two guards of the
guarded commands in P1 are mutually exclusive (recall that we consider only
deterministic processes).

For j =2, . . . , k, Rules j.1, j.2 and j.3 realize Definition 5. We use Rule j.1 to
derive a guarded command in Pj from a guarded command of the process Pj−1.
Rule j.2 ensures that for every guarded command g→ c derived by j.1, there
exists a reachable state U such that in U the guard g evaluates to true.

Now we present a theorem establishing the correctness of our synthesis pro-
cedure. It relates the k-process symmetric concurrent programs satisfying ϕ with
the answer sets of the logic program Πϕ ∪ΠΣ. Obviously, the correctness of the
synthesis procedure implies also the correctness of the programs Πϕ and ΠΣ

encoding the behavioural properties and the structural properties, as specified
in Definition 7 and 8, respectively.

Theorem 1 (Correctness of Synthesis). Let Π = Πϕ ∪ ΠΣ be the logic
program obtained, as specified by Definitions 7 and 8, from: (i) a CTL formula ϕ
and (ii) a symmetric program structure Σ = 〈f, T 〉. Then,(

s1 := l0; . . . ; sk := l0; x :=d0; do P1 8 . . . 8 Pk od
)
|= ϕ

iff there exists an answer set M in ans(Π) such that
∀i ∈ {1, . . . , k}, ∀l, l′ ∈ L, ∀d, d′ ∈ D,(

si = l ∧∧ x=d→ si := l′; x :=d′
)

is in Pi iff M |= gc(i, l, d, l′, d′).

5 Experimental Results

In this section we present some experimental results obtained by applying our
synthesis procedure to mutual exclusion protocols. All experiments have been
performed on an Intel Core 2 Duo E7300 2.66GHz under the Linux operating
system.

The first synthesis we did is the one of a simple program, called 2-mutex -1, for
two processes enjoying the mutual exclusion property only, and then we progres-
sively increased the number of properties that the synthesized program should

254 Emanuele De Angelis, Alberto Pettorossi, Maurizio Proietti

satisfy (see Table 1). In that table the program k-mutex -p denotes a synthesized
program for k processes satisfying p behavioural properties. For instance, pro-
gram 2-mutex -4 is the synthesized program that works for 2 processes and enjoys
the four behavioural properties: (i) ME (mutual exclusion), (ii) SF (starvation
freedom), (iii) BO (bounded overtaking), and (iv) MR (maximal reactivity),
defined by CTL formulas as follows.
(i) Mutual Exclusion, that is, it is not the case that process Pi is in its critical
section (si =u), and process Pj is in its critical section (sj =u) at the same time:
for all i, j in {1, . . . , k}, with i 6= j,

AG¬(si =u ∧∧ sj =u) (ME)
(ii) Starvation Freedom, that is, if a process is waiting to enter the critical section
(si = w), then after a finite amount of time, process Pi will execute its critical
section (si =u): for all i in {1, . . . , k},

AG (si =w→ AF si=u) (SF)
(iii) Bounded Overtaking, that is, while process Pi is in its waiting section,
any other process Pj exits from its critical section at most once: for all i, j
in {1, . . . , k},

AG ((si = w ∧∧ sj =u)→ AF (sj = t ∧∧ A[¬(sj = u)U si = u])) (BO)
(iv) Maximal Reactivity, that is, if process Pi is waiting to execute the critical
section and all other processes are executing their noncritical sections, then in
the next state Pi will enter its critical section: for all i in {1, . . . , k},

AG ((si =w ∧∧
∧

j∈{1,...,k}\{i} sj =t)→ EX si =u) (MR)
In our synthesis experiments we have made the following choices for s0, L, D,
f , and T .

The initial state s0 is 〈t, t, 0〉 and 〈t, t, t, 0〉 for the 2- and 3-process sym-
metric concurrent programs, respectively.

The set L of the local states for the variables si’s is {t, w, u}, where t repre-
sents the noncritical section, w represents the waiting section, and u represents
the critical section.

The domain D of the shared variable x is a finite set of natural numbers whose
cardinality |D| depends on: (i) the number k of the processes to be synthesized,
and (ii) the properties that the concurrent program should satisfy. The value
of |D| is not known a priori, and we guess it at the beginning of our synthesis
task. If the synthesis fails, we increase the value of |D|, hoping for a successful
synthesis with a larger value of |D|.

The k -generating function f is chosen among the following ones: (i) id is the
identity function, (ii) f1 = {〈0, 1〉, 〈1, 0〉}, (iii) f2 = {〈0, 1〉, 〈1, 0〉, 〈2, 2〉}, and
(iv) f3 = {〈0, 1〉, 〈1, 2〉, 〈2, 0〉}.

The local transition relation T is {t 7→w, w 7→w, w 7→u, u 7→t}. The pair t 7→w
denotes that, once the noncritical section has been executed, a process enters
the waiting section. The pairs w 7→w and w 7→u denote that a process may repeat
(possibly an unbounded number of times) the execution of its waiting section
and then may enter its critical section. The pair u 7→ t denotes that, once the
critical section has been executed, a process enters its noncritical section.

Synthesizing Concurrent Programs using Answer Set Programming 255

Program Satisfied Properties |D| f |ans(Π)| Time

2-mutex -1 ME 2 id 6 0.07

2-mutex -1 ME 2 f1 7 0.70

2-mutex -2 ME, SF 2 f1 3 0.71

2-mutex -3 ME, SF, BO 2 f1 3 1.44

2-mutex -4 ME, SF, BO, MR 3 f2 2 11.7

3-mutex -1 ME 2 id 5 0.95

3-mutex -1 ME 2 f1 10 0.87

3-mutex -2 ME, SF 3 f3 8 152

3-mutex -3 ME, SF, BO 3 f3 8 1700

Table 1. Column named Program gives the names of the synthesized programs.
k-mutex -p denotes the mutual exclusion program for k processes and p behavioural
properties that are indicated in the column named Satisfied Properties. ME, SF, BO
and MR stand for ‘mutual exclusion’, ‘starvation freedom’, ‘bounded overtaking’, and
‘maximal reactivity’, respectively. Column named |D| gives the cardinality of the do-
main of the shared variable x. Column named f gives the k -generating functions (they
are defined in the text). Column named |ans(Π)| gives the cardinality of ans(Π), that
is, the number of answer sets of program Π = Πϕ ∪ ΠΣ. In column named Time we
indicate the times (in seconds) taken for the synthesis using the smodels [20].

In Figures 2 and 3 we present the syntax and the semantics of the synthesized
program, called 2-mutex -4, for the 2-process mutual exclusion problem described
in Example 3. (Program 2-mutex -4 is essentially the same as the Peterson algo-
rithm [18], but it uses a single shared variable.)

6 Related Work and Concluding Remarks

Two well known, early works on synthesis of concurrent programs were those by
Emerson and Clark [6] and Manna and Wolper [16].

In [6] Emerson and Clark introduce the notion of a synchronization skeleton
as an abstraction of the actual processes in concurrent programs. They synthesize
programs for a shared-memory model of execution by extracting the synchro-
nization skeletons from the models of CTL specifications using a tableau-based
decision procedure for the satisfiability of CTL formulas. This extraction proce-
dure is not completely mechanized.

Similarly to [6] in [16] Manna and Wolper present a method for synthesizing
synchronization instructions for processes in a message-passing model of execu-
tion from a Propositional Temporal Logic (PTL) using a tableau-based decision
procedure for the satisfiability of PTL formulas. The instructions synthesized by
their method are written as Communicating Sequential Processes [13].

In [19] Piterman, Pnueli, and Sa’ar consider the problem of the design of
digital circuits from Linear Temporal Logic (LTL) specifications and give an

256 Emanuele De Angelis, Alberto Pettorossi, Maurizio Proietti

P1 : P2 :

true → if true → if

(1) s1 =t ∧∧ x=0→ s1 :=w; x :=2; s2 =t ∧∧ x=0→ s2 :=w; x :=2;
(2) 8 s1 =t ∧∧ x=1→ s1 :=w; x :=2; 8 s2 =t ∧∧ x=1→ s2 :=w; x :=2;
(3) 8 s1 =t ∧∧ x=2→ s1 :=w; x :=1; 8 s2 =t ∧∧ x=2→ s2 :=w; x :=0;
(4) 8 s1 =w ∧∧ x=0→ s1 :=u; x :=0; 8 s2 =w ∧∧ x=0→ skip;
(5) 8 s1 =w ∧∧ x=1→ skip; 8 s2 =w ∧∧ x=1→ s2 :=u; x :=1;
(6) 8 s1 =w ∧∧ x=2→ s1 :=u; x :=2; 8 s2 =w ∧∧ x=2→ s2 :=u; x :=2;
(7) 8 s1 =u ∧∧ x=2→ s1 :=t; x :=1; 8 s2 =u ∧∧ x=2→ s2 :=t; x :=0;
(8) 8 s1 =u ∧∧ x=0→ s1 :=t; x :=2; 8 s2 =u ∧∧ x=1→ s2 :=t; x :=2;

fi fi

Fig. 2. The two synthesized processes P1 and P2 of the program 2-mutex -4: s1 := t;
s2 := t; x := 0; do P1 8 P2 od. It enjoys the following properties: mutual exclusion,
starvation freedom, bounded overtaking, and maximal reactivity.

〈t, t, 0〉

〈w, t, 2〉 〈t, w, 2〉

〈u, t, 2〉 〈w, w, 0〉 〈w, w, 1〉 〈t, u, 2〉

〈t, t, 1〉 〈u, w, 0〉 〈w, u, 1〉

1.1 2.1

1.6 2.3 1.3 2.6

1.7 2.3
1.4 2.5 1.32.81.8

1.2

2.7

2.2

Fig. 3. The transition relation of the Kripke structure associated with the 2-process
concurrent program 2-mutex -4. The initial state is 〈t, t, 0〉. For i = 1, 2, an arc la-
belled i.n indicates that the guarded command n of process Pi is responsible for that
transition.

O(N3) algorithm to construct an automaton satisfying a formula of a particular
class of LTL specifications.

We closely follow the approaches of [6] and [16]. In particular we synthesize
concurrent processes that communicate with each other by means of shared vari-
ables starting from CTL specifications. The programs we synthesize are written
as guarded commands [7].

In order to reduce the search space of our synthesis problem, we have used
a notion of symmetric concurrent programs which is similar to the one which
was introduced in [1,8] to overcome the state explosion problem. Our notion
of symmetry is formalized using group theory, similarly to what has been done
in [8] for model checking.

Similarly to Attie and Emerson [2], we also propose a method for the synthesis
task and we separate the behavioural properties from the structural properties.

Synthesizing Concurrent Programs using Answer Set Programming 257

However, in our approach the structural properties, such as symmetry, are rep-
resented in the symmetric program structures, rather than an automata based
formalism.

We have implemented our synthesis method in Answer Set Programming
(ASP). One advantage of our method over [1,6,16] is its generality: besides
temporal properties, we can specify structural properties, such as the above
mentioned symmetry, and our ASP program will automatically synthesize con-
current programs satisfying the desired properties without the need for ad hoc
algorithms.

To the best of our knowledge, there is only one paper by Heymans, Nieuwen-
borgh and Vermeir [12] who use Answer Set Programming for the synthesis of
concurrent programs. They have extended the ASP paradigm by adding prefer-
ences among models and they have developed an answer set system, called OLPS.
Using OLPS they perform the synthesis of concurrent programs following the
approach proposed in [6]. The synthesis method is not completely automatic
and, in particular, the shared variables are manually introduced during the ex-
traction of the synchronization skeleton. We do not require any extension of the
ASP paradigm, we use the by now standard ASP systems, such as DLV [9] and
smodels [20], and every steps of our synthesis procedure is fully automatic.

As future work we plan to explore various techniques for reducing the search
space of the synthesis procedure and, thus, we hope to synthesize protocols
for a larger number of processes and more complex properties to be guaranteed.
Among these techniques we envisage to apply those used in compositional model
checking [4].

References

1. P. C. Attie and E. A. Emerson. Synthesis of Concurrent Programs with Many
Similar Processes ACM Trans. on Program. Lang. and Syst., 51–115, 1998.

2. P. C. Attie and E. A. Emerson. Synthesis of Concurrent Programs for an Atomic
Read/Write Model of Computation. ACM Trans. Program. Lang. Syst., 187–242,
2001.

3. F. Calimeri, S. Cozza, G. Ianni and N. Leone. Enhancing ASP by Functions: Deci-
dable Classes and Implementation Techniques. Proceedings of the 24-th AAAI
Conference on Artificial Intelligence 2010, 1666–1670, 2010.

4. E. M. Clarke Jr., D. E. Long, and K. L. McMillan. Compositional model checking.
Logic in Computer Science, LICS ’89, Proceedings, IEEE Computer Society, 353–
362, 1989.

5. E. M. Clarke Jr., O. Grumber and D. A. Peled. Model Checking. The MIT Press,
1999.

6. E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logic. Workshop on Logic of Programs,
London, UK, Springer-Verlag, 52–71, 1982.

7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

8. E. A. Emerson and A. P. Sistla. Symmetry and Model Checking. Formal Methods
in System Design: 9, 1–2, 105–131, 1996.

258 Emanuele De Angelis, Alberto Pettorossi, Maurizio Proietti

9. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri and F. Scarcello.
The DLV system for knowledge representation and reasoning ACM Trans. Comput.
Logic: 7, 499–562, 2006.
http://www.dlvsystem.com/dlvsystem/index.php/DLV

10. M. Gelfond and V. Lifschitz. The Stable Model Semantics For Logic Programming.
Proc. of the Fifth Intern. Conf. and Symp. on Logic Programming, Seattle, MIT
Press, 1070–1080, 1988.

11. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing: 9, 365–385, 1991.

12. S. Heymans, D. Van Nieuwenborgh and D. Vermeir. Synthesis from Temporal Spec-
ifications using Preferred Answer Set Programming. Lecture Notes in Computer
Science no. 3701, Springer, 280–294, 2005.

13. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
14. V. Lifschitz. Answer Set Programming and Plan Generation. Artificial Intelligence

no. 138, 39-54, 2002.
15. V. Lifschitz. What Is Answer Set Programming? Proceedings of the AAAI Con-

ference on Artificial Intelligence, MIT Press, 1594–1597, 2008.
16. Z. Manna and P. Wolper: Synthesis of Communicating Processes from Temporal

Logic Specifications. ACM Trans. Program. Lang. Syst., 68–93, 1984.
17. Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems: Specification.

Springer-Verlag, 1991.
18. G. L. Peterson. Myths about the mutual exclusion problem. Information Processing

Letters, 12(3):115–116, 1981.
19. N. Piterman, A. Pnueli and Y. Sa’ar. Synthesis of Reactive(1) Designs. Lecture

Notes in Computer Science no. 3855, Springer, 364–380, 2006.
20. T. Syrjänen and I. Niemelä. The Smodels System. Lecture Notes in Computer

Science no. 2173, Springer, 434–438, 2001.
http://www.tcs.hut.fi/Software/smodels/

Synthesizing Concurrent Programs using Answer Set Programming 259

PRODPROC - Product and Production Process
Modeling and Configuration ?

Dario Campagna and Andrea Formisano

Dipartimento di Matematica e Informatica, Università di Perugia, Italy
(dario.campagna|formis)@dmi.unipg.it

Abstract. Software product configurators are an emerging technology that sup-
ports companies in deploying mass customization strategies. Such strategies need
to cover the management of the whole customizable product cycle. Adding pro-
cess modeling and configuration features to a product configurator may improve
its ability to assist mass customization development. In this paper, we describe a
modeling framework that allows one to model both a product and its production
process. We first introduce our framework focusing on its process modeling ca-
pabilities. Then, we outline a possible implementation based on Constraint Logic
Programming of such product/process configuration system. A comparison with
some of the existing systems for product configuration and process modeling
concludes the paper.

1 Introduction

In the past years many companies started to operate according to mass customization
strategies. Such strategies aim at selling products that satisfy customer’s needs, pre-
serving as much as possible the advantages of mass production in terms of efficiency
and productivity. The products offered by such companies, usually called configurable
products, have a predefined basic structure that can be customized by combining a se-
ries of available components and options (modules, accessories, etc.) or by specifying
suitable parameters (lengths, tensions, etc.). Actually, a configurable product does not
correspond to a specific physical object, but identify sets of (physical) objects that a
company can realize. A configured product is a single variant of a configurable product,
obtained by specifying each of its customizable attributes, which corresponds to a fully-
specified physical object. The configuration process consists of a series of activities and
operations ranging from the acquisition of information about the variant of the product
requested by the customer, to the generation of data for its realization.

The mass customization operating mode involves a series of difficulties that compa-
nies struggle to resolve by using traditional software tools, designed for repetitive pro-
ductions. As more companies started offering configurable products, different systems
designed for supporting them in deploying mass customization strategies appeared.
These systems are called software product configurators and allow one to effectively
and efficiently deal with the configuration process [21]. They offer functionality for the
? Research partially founded by GNCS-2011 and MIUR-PRIN-2008 projects, and grants

2009.010.0336 and 2010.011.0403.

representation of configurable products through product models, and for organizing and
managing the acquisition of information about the product variants to be realized.

Mass customization strategies need to cover the management of the whole cus-
tomization product cycle, from customer order to final manufacturing. Current soft-
ware product configurators focus only on the support to product configuration, and do
not cover aspects related to the production process planning. Extending the use of con-
figuration techniques from products to processes, may avoid or reduce planning im-
possibilities due to constraints introduced in the product configuration phase, as well
as configuration impossibilities due to production planning requirements. Existing lan-
guages/tools for process modeling, such as BPMN [28] and YAWL [24], do not offer
suitable features for specifying production processes and process configuration. More-
over, they lack the capability of modeling, in a single uniform setting, product models
and their corresponding process models. The framework we propose, called PROD-
PROC, intends to overcome these limitations and act as a core for a full-fledged config-
uration system, covering the whole customization product cycle.

2 A Framework for Product/Production Modeling

In this section we present the PRODPROC framework by exploiting a working example
that will be used throughout the paper (cf., Sections 2.1 and 2.2). We also provide a
brief description of PRODPROC semantics in term of model instances (Sect. 2.3). See
[6] for a description of PRODPROC graphical modeling language.

A PRODPROC model consists of a description of a product, a description of a pro-
cess, and a set of constraints coupling the two. In order to introduce the PRODPROC
features let us consider a rectangular base prefabricated component multi-story build-
ing, together with its construction process. More specifically, a building is composed
by the followings parts: story, roof, heating service, ventilation service, sanitary ser-
vice, electrical/lighting service, suspended ceiling, floor, partition wall system. For the
purposes of this paper, we consider two types of building:
Warehouse: it is a single story building, it has no mandatory service except for the

electrical/lighting service, it has no partition wall system and no suspended ceiling,
it may have a basement.

Office building: it may have a basement and up to three stories, all services except
ventilation are mandatory, suspended ceiling and floor are mandatory for each story,
each story may have a partition wall system.

The building construction process can be split in four main phases: preparation and de-
velopment of the building site; building shell and building envelope works; building ser-
vices equipment; finishing works. (For a detailed description of such phases see [23].)

2.1 Product Description

A product is modeled as a multi-graph, called product model graph, and a set of con-
straints. The nodes of the graph represent the components of the product. The edges
represent the has-part/is-part-of relations between product components. We require
the presence of a node without entering edges in the product model graph. We call this

262 Dario Campagna, Andrea Formisano

Electr./Light.
service

Suspended ceiling FloorPartition wall
system

Building

Story Roof

Heating service

Sanitary serviceVentilation service

{0,1} {0,1}

{0,1}

{0,1}

{0,1}{0,1} {0,1}

1

1

{0,1}
Basement

{0,1}

ventilation sanitary

heatingelectr./light.

basement first story

roof

floorceiling walls

upper story

Fig. 1. Building product model graph.

node root node. Such a product description will represent a configurable product whose
configuration can lead to the definition of different (producible) variants that can be
represented as trees. Nodes of these trees correspond to physical components, whose
characteristics are all determined. The tree structure describes how the single compo-
nents taken together define a configured product. Fig. 1 shows the product model graph
for our example. Edges are labeled with names describing the has-part relations and
numbers indicating the admitted values for the cardinalities.

Each node/component of a product model graph is characterized by a name, a set of
variables representing configurable features of the component, and a set of constraints
that may involve variables of the node as well as variables of its ancestors in the graph.
Each variable is endowed with a finite domain (typically, a finite set of integers or
strings), i.e., the set of its possible values. In the description of a configured product,
physical components will be represented as instances of nodes in the product model
graph. An instance of a node NodeName consists of the name NodeName, a unique
id, and a set of variables equals to the one of NodeName. Each variable will have a
value assigned. The instance of the root node will be the root of the configured product
tree. For example, the node Building in Fig. 1, which is the root node of the product
model graph, is defined as the triple 〈Building,VBuilding, CBuilding〉, where the in-
volved variables and the set of constraint are as follows:

VBuilding = {〈BuildingType, {Warehouse,Office building}〉,
〈StoryNum, [1, 3]〉, 〈Width, [7, 90]〉, 〈Length, [7, 90]〉},

CBuilding = {BuildingType = Warehouse⇒ StoryNum = 1}.
Hence, a building is described by four features/variables, each one with a set of possi-
ble values. Note that the single constraint associated with the node imposes that if the
building is a warehouse, then it must have exactly one story. The node representing a

ProdProc - Product and Production Process Modeling and Configuration 263

story of the building is defined as 〈Story,VStory, CStory〉, where:

VStory = {〈FloorNum, [1, 3]〉, 〈Height, [3, 15]〉},
CStory = {FloorNum = 〈FloorNum,Story, [upper story]〉+ 1,

F loorNum ≤ 〈StoryNum,Building, [first story, ?]〉,
〈BuildingType,Building, [first story, ?]〉 = Office building⇒
⇒ Height ≥ 4 ∧Height ≤ 5}.

In this case we have two variables associated with the node Story, whose values are
controlled by three constraints. Note that these constraints involve features/variables
associated with ancestors of the node Story. To refer to specific variables in the an-
cestors of a node, we introduce the notion of meta-variable, i.e., a triple of the form
〈V arName,AncestorName,MetaPath〉. This triple denotes a variable V arName
in an ancestor node AncestorName (e.g., BuildingType in the node Building). The
third component of a meta-variable, MetaPath, is a list of edge labels (see below)
and describes a path connecting the two nodes in the graph (wildcards ‘_’ and ‘?’ can
be used to represent arbitrary labels and a sequence of arbitrary labels, respectively).
MetaPaths are used to define constraints that will have effect only on particular in-
stances of a node. For example, the first constraint in CStory will have to hold only for
those instances of node Story which are connected to another instance of node Story
through an edge labeled upper story. Intuitively, a node constraint for the node N will
have to hold for each instance ofN , such that it has ancestors connected with it through
paths matching with the MetaPaths occurring in the constraint.

An edge is defined by: a name, two node names indicating the parent and the child
nodes in the has-part relation, the cardinality of such relation (expressed as either an
integer number or a variable), and a set of constraints. Such constraints may involve
the cardinality variable (if any) as well as the variables of the parent node and of
any of its ancestors (referred to by using meta-variables). An instance of an edge la-
beled label connecting a node N with a node M , will be an edge labeled label, con-
necting an instance of N and an instance of M . Let us consider the edges first story
and upper story of our sample model. The former is the edge that relates the build-
ing and its first story. It is defined as 〈first story,Building, Story, 1, ∅〉. Note that
the cardinality is imposed to be 1 and there is no constraint. The edge upper story
represents the has-part relation over two adjacent stories of the building. It is de-
fined as 〈upper story, Story, Story, Card, CC〉, where the variable Card is defined
as 〈Card, [0, 1]〉, while the set of constraints is defined as follows:
CC = {FloorNum = 〈StoryNum,Building, [first story, ?]〉 ⇒ Card = 0,

F loorNum < 〈StoryNum,Building, [first story, ?]〉 ⇒ Card = 1}.
The two constraints in CC control the number of instances of the node Story. An in-
stance of the node Story will have as child another instance of node Story, if and only
if its floor number is not equal to the number of stories of the building. Intuitively, a
cardinality constraint for and edge e will have to hold for each instance of the parent
node P in e, such that P has ancestors connected with it through paths matching with
MetaPaths occurring in the constraint.

As mentioned, a product description consists of a product model together with a
set of global constraints. Such constraints, called model constraints, involve variables

264 Dario Campagna, Andrea Formisano

of nodes not necessary related by has-part relations (node model constraints) as well
as cardinalities of different edges exiting from a node (cardinality model constraints).
Also, global constraints like alldifferent [27] and aggregation constraints can be
used to define node model constraints. Intuitively, a node model constraint will have to
hold for all the tuples of node instances reached by paths matching with MetaPaths
occurring in the constraint. The following is an example of cardinality model constraint:

〈upper story, Story, Story, Card〉 6= 〈roof, Story,Roof, Card〉.
This constraint states that, given an instance of the node Story the cardinality of the
edge upper story and roof exiting from it must be different, i.e., an instance of the
node Story can not have both an upper story and a roof.

2.2 Process Description

PRODPROC allows one to model a process in terms of activities and temporal relations
between them. Moreover, PRODPROC makes it possible to model process resource pro-
duction and consumption, and to intermix the product and the process modeling phases.

In general, a process consists of: a set of activities; a set of variables (as before,
endowed with a finite domain of strings or of integers) representing process character-
istics and involved resources; a set of temporal constraints between activities; a set of
resource constraints; a set of constraints on activity durations.

There are three kinds of activity: atomic activities, composite activities, and multiple
instance activities. An atomic activity A is an event that happens in a time interval. It
has associated a name and the following parameters:
• two integer decision variables, tstart and tend, denoting the start time and end time

of the activity. They define the time interval [tstart, tend], subject to the implicit
requirement that tend ≥ tstart ≥ 0.

• a decision variable d = tend − tstart denoting the duration of the activity.
• a flag exec ∈ {0, 1}.

When d = 0 we say that A is an instantaneous activity. If exec = 1 holds, A is
executed, otherwise (namely, if exec = 0) A is not executed. A composite activity
is an event described in terms of a process. Hence, it has associated four variables
analogously to an atomic activity, as explained earlier. Moreover, it is associated with a
model of the process it represents. A multiple instance (atomic or composite) activity is
an event that may occur multiple times. Together with the four variables (and possibly
the sub-process model), a multiple instance activity has associated a decision variables
(named inst) representing the number of times the activity can be executed.

Temporal constraints between activities are inductively defined starting from atomic
temporal constraints. Let A and B be to activities. We consider as atomic temporal
constraints all the thirteen mutually exclusive binary relations which capture all the
possible ways in which two intervals might overlap or not (as introduced by Allen
in [3]), and some further constraints inspired by the constraint templates of the language
ConDec [19]. The following are some examples of atomic temporal constraints (for lack
of space we avoid listing all the possibilities):

1. A before B to express that A is executed before B.

ProdProc - Product and Production Process Modeling and Configuration 265

Preparation and
development of the

building site

Building shell and
building envelope

works

Building services
equipment Finishing works

before
or

meets

before
or

meets

before
or

meets

Fig. 2. Temporal constraint network for the building construction process.

2. A meets B to express that the execution of A ends at time point in which the
execution of B starts.

3. A must−be−executed to express that A must be executed.
4. A is−absent to express that A can never be executed.
5. A not−co−existent−with B to express that either A or B can be executed (i.e.,

it is not possible to execute both A and B).
6. A succeeded−by B to express that when A is executed than B has to be executed

after A.

The constraints 1 and 2 are two of the binary relations of [3]. The constraints 3–6 have
been inspired by the templates used in the language ConDec [19]. A temporal constraint
is inductively defined as follows.
• An atomic temporal constraint is a constraint.
• Ifϕ and ϑ are temporal constraint thenϕ and ϑ andϕ or ϑ are temporal constraints.
• If ϕ is a temporal constraint and c is a constraint on process variables, then c → ϕ

is an if-conditional temporal constraint, stating that ϕ has to hold whenever c holds.
Also, c ↔ ϕ is an iff-conditional temporal constraint, stating that ϕ has to hold if
and only if c holds.

Plainly, the truth of the atomic temporal constraints is related with the execution of the
activities they involve. For instance, whenever for two activities A and B it holds that
execA = 1 ∧ execB = 1, then the atomic formulas of the forms 1 and 2 must hold. A
temporal constraint network CN is a pair 〈A, C〉, where A is a set of activities and C
is a set of temporal constraints on activities in A. Fig. 2 shows the temporal constraint
network for the building construction process. Fig. 3 shows the temporal constraint
network for the sub-process represented by the composite activity called “Building ser-
vices equipment”. In the figures, atomic activities are depicted as rectangles, composite
activities as nested rectangles, multiple instance activities as overlapped rectangles. Bi-
nary temporal constraints are represented as edges whose labels describe the temporal
relations. If an activity is involved in a must be executed or in a is absent constraint,
it is depicted as a dashed line rectangle or a dotted line rectangle, respectively. A con-
ditional temporal constraints is depicted together with its activation condition.

PRODPROC allows one to specify constraints on resource amounts [15] and activity
durations. A resource constraint is a quadruple 〈A,R, q, TE〉, where A is an activity;
R is an variable endowed with a finite integer domain; q is an integer or a variable en-
dowed with a finite integer domain, defining the quantity of resource R consumed (if
q < 0) or produced (if q > 0) by executing A; TE is a time extent that defines the
time interval where the availability of resource R is affected by the execution of ac-
tivity A. The possibilities for TE are: FromStartToEnd, AfterStart, AfterEnd,
BeforeStart, BeforeEnd, Always, with the obvious meaning. The following is an

266 Dario Campagna, Andrea Formisano

Roof insulation

before
or

meets

Ventilation rough
assembly

Heating rough
assembly

Sanitary rough
assembly

Pressure test
sanitary, heating

Insulation heating,
sanitary, ventilation

before
or

meets

before
or

meets

San = 1 Heat = 1 Vent = 1

succeeded_by succeeded_by

succeeded_by

succeeded_by

Fig. 3. Temporal constraint network for the composite activity “Building services equipment”.

example of resource constraints for the third phase of the building construction process.
〈Roof insulation, GeneralWorkers, 〈qGW , [−10,−4]〉, F romStartToEnd〉.

This constraint specifies that the number of GeneralWorkers available is reduced of
an amount between 4 and 10 during the execution of the activity Roof insulation. All the
workers will return available as soon as the activity ends. Note that resource constraints
may (implicitly) imply constraints on the number of instances of multiple instance ac-
tivities. Another form of resource constraints establishes initial level constraints, i.e.,
expressions defining the quantity of a resource available at the time origin of a process.
The basic form is initialLevel(R, iv), where R is a resource and iv ∈ N.

An activity duration constraint has the form 〈A,Constraint〉, where A is the name
of an activity, and Constraint may involve the duration of A, process variables, and
quantity variables for resource related toA. This is an example of activity duration con-
straint for the third phase of the building construction process (where BuildingArea
is a process variable, and qT , qC are quantity variables):

〈
Roof insulation, d =

BuildingArea

2 · |qGW |+ 2 · |qT |+ 3 · |qC |
〉
.

PRODPROC also allows one to couple elements for modeling a process and elements
for modeling a product through constraints involving process variables and product
variables. The following are examples in our sample model:

〈Building, sanitary, Card〉 = San ,
〈StoryNum,Building, []〉 = instFinishing works.

For instance, the last one states that the number of stories of a building has to be equal to
the value of instFinishing works (i.e., number of times the event Finishing works is
executed). In general, constraints involving both product and process variables may help
to detect/avoid planning impossibilities due to product configuration, and configuration
impossibilities due to product configuration, during the configuration of a product.

ProdProc - Product and Production Process Modeling and Configuration 267

2.3 PRODPROC Instances

A PRODPROC model represents the collection of single (producible) variants of a con-
figurable product and the processes to produce them. A PRODPROC instance represent
one of such variant and its production process. To precisely define this notion we need
to introduce first the notion of candidate instance. A PRODPROC candidate instance
consists of the following components:
• A set N of node instances, i.e., tuples of the form n = 〈N, i,VN 〉 where N is a

node in the product model graph, i ∈ N is an index (different for each instance of a
node), VN is the set of variables of node N .

• a set ANodes of assignments for all the node instance variables, i.e., expressions of
the form V = value where V is a variable of node instance n and value belongs to
the set of values for V .

• A tree, called instance tree, that specifies the pairs of node instances in the relation
has-part. Such a tree is defined as IT = 〈N , E〉, where E is a set of tuples f =
〈label, n,m〉 such that there exists an edge e = 〈label,N,M,Card, CC〉 in the
product model graph, n is an instance of N and m is an instance of M .

• A set ACards of assignments for all the instance cardinality variables, i.e., expres-
sions of the form ICen = k where n is an instance of a node N , e is a quin-
tuple 〈label,N,M,Card, CC〉, ICen ≡ Card, and k is the number of the edges
〈label, n,m〉, such that m is an instance of M , in the instance tree.

• A setA of activity instances, i.e., pairs a = 〈A, i〉whereA is the name of an activity
such that execA = 1 and i ∈ N is a unique id for instances of A.

• A set E of flags execA, one for each activity A such that execA 6= 1.
• A set AProc of assignments for all model variables and activity parameters (i.e., time

instant variables, duration variables, execution flags, quantity resource variables,
instance number variables), that is, expressions of the form P = value where P is
a model variable or an activity parameter, and value ∈ Z or value belongs to the
set of values for P .

A PRODPROC instance is a candidate instance such that the assignments in ANodes ∪
ACards ∪ AProc satisfy all the constraints in the PRODPROC model (node constraints,
edges constraints, temporal constraints, resource constraints, etc.), appropriately instan-
tiated with variables of node instances and activity instances in the candidate instance.

The (constraint) instantiation mechanism produces a set of constraints on candidate
instance variables from each constraint in the PRODPROC model. A candidate instance
must satisfy all these constraints to qualify as an instance. We give here an intuitive
explanation of how the instantiation mechanism works on different constraint types.
Let us begin with node and cardinality constraints. Let c be a constraint belonging to
the node N , or a constraint for an edge e between nodes N and M . Let us suppose that
N1, . . . , Nk are ancestors of N whose variables are involved in c, and let p1, . . . , pk be
MetaPaths such that, for i = 1, . . . , k, pi is a MetaPath from Ni to N . We define
Lnode as the set of k-tuple of node instances 〈n, n1, . . . , nk〉 where: n is an instance of
N ; for i = 1, . . . , k ni is an instance of Ni, connected with n through a path qi in the
instance tree such that match(qi, pi) = true holds. match is defined as follows.1

1 Given two lists l1 and l2, l1 ◦ l2 denotes their concatenation. We denote with [x|l] the list
obtained by prepending the element x to the list l.

268 Dario Campagna, Andrea Formisano

match(q, p) =

true if q = p
match(ps, mps) if q = [label|ps] ∧ (p = [label|mps] ∨ p = [_|mps])
true if p = [?, label|ps]∧

∧ ∃s.(q = s ◦ [label|ps] ∧ match(ps, mps))
false otherwise

For each k-tuple t ∈ Lnode, we obtain a constraint on instance variables appropriately
substituting variables in c with variables of node instances in t. If c is a constraint for e,
given a k-tuple 〈n, n1, . . . , nk〉 on which to instantiate it, the cardinality occurring in it
is substituted with the cardinality variable ICen.

Node model constraints are instantiated in a slightly different way. Let c be a node
model constraint. Let us suppose that N1, . . . , Nk are the nodes whose variables are in-
volved in c, let p1, . . . , pk beMetaPaths such that, for i = 1, . . . , k, pi is aMetaPath
that ends in Ni. We define Lnmc as the set of ordered k-tuples of node instances
〈n1, . . . , nk〉, where for i = 1, . . . , k ni is an instance of Ni connected by a path qi
with one of its ancestors in the instance tree, such that match(qi, pi) = true holds.
For each k-tuple t ∈ Lnmc, we obtain a constraint on instance variables appropriately
substituting variables in c with variables of node instances in t. If c is an aggregation
or an alldifferent constraint, then we define an equivalent constraint on the list
consisting of all the node instances of N1, . . . , Nk reached by a path matching with the
corresponding MetaPath.

The instantiation of cardinality model constraint is very simple. Let c be a cardi-
nality model constraint for the cardinalities of the edges with labels e1, . . . , ek exiting
from a nodeN . Let n1, . . . , nh be instances ofN . For all i ∈ {1, . . . , h}, we instantiate
c appropriately substituting the cardinality variables occurring in it, with the instance
cardinality variables ICe1n1

, . . . , ICek
nk

.
Let us now consider process constraints. Let A be an activity, let a1, . . . , ak be

instances of A. Let r be the resource constraint 〈A,R, q, TE〉, we instantiate it on each
instance of A, i.e., we obtain a constraint 〈ai, R, qi, TE〉 for each i = 1, . . . , k, where
qi = q is a fresh variable. Let c be an activity duration constraint for A, for each
i = 1, . . . , k we obtain a constraint substituting in c dA with dai

, and each quantity
variable q with the corresponding variable qi. Finally, let B an activity, let b1, . . . , bh be
instances ofB. If c is a temporal constraint involvingA andB, we obtain a constraint on
activity instances for each ordered couple 〈i, j〉, with i ∈ {1, . . . , k}, j ∈ {1, . . . , h},
substituting in c each occurrence of A with ai, and of B with bj . This mechanism can
be easily extended to temporal constraints involving more than two activities.

3 Product and Process Configuration

On top of the framework we described in Sect. 2 it is possible to implement a configu-
ration system based on Constraint Logic Programming (CLP) [13]. In this section, we
first explain how such a system can support a user through the configuration of a prod-
uct and its production process. Then, we show how we can generate a CLP program
from a model and a (partial) candidate instance.

ProdProc - Product and Production Process Modeling and Configuration 269

User

System
interface

System
engine

CLP-based configuration system

(1) Initialization

(2) Choice
information (3) Change information

(4) Start inference
process

(7) Inference process results

(8) Choice
consequences

Finite
domain
solver

(5) CLP
program

(6) Results

Fig. 4. Configuration process supported by a CLP-based system.

A possible general structure of a configuration process supported by a CLP-based
system is pictorially described in Fig. 4. First, the user initializes the system (1) se-
lecting the model of the product/process to be configured. After such an initialization
phase the user starts to make her/his choices by using the system interface (2). The in-
terface communicates to the system engine (i.e., the piece of software that maintains a
representation of the product/process under configuration, and checks the validity and
consistency of user’s choices) each data variation specified by the user (3). The system
engine updates the current partial configuration accordingly. Whenever an update of
the partial configuration takes place, the user, through the system interface, can activate
the engine inference process (4). The engine instantiates PRODPROC constraints on
the current (partial) candidate instance, and encodes the product/process configuration
problem in a CLP program (encoding a Constraint Satisfaction Problem, abbreviated
to CSP). Then, it uses a finite domain solver to propagate the logical effects of user’s
choices (5). Once the inference process ends (6), the engine returns to the interface the
results of its computation (7). In its turns, the system interface communicates to the user
the consequences of her/his choices on the (partial) configuration (8).

In the following, we briefly explain how it is possible to obtain a CLP program from
a PRODPROC model and a (partial) candidate instance (a candidate instance is partial
when there are variables with no value assigned to) corresponding to it. We do this
considering only the process side of a model, the operations necessary to obtain CLP
variables and constraints for the product side are similar.

Given a PRODPROC model and a corresponding (partial) candidate instance defined
by a user, we can easily obtain a CSP 〈VAR,DOM, CONST R〉, where VAR is a set
of variables, DOM is a set of finite domain for variables in VAR, and CONST R is a
set of constraints on variables in VAR. VAR will contain a variable for each node in-
stance variable, cardinality variable, activity parameter, process characteristic, resource,
and quantity resource variable.DOM will contain a domain, obtained form the PROD-
PROC model, for each variable in V . CONST R will contain all the constraints that
the (partial) candidate instance should satisfy. As we explained in Sect. 2.3, such con-
straints are determined by an instantiation mechanism. We give here a formalization of
such mechanism for the process side of a model. We define a function µ that, given the
set of activity instances A, the set RDC = R ∪ D ∪ C, where R is the set of resource
constraints, D is the set of activity duration constraints, C is the set of temporal con-
straints, generates a set of constraints instantiated on activity instances. To define µ we
preliminary need to introduce some basic notions. If c is a temporal constraint acts(c)

270 Dario Campagna, Andrea Formisano

is the list of activities involved in c. In the following we will denote with a an instance
of an activity, and with pInsts(a) the set of instances of the process associated to a
composite activity instance a. We say that a ↔Act A if and only if a is an instance of
A. The function µ is defined as follows:

µ(A,RCP, I) =
⋃
a∈A α(a) ∪⋃c∈RCP γ(c,A).

The function α generates the set of default constraints on duration, start time, and fin-
ishing time for an activity instance a:

α(a) =
{

tComp(a) if a is a composite activity instance

t(a) otherwise
,

tComp(a) = {tstart
a = minb∈pInsts(a) tstart

b , tend
a = maxb∈pInsts(a) tend

b ,

tend
a ≥ tstart

a , da = tend
a − tstart

a , execA = 1},

t(a) = {tstart
a ≥ 0, tend

a ≥ tstart
a , da = tend

a − tstart
a , execA = 1}.

The function γ instantiate a constraint c on activity instances in A.

γ(c,A)=

{〈a, R, qa, TE〉|a ∈ A∧ if c ∈ R∧
∧ a↔Act A ∧ qa = qA} ∧ c ≡ 〈A, R, qA, TE〉

c if c ∈ R∧
∧ c ≡ initialLevel(R, iv)

{c[dA/da, qA/qa] | a ∈ A ∧ a↔Act A} if c ∈ D
{c[A1/a1, . . . , Ak/ak] | if c ∈ C

[A1, . . . , Ak] = acts(c)∧
∧ [a1, . . . , ak] ∈ Lact(c, [A1, . . . , Ak],A)}

The function Lact(c, [A1, . . . , Ak],A) generates all the k-tuple of activity instances that
are instances of activities involved in a constraint c:

Lact(c, [A1, . . . , Ak],A) = {[a1, . . . , ak] | ∧kj=1(aj ∈ A ∧ aj ↔Act Aj)}
From instantiated resource constraints and CSP variables for resources it is possi-

ble to generate a cumulative constraint [1,4]. To obtain CSP constraints from all other
constraints it is sufficient to substitute the instance variables with the corresponding
CSP variables. Temporal constraints are defined on activities, but it is possible to com-
pile them into propositional formulas on activity durations, starting times, and finishing
times. Table 1 shows the translation for some of the atomic temporal constraints.

Let ϕ and ϑ be temporal constraints, let ϕP and ϑP the corresponding propositional
formulas. Then ϕ and ϑ, ϕ or ϑ, c→ ϕ and c↔ ϕ correspond to ϕP ∧ ϑP , ϕP ∨ ϑP ,
c⇒ ϕP and c⇔ ϕP , respectively.

Given the constraint satisfaction problem CSP it is straightforward to obtain a CLP
program encoding it, once a specific CLP system has been chosen, e.g., SICStus Prolog,
SWI Prolog, or ECLiPse.

4 A Comparison with Existing Product/Process Modeling Tools

In this section, we briefly compare the PRODPROC framework with some of the most
important product configuration systems and process modeling tools to put in evidence
its strength and limitations.

ProdProc - Product and Production Process Modeling and Configuration 271

Atomic temporal constraint Propositional formula
A before B tstart

A < tstart
B ∧ tend

A < tstart
B

A meets B tstart
A < tstart

B ∧ tend
A = tstart

B

A must−be−executed execA = 1

A is− absent execA = 0

A not−co−existent−with B execA + execB ≤ 1

A succeeded−by B execA = 1⇒ execB = 1 ∧ tstart
B ≥ tend

A

Table 1. Atomic temporal constraints and corresponding propositional formulas.

Product configuration systems based on Answer Set Programming (ASP) [11], e.g.,
Kumbang Configurator [16], provide a number of features that are specifically tailored
to the modeling of software product families. On the one hand, this makes these systems
appealing for a relevant range of application domains. On the other hand, it results in
a lack of generality, which is probably the major drawback of this class of systems. In
particular, they do not support global constraints, and they encounter some problems in
the management of arithmetic constraints related to the so called grounding stage [16].

Systems based on binary decision diagrams (BDDs) for product configuration, e.g.,
Configit Product Modeler [8], trade the complexity of the construction of the BDD, that
basically provides an encoding of all possible configurations [12], for the simplicity and
efficiency of the configuration process. Despite their various appealing features, BDD-
based systems suffer from some significant limitations. First, even though some work
has been done on the introduction of modules [25,26], they basically support flat models
only. Moreover, they find it difficult to cope with global constraints. Some attempts at
combining BDD with CSP to tackle alldifferent constraints have been recently
done [17]; however, they are confined to the case of flat models. We are not aware of
any BDD system that deals with global constraints in a general and satisfactory way.

Unlike ASP-based and BDD-based product configuration systems, CSP-based sys-
tems allow the user to define non-flat models and to deal with global constraints. Unfor-
tunately, the modeling expressiveness of CSP-based systems has a cost, i.e., backtrack-
free configuration algorithms for CSP-based systems are often inefficient, while non
backtrack-free ones need to explicitly deal with dead ends. Some well-known CSP-
based configuration systems, such as ILOG Configurator [14] and Lava [10], seem to
be no longer supported. A recent CSP-based configuration system is Morphos Config-
uration Engine (MCE) [7]. From the point of view of process modeling, PRODPROC
can be viewed as an extension of the MCE modeling language. In particular, it extends
MCE modeling language with the following features: (1) cardinality variables, i.e.,
has-part/is-part-of relations can have non-fixed cardinalities; (2) product model graph,
i.e., nodes and relations can define a graph, not only a tree; (3) cardinality constraints
and cardinality model constraints, i.e., constraints can involve cardinalities of relations;
(4) MetaPaths, i.e., a mechanism to refer node instance variables in constraints.

In [22] the authors present an ontology representing a synthesis of resource-based,
connection-based, function-based and structure-based product configuration approches.
The PRODPROC framework covers only a subset of these concepts. However, it is not
limited to product modeling and it defines a rich (numeric) constraint language, while

272 Dario Campagna, Andrea Formisano

it remains unclear to what extent the language used in [22] supports the formulation of
configuration-domain specific constraints.

PRODPROC can be viewed as the source code representation of a configuration sys-
tem with respect to the MDA abstraction levels presented in [9]. PRODPROC product
modeling elements can be mapped to UML/OCL in order to obtain platform specific
(PSM) and platform independent (PIM) models. The mapping to OCL of MetaPaths
containing ‘?’ wildcards and of model constraints requires some attention. For example,
the latter do not have an explicit context as OCL constraint must have.

In the past years, different formalisms have been proposed for process modeling.
Among them we have: the Business Process Modeling Notation (BPMN) [28], Yet
Another Workflow Language (YAWL) [24], DECLARE [19]. Languages like BPMN
and YAWL model a process as a detailed specification of step-by-step procedures that
should be followed during the execution. They adopt an imperative approach in process
modeling, i.e., all possibilities have to be entered into their models by specifying their
control-flows. BPMN has been developed under the coordination of the Object Man-
agement Group. PRODPROC has in common with BPMN the notion of atomic activity,
sub-process, and multiple instance activity. The effect of BPMN joins and splits on the
process flow can be obtained by using temporal constraints. In PRODPROC there are no
notions such as BPMN events, exception flows, and message flows. However, events
can be modeled as instantaneous activities and data flowing between activities can be
modeled with model variables. YAWL is a process modeling language whose intent is
to directly supported all control flow patterns. PRODPROC has in common with YAWL
the notion of task, multiple instance task, and composite task. YAWL join and split
constructs are not present in PRODPROC, but using temporal constraints it is possible
to obtain the same expressivity. As opposed to traditional imperative approaches to pro-
cess modeling, DECLARE uses a constraint-based declarative approach. DECLARE
models rely on constraints to implicitly determine the possible ordering of activities
(any order that does not violate constraints is allowed). With respect to DECLARE,
PRODPROC has in common the notion of activity and the use of temporal constraints
to define the control flow of a process. The set of atomic temporal constraints is not as
big as the set of template constraints available in DECLARE, however it is possible to
easily combine the available ones so as to define all complex constraints of practical in-
terest. Moreover, in PRODPROC it is possible to define multiple instance and composite
activities, features that are not available in DECLARE.

From the point of view of process modeling, PRODPROC combines modeling fea-
tures of languages like BPMN and YAWL, with a declarative approach for control flow
definition. Moreover, it presents features that, to the best of our knowledge, are not
presents in other existing process modeling languages. These are: resource variables
and resource constraints, activity duration constraints, and product related constraints.
Thanks to these features, PRODPROC is suitable for modeling production processes and,
in particular, to model mixed scheduling and planning problems related to production
processes. Furthermore, a PRODPROC model does not only represent a process ready
to be executed as a YAWL (or DECLARE) model does, it also allows one to describe a
configurable process. Existing works on process configuration, e.g., [20], define process
models with variation points, and aim at deriving different process model variants from

ProdProc - Product and Production Process Modeling and Configuration 273

a given model. Instead, we are interested in obtaining process instances, i.e., solutions
to the scheduling/planning problem described by a PRODPROC model.

The PRODPROC framework allows one to model products, their production pro-
cesses, and to couple products with processes using constraints. The only works on the
coupling of product and process modeling and configuration we are aware of are the
ones by Aldanondo et al. [2]. They propose to consider simultaneously product config-
uration and process planning problems as two constraint satisfaction problems; in order
to propagate decision consequences between the two problems, they suggest to link the
two constraint based models using coupling constraints. The development of PROD-
PROC has been inspired by the papers of Aldanondo et al., in fact we have separated
models for products and processes and, constraints for coupling them too. However, our
modeling language is far more complex and expressive than the one presented in [2].

5 Conclusions

In this paper we focused on the problem of product and process modeling and con-
figuration. In particular, we pointed out the lack of a tool covering both physical and
production aspects of configurable products. To overcome this absence, we proposed
a framework called PRODPROC, that allows one to model a configurable products and
its production process. Moreover, we showed how it is possible to build a CLP-based
configuration systems on top of this framework, and compared it to existing product
configuration systems and process modeling tools.

We have already implemented a first prototype of a CLP-based configuration system
that uses PRODPROC. It covers only product modeling and configuration, but we are
working to add to it process modeling and configuration capabilities. PROPROC and
SysML [18] have various commonalities in terms of modeling features, despite the fact
that their purposes are different. We plan to further investigate the relations that exists
between the two modeling languages. We also plan to experiment our configuration
system on different real-world application domains, and to compare it with commercial
products, e.g., [5].

References

1. A. Aggoun and N. Beldiceanu. Extending chip in order to solve complex scheduling and
placement problems. Mathematical and Computer Modelling, 17\(7\):57–73, 1993.

2. M. Aldanondo and E. Vareilles. Configuration for mass customization: how to extend product
configuration towards requirements and process configuration. J. of Intelligent Manufactur-
ing, 19\(5\):521–535, 2008.

3. J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26:832–843,
1983.

4. N. Beldiceanu and M. Carlsson. A New Multi-resource cumulatives Constraint with Nega-
tive Heights. In P. Van Hentenryck, editor, CP 2002, volume 2470 of LNCS, pages 63–79.
Springer Berlin / Heidelberg, 2006.

5. U. Blumöhr, M. Münch, and M. Ukalovic. Variant Configuration with SAP. SAP Press,
2009.

274 Dario Campagna, Andrea Formisano

6. D. Campagna. A Graphical Framework for Supporting Mass Customization. In Proc. of the
IJCAI’11 Workshop on Configuration, pages 1–8, 2011.

7. D. Campagna, C. D. Rosa, A. Dovier, A. Montanari, and C. Piazza. Morphos Configuration
Engine: the Core of a Commercial Configuration System in CLP(FD). Fundam. Inform.,
105\(1-2\):105–133, 2010.

8. Configit A/S. Configit Product Modeler. http://www.configit.com.
9. A. Felfernig. Standardized Configuration Knowledge Representations as Technological

Foundation for Mass Customization. IEEE Trans. on Engineering Management, 54\(1\):41–
56, 2007.

10. G. Fleischanderl, G. Friedrich, A. Haselböck, H. Schreiner, and M. Stumptner. Config-
uring Large Systems Using Generative Constraint Satisfaction. IEEE Intelligent Systems,
13\(4\):59–68, 1998.

11. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In
ICLP/SLP, pages 1070–1080, 1988.

12. T. Hadzic, S. Subbarayan, R. M. Jensen, H. R. Andersen, J. Moller, and H. Hulgaard. Fast
backtrack-free product configuration using a precompiled solution space representation. In
Proc. of the International Conference on Economic, Technical and Organizational Aspects
of Product Configuration Systems, pages 131–138. 2004.

13. J. Jaffar and M. J. Maher. Constraint logic programming: A survey. J. Log. Program.,
19/20:503–581, 1994.

14. U. Junker. The Logic of ILOG (J\)Configurator: Combining Constraint Programming with a
Description Logic. In Proc. of the IJCAI’03 Workshop on Configuration, pages 13–20. 2003.

15. P. Laborie. Algorithms for propagating resource constraints in AI planning and scheduling:
existing approaches and new results. Artif. Intell., 143:151–188, February 2003.

16. V. Myllärniemi, T. Asikainen, T. Männistö, and T. Soininen. Kumbang configurator - a
configurator tool for software product families. In Proc. of the IJCAI’05 Workshop on Con-
figuration, pages 51–56. 2005.

17. A. H. Nørgaard, M. R. Boysen, R. M. Jensen, and P. Tiedemann. Combining Binary De-
cision Diagrams and Backtracking Search for Scalable Backtrack-Free Interactive Product
Configuration. In Proc. of the IJCAI’09 Workshop on Configuration, 2009.

18. OMG. OMG Systems Modeling Language. http://www.omgsysml.org.
19. M. Pesic, H. Schonenberg, and W. van der Aalst. DECLARE: Full support for loosely-

structured processes. In EDOC’07, pages 287–287, 2007.
20. M. L. Rosa. Managing Variability in Process-Aware Information Systems. PhD thesis,

Queensland University of Technology, Brisbane, Australia, 2009.
21. D. Sabin and R. Weigel. Product configuration frameworks-a survey. IEEE Intelligent Sys-

tems, 13:42–49, 1998.
22. T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen. Towards a general ontology of con-

figuration. Artif. Intell. Eng. Des. Anal. Manuf., 12:357–372, September 1998.
23. H. Sommer. Project Management for Building Construction. Springer, 2010.
24. A. H. M. ter Hofstede, W. van der Aalst, M. Adams, and N. Russell. Modern Business

Process Automation - YAWL and its Support Environment. Springer, 2010.
25. E. R. van der Meer and H. R. Andersen. BDD-based Recursive and Conditional Modular

Interactive Product Configuration. In Proc. of Workshop on CSP Techniques with Immediate
Application (CP’04), pages 112–126, 2004.

26. E. R. van der Meer, A. Wasowski, and H. R. Andersen. Efficient interactive configuration of
unbounded modular systems. In Proc. of the 2006 ACM symposium on Applied computing,
SAC ’06, pages 409–414. ACM, 2006.

27. W. J. van Hoeve. The alldifferent Constraint: A Survey, 2001.
28. S. A. White and D. Miers. BPMN modeling and reference guide: understanding and using

BPMN. Lighthouse Point, 2008.

ProdProc - Product and Production Process Modeling and Configuration 275

A Model Instantiation and CSP creation

In this section, exploiting the building model introduced in Sect. 2, we show an ex-
ample of PRODPROC partial candidate instance, and describe the CSP we obtain from
it. The purpose of the example is twofold: first, to show how multiple instances of a
node affect the constraint instantiation and the CSP corresponding to a model instance;
second, to better describe the encoding of the process description into a CSP, in partic-
ular the generation of a cumulative constraint from resources and instantiated resource
constraints.

Fig. 5 shows the instance tree of the partial candidate instance we consider. It con-
sists of one instance of the root node (i.e., the node Building) of the product model
graph depicted in Fig. 1, one instance of the node Electr./Light. service, two instances
of the node Story, and one instance of the node Roof.

Electr./Light.
service, ID 1

Building, ID 1

Story, ID 2

Roof, ID 1

electr./light. first story

roof

Story, ID 1

upper story

Fig. 5. Instance tree of a building partial candidate instance.

The activity instances and the instantiated temporal constraints of the construction
process for the building instance showed in Fig. 5 are depicted in Fig. 6.

In the following we will denote as 〈V ar,Node-i〉 the variable V ar of the instance
with id i of the node Node. Since we are considering a partial candidate instance, some
of the node instance variables and process variables may have a value assigned to. For
example, we may have 〈StoryNum,Building-1〉 = 2 and San = 0.

As mentioned in Sect. 2.3, a candidate instance is an instance if it satisfies all the
constraints defined in the model, appropriately instantiated on instance variables. The
instantiation of the node constraints for the nodes Building and Story listed in Sect. 2.1
leads to the following constraints on the variables of node instances in Fig.5.

276 Dario Campagna, Andrea Formisano

Preparation and
development of the
building site, ID = 1

Building shell and
building envelope

works, ID = 1

Building services
equipment, ID = 1

Finishing works,
ID = 1

before
or

meets

before
or

meets

before
or

meets

Finishing works,
ID = 2

before
or

meets

Roof insulation,
ID = 1

Fig. 6. Activities and temporal constraints for the building partial candidate instance.

〈BuildingType,Building-1〉 = Warehouse⇒ 〈StoryNum,Building-1〉 = 1,
〈FloorNum,Story-1〉 ≤ 〈StoryNum,Building-1〉,
〈BuildingType,Building-1〉 = Office building⇒
⇒ 〈Height, Story-1〉 ≥ 4 ∧ 〈Height, Story-1〉 ≤ 5,

〈FloorNum,Story-2〉 = 〈FloorNum,Story-1〉+ 1,
〈FloorNum,Story-2〉 ≤ 〈StoryNum,Building-1〉,
〈BuildingType,Building-1〉 = Office building⇒
⇒ 〈Height, Story-2〉 ≥ 4 ∧ 〈Height, Story-2〉 ≤ 5.

Instantiating the cardinality constraints for the edge upper story, introduced in Sect 2.1,
we obtain:
〈FloorNum,Story-1〉 = 〈StoryNum,Building-1〉 ⇒ ICupper storyStory-1 = 0,
〈FloorNum,Story-1〉 < 〈StoryNum,Building-1〉 ⇒ ICupper storyStory-1 = 1,

〈FloorNum,Story-2〉 = 〈StoryNum,Building-1〉 ⇒ ICupper storyStory-2 = 0,
〈FloorNum,Story-2〉 < 〈StoryNum,Building-1〉 ⇒ ICupper storyStory-2 = 1.

Finally, the instantiation of the cardinality model constraint showed in Sect. 2.1 leads
to the constraint:

ICupper storyStory-2 6= ICroofStory-2.
For each activity instance we have constraints on duration, starting and finishing time.
For example, for the composite activity instance “Finishing works” with id 1 we have:

tstartFinishing works-1 = minb∈pInsts(Finishing works-1) tstartb ,

tendFinishing works-1 = maxb∈pInsts(Finishing works-1) tendb ,

tendFinishing works-1 ≥ tstartFinishing works-1,
dFinishing works-1 = tendFinishing works-1 − tstartFinishing works-1.

While for the activity instance “Roof insulation” with id 1 we have:
tstartRoof insulation-1 ≥ 0, tendRoof insulation-1 ≥ 0,
tendRoof insulation-1 ≥ tstartRoof insulation-1,
dRoof insulation-1 = tendRoof insulation-1 − tstartRoof insulation-1.

Instantiating the resource and duration constraints for the activity Roof insulation intro-
duced in Sect. 2.2 we obtain:

ProdProc - Product and Production Process Modeling and Configuration 277

〈Roof insulation-1, GeneralWorkers, 〈qGW , [−10,−4]〉, F romStartToEnd〉,

〈
Roof insulation-1, d =

BuildingArea

2 · |qGW |+ 2 · |qT |+ 3 · |qC |
〉
.

The instantiation of the constraint involving both product and process variables showed
in Sect. 2.2 leads to the following constraints:

ICsanitaryBuilding-1 = San ,

〈StoryNum,Building-1〉 = instFinishing works.

From the PRODPROC partial candidate instance we just described and its instanti-
ated constraints, we can construct a CSP with the following characteristics (we use the
SWI-Prolog notation for variables, domains and constraints).

– A finite domain (FD) variable for each node instance variable, e.g., for the variable
〈StoryNum,Building-1〉 the FD variable StoryNum_Building_1;

– A FD variable for each instance cardinality variable, e.g, for ICroofStory-2 the FD
variable IC_roof_Story_2;

– FD variables for starting time, ending time, duration of each activity instance,
e.g., T_start_Roof_insulation_1, T_end_Roof_insulation_1, and
D_Roof_insulation_1 for the activity instance “Roof insulation” with id 1;

– FD variables for execution flags of activities with no instance;
– FD variables for process and resource variables, e.g., BuildingArea for the

process variable BuildingArea, GeneralWorkers for the resource variable
GeneralWorkers;

– A domain constraint for each FD variable, e.g., IC_roof_Story_2 in 0..1;
– A constraint on an FD variable for each assignments, obtained by substituting each

instance variable with the corresponding FD variable;
– A constraint on FD variables for each instantiated constraint, obtained by substitut-

ing each instance variable with the corresponding FD variable;
– For each composite activity instance, a minimum and a maximum constraint on

start and end times, e.g., for the instance with id 1 of the activity “Finishing works”
the constraint minimum(T_start_Finishing_works_1,Ts) and the con-
straint maximum(T_end_Finishing_works_1,Te), where Ts, Te are re-
spectively the list of start and end times of the activity in the process related to the
instance with id 1 of “Finishing works”;

– A constraint on FD variables for each instantiated temporal constraint, obtained by
substituting start times, end times, and execution flags with the corresponding FD
variables in the propositional formula equivalent to the temporal constraint;

– A constraint on FD variables for each instantiated duration constraint, obtained by
substituting duration, process and resource variables with the corresponding FD
variables;

– A constraint of the form cumulatives(Tasks,Machines) where Tasks
is a list of task predicates, one for each instantiated resource constraint, and
Machines is a list of machine predicates, one for each resource. For example,
for the resource constraint showed in Sect. 2.2 and the resource GeneralWorkers
we define the predicates

278 Dario Campagna, Andrea Formisano

task(T_start_Roof_insulation_1,D_Roof_insulation_1,
T_end_Roof_insulation_1,Q_GW,GeneralWorkers,
FromStartToEnd)

machine(GeneralWorkers,0..10,10)

B CLP-based Configuration System

We are using SWI-Prolog to develop a CLP-based configuration system that exploits
the close relation that exists between configuration problems and CSPs.2 In particular,
we are using the SWI-Prolog pce library to implement the system graphical user in-
terface, and the clpfd library for constraint propagation and labeling purposes. The
current version of the system is limited to product modeling. Fig. 7 shows the graphical
user interface that allows a user to define a product description using PRODPROC. The
interface presents (on the left, from top to bottom) controls for graphical element se-
lection, creation of nodes, creation of edges, and creation of sets of model constraints.
Moreover, there is a menu named “Check” with controls for checking model syntactic
correctness, and for automatically generate product instances to check model validity.

Fig. 7. Graphical user interface for product description creation and checking.

2 We chose CLP instead of Constraint Programming for the advantages the former gives in terms
of rapid software prototyping.

ProdProc - Product and Production Process Modeling and Configuration 279

PrettyCLP: a Light Java Implementation
for Teaching CLP

Alessio Stalla1, Davide Zanucco2, Agostino Dovier2, and Viviana Mascardi1

1 DISI - Univ. of Genova,
alessiostalla@gmail.com,mascardi@disi.unige.it

2 DIMI - Univ. of Udine,
zanucco.davide@spes.uniud.it,agostino.dovier@uniud.it

Abstract. Recursion is nowadays taught to students since their first
programming days in order to embed it deeply in their brains. However,
students’ first impact on Prolog programs execution sometimes weakens
their faith in recursive programming thus invalidating our initial efforts.
The selection and computation rules implemented by all Prolog systems,
although clearly explained in textbooks, are hard to be interiorized by
students also due to the poor system debugging primitives. Problems
increase in Constraint Logic Programming when unification is replaced
by constraint simplification in a suitable constraint domain. In this pa-
per, we extend PrettyProlog, a light-weight Prolog interpreter written in
Java capable of system primitives for SLD tree visualization, to deal with
Constraint Logic Programming over Finite Domains. The user, in partic-
ular, can select the propagation strategies (e.g. arc consistency vs bound
consistency) and can view the (usually hidden) details of the constraint
propagation stage.

1 Introduction

PrettyProlog was developed two years ago by a team of the University of Gen-
ova, for providing concrete answers to demands raised by Prolog novices [14].
Teaching experience demonstrated that one of the hardest concepts for Prolog
students is to understand the construction and the visit strategy of the SLD tree.
PrettyProlog was developed from scratch, without reusing any existing Prolog
implementation, and designed to be simple, modular, and easily expandable.
Research on visualization of the execution of Prolog programs has a long history
(just to make some examples, [13, 7, 15], many papers collected in [6], and [9]).
Nevertheless, nowadays few Prolog implementations offer a Stack Viewer and
an SLD tree visualizer as graphical means for debugging. The open-source im-
plementations that provide these facilities are even fewer. Among them, SWI-
Prolog1 offers a debugging window showing current bindings, a diagrammatic
trace of the call history, and a highlighted source code listing. No SLD tree vi-
sualization is given. On the other hand, many Java implementations of a Prolog

1 http://www.swi-prolog.org/

interpreter exist, starting from W-Prolog2. Although at a prototypical stage,
PrettyProlog presents three features that, to the best of our knowledge, cannot
be found together in any other Prolog implementation:

1. it provides Stack and SLD Tree visualizers;
2. it is open source;
3. it is written in Java, and fully compliant with Java ME CDC application

framework.

The desirable architectural features of PrettyProlog have been exploited in the
research activity described in this paper where PrettyProlog has been extended
for dealing with Constraint Logic Programming on Finite Domains (briefly,
CLP(FD)). As a matter of fact, experience in teaching CLP(FD) evidenced
further problems for students, first of all the replacement of unification with
constraint solving. The term 1 + 3 does not unify with the term 3 + 1. However,
they are both considered as 4 by CLP(FD). Moreover, the constraint propa-
gation stage is parametric on some choices. For instance, bounds consistency
and arc consistency return different “results” to the constraint 2X = Y where
the domain DX and DY of the variables X and Y are both the intervals 0..3
(DX = {0, 1}, DY = {0, 1, 2} in the former case, DX = {0, 1}, DY = {0, 2}
in the latter case). Although different propagation techniques are studied in
theory, Prolog interpreters supporting CLP(FD) usually implement only one of
them, and students using different systems can be confused. Another source of
confusion is introduced by some implementations of the SLD resolution with
constraints that manage the ordering of literals in goals in a different way de-
pending on whether they are constraint literals or user-defined literals. Moreover,
during constraint’s solution search (if explicitly required by a labeling) an aux-
iliary tree named prop-labeling tree is created and visited. This tree is sometimes
wrongly confused with the SLD tree.

The proposed extension of PrettyProlog, called PrettyCLP, has been devel-
oped to help the new CLP programmers in a deeper understanding of what
happens during the execution of a CLP(FD) program. The basic procedures for
constraint propagation have been implemented in Java, either in the case of (hy-
per) arc consistency or in the case of (hyper) bounds consistency. A labeling
built-in has also been developed for the solution’s search using a prop-labeling
tree.

This paper is organized in the following way: Section 2 recalls the functionali-
ties of PrettyProlog and its implementation; Section 3 provides some background
on CLP; Section 4 describes the original contribution of this paper, namely the
design and implementation of PrettyCLP. In particular, it discusses PrettyCLP
syntax, the supported mechanism for constraint propagation and labeling, and
the output renderer. Section 5 analyzes the related work and concludes by out-
lining some future extensions.

2 http://waitaki.otago.ac.nz/~michael/wp/

282 Alessio Stalla, Davide Zanucco, Agostino Dovier, Viviana Mascardi

2 PrettyProlog

2.1 Functionalities

PrettyProlog implements a Prolog engine able to deal with basic data types
(integer and real numbers, lists, strings), and offering metaprogramming facil-
ities that, combined with the “cut” predicate, make the definition of negation
as failure possible. Despite to some simplifications that were made during its
design and implementation, sophisticated programs may be implemented with
PrettyProlog thanks to these features.

The main functionality of PrettyProlog, however, is that it allows the user
to visualize how the Stack and the SLD Tree evolve during a computation made
by the interpreter to solve a given goal.

The SLD tree viewer panel shows the steps the PrettyProlog engine has
performed as a tree. Each branch represents the selection of a clause from the
theory, which can be selected in the “theory panel”, whereas leaves are either
solutions or dead ends, i.e. goals that could not be solved. The substitution that
was valid at a given point is shown aside the corresponding node in the tree.
Also, the SLD tree shows which frames are removed from the stack as the effect
of a cut, by printing them with a different font and icon.

Fig. 1. SLD Viewer.

PrettyCLP: a Light Java Implementation for Teaching CLP 283

Figure 1 shows the SLD tree of a Prolog program that implements a classical
instance of a search problem: that of moving from a city in Romania (Arad, in
our case) to Bucharest [11, Chapter 3]. We implemented a depth first search
with control of cycles, as well as the auxiliary not and member predicates.

Because of space constraints, we do not show here the code of the imple-
mented “DFS with control of cycles” program. It can be found in [14], as well
as in most Prolog textbooks.

Besides showing what happens both to the stack and to the SLD tree (while it
is built), PrettyProlog correctly visualizes the effect of a “cut” on the SLD tree. In
the upper part of Figure 1 there are goals written in italic (from not(member(arad,

[oradea, zerind, arad])), ... to !, fail, write(....)). These nodes
are cut after the execution of the ! in the first clause defining not, called with
member(arad, [oradea, zerind, arad])) as argument. PrettyProlog SLD vie-
wer keeps the cut goals for didactic purposes, but shows them in a different
font to emphasize that they no longer belong to the tree. The system predi-
cates supported by PrettyProlog, although limited, include simple predicates for
input-output, such as write and nl.

The stack viewer shows each frame pushed onto the stack. When the user
clicks on a frame, its content is displayed: the goal that still had to be solved at
the time the frame was pushed on the stack; the substitution that is the partial
solution to such goal at this point; the clause that has been used to obtain the
goal; the index from where, on backtracking, the engine will search for the next
clause.

When the PrettyProlog engine solves a goal step-by-step, the clause used in
each resolution step is highlighted in the theory panel.

2.2 Implementation

PrettyProlog is made of several modules, each one corresponding roughly to a
Java package. Modules are pretty much organized in a layered fashion, with
the lower-level ones providing services to the upper-level ones. Currently im-
plemented modules include: the Data Types Module, the Parser Module, the
Engine Module, the GUI Module.

– The Data Types Module includes data types that are commonly used through-
out many other PrettyProlog modules. From this point of view, the Data
Types Module is the lowest-level one.

– The Parser Module contains the Parser class and some parser exception
classes. This module lies just above the Data Types Module; its task is to
read characters from a stream and produce instances of PrettyProlog data
types, or throw an exception if something goes wrong.

– The GUI Module includes the classes that make up the PrettyProlog GUI,
including the viewers for the Stack, Theory, and SLD Tree.

– The Engine Module is the main PrettyProlog module. It contains the Engine
class as well as many helper classes such as Theory, Goal and Clause. This
module contains also two sub-modules: EventListeners , which provides

284 Alessio Stalla, Davide Zanucco, Agostino Dovier, Viviana Mascardi

classes and interfaces used to attach listeners to the Engine, the Stack, and
the Theory; and Syspreds, which defines the built-in system predicates and
gives the programmer the possibility to easily add new ones.
The classes that make up the Engine Module are the following:
Unifier. This class provides a single public method, unify(Term, Term),

that returns a substitution that unifies the two terms passed as argu-
ments, or null if they are not unifiable. This class exists as a separate
class for reasons of modularity and extensibility.

Clause. A clause is an object made of a Callable (the head) and a body,
again a nameless callable.

Theory. This class implements a list of clauses, with the usual operations
for adding to, removing from, or navigating through the list.

Frame. A Frame is a single piece of data that is contained in a stack.
Stack. In addition to the usual stack operations, this class can register

StackListeners which are notified of every change in the stack’s state.
The lack of an explicit representation of the stack in many prolog im-
plementations, and the requirement to have such a data structure for
inspecting the behavior of the Prolog engine were the main motivations
for building a new interpreter from scratch.

Goal. A goal is a list of callables.
Engine. The main class of the Engine module.

3 Constraint Logic Programming

We briefly recall here some basic notions of Constraint Logic Programming
(CLP). The reader is referred to [10] for a recent survey. We mix syntax and
semantics to shorten the presentation.

Let us consider a first-order language 〈Π,F ,V〉, where Π,F ,V are the sets
of predicate symbols, functional symbols, and variables, respectively. The set Π
is partitioned in the two sets ΠC and ΠP (Π = ΠC ∪ΠP and ΠC ∩ΠP = ∅).
ΠC (ΠP) is the set of constraints (resp., program defined“) predicate symbols.
ΠC is assumed to contain the equality symbol “=”. Similarly, F is partitioned
into FC and FP . In this paper we focus on CLP on finite domains (CLP(FD)),
therefore, we assume that FC contains the binary arithmetic function symbols
+,−, ∗, /, mod etc. as well as a constant symbol for any integer number, and
ΠC contains ≤, <, etc. false is assumed to be a special predicate in ΠP which
has no rules defining it. domain is assumed to be a predicate in ΠC assigning a
domain to a list of variable or refining it, if the variables already have one.

An atom built on 〈ΠP ,FP ,V〉 (resp. 〈ΠC ,FC ,V〉) is said to be a program
(resp. constraint) atom. Any constraint atom and any subterm based on 〈FC ,V〉
is interpreted in a constraint domain, namely, fulfilling the intended semantics
of its symbols (in this case, the arithmetical properties on integer numbers).
The same happens to constraint atoms. To this aim, each variable X used in
constraint atoms is associated with a domain DX . We will use the functions min
and max that return the smallest (resp., largest) value of a domain.

PrettyCLP: a Light Java Implementation for Teaching CLP 285

A primitive constraint is a constraint atom or its negation and a constraint
is a conjunction of primitive constraints. We denote the empty conjunction by
true. This syntactic notion of constraint has a semantic counterpart: a constraint
C on n variables X1, . . . , Xn with domains D1, . . . , Dn, respectively, is a relation
on D1 × · · · ×Dn. A solution for C is a mapping [X1/d1, . . . , Xn/dn] such that
〈d1, . . . , dn〉 ∈ C. If there are no solutions, then C is inconsistent.

A goal CLP is of the form ← B̄, where B̄ is a conjunction of program atoms
and primitive constraints. A CLP rule is of the form A ← B̄ where A is a
program atom and ← B̄ is a CLP goal. A CLP program is a set of CLP rules.

The operational semantics of CLP is parametric on the function solve that
given a constraint C should detect whether C is satisfiable (consistent) in the
constraint domain chosen (in this paper finite domains). During its computation,
solve(C) might rewrite C to an equivalent simplified constraint. In practice, for
complexity reasons, solve is an incomplete procedure, in the sense that instead
of verifying consistency of the (entire) constraints, acts locally in each primitive
constraint, removing some values in domains that cannot belong to any solution
until a local property is satisfied. Typical local properties are (hyper)arc consis-
tency and (hyper)bounds consistency (see below for details). This operation is
called constraint propagation and is required to be as fast as possible. During this
computation, inconsistency of C can be detected. In this case solve(C) returns
false. But, even if solve(C) 6= false we cannot be sure of the consistency
of the constraint. As we will see below, the user might require the search for a
solution using the labeling predicate.

As an example, let us consider the constraint X 6= Y,X 6= W,X 6= Z, Y 6=
W,Y 6= Z,W 6= Z, where DX = DY = DZ = DW = {0, 1, 2}. Although it is
inconsistent, default options in Prolog implementations are such that it is left
unaltered by solve and, therefore, inconsistency is not detected. This constraint
is the encoding of the 3-coloring problem of a graph (in this case, of four nodes,
{X,Y,W,Z}, disequations are added for each edge). Checking consistency of this
class of constraints is therefore NP-complete and a fast propagation algorithm
can not check it (unless P=NP).

Operational semantics of CLP is based on the notion of state. Some variants
are possible. The one presented here is the one we believe is the closest to
standard SLD resolution.

A state is a pair 〈G |C〉 where G is a CLP goal and C is a constraint (also
known as the constraint store). A state 〈G |C〉 is said to be:

– successful if G = true and solve(C) 6= false.
– failing if either solve(C) = false or there are no clauses in P with the

same predicate of the head of the selected atom in G.
– unsolved if G 6= true and it is not failing.

Let 〈G1 |C1〉 be an unsolved state, where G1 =← L1, . . . , Lm, and P a pro-
gram. A CLP-derivation step 〈G1 |C1〉 ⇒ 〈G2 |C2〉 is defined as follows:

– Let Li be the selected literal in G1 (for simplicity, let us assume it is L1).

286 Alessio Stalla, Davide Zanucco, Agostino Dovier, Viviana Mascardi

– Then 〈G2 |C2〉 is obtained from S and P in one of the following ways:
• L1 is a primitive constraint, C2 = L1 ∧ C1. If solve(C2) = false, then
G2 =← false, otherwise G2 =← L2, . . . , Ln.

• If L1 = p(t1, . . . , tn) is a program atom, and p(s1, . . . , sn) ← B̄ is a re-
naming of a clause of P then G2 =← t1 = s1, . . . , tn = sn, B̄, L2, . . . , Ln
and C2 = C1.

A derivation for a state S0 in P is a maximal sequence of derivations such
that S0 ⇒ S1 ⇒ · · ·. A derivation for a goal G is a derivation for the state
〈G | true〉.

A finite derivation S0 ⇒ · · · ⇒ Sn is said successful (resp. failing) if Sn
is a successful (resp., failing) state. In the case of a successful derivation the
computed answer is the projection of the constraint store of Sn on the variables
in S0. Of course, a simplification, based on solve, is usually employed to make
the output readable.

Although the computed answer is returned in implicit form, explicit enumer-
ation of the solutions can be forced by using the built-in predicate labeling. In
this stage inconsistency of a constraint is discovered. The main parameter is a list
of variables to be instantiated (labeled). Other optional parameters are related
to the search heuristics and are different in different Prolog implementations.
We use here the choice of not allowing extra parameters.

Basically, starting from a successful state 〈true |C〉 (or equivalently, by a
constraint C) the labeling builds a search tree that alternates two stages: a
constraint propagation stage followed by a non deterministic assignment of a
(selected) variable. During the propagation stage the constraint is simplified
and, possibly, its inconsistency is detected. In this case, the search backtracks
to the last non deterministic choice. If all variables are assigned (labeled) a
solution is found. If all possible backtracks are applied and no solution is found,
the constraint is inconsistent. The derivation step is extended with:

• If L1 = labeling([V1, . . . , Vn]) thenG2 =← V1 = v1, . . . , Vn = vn, L2, . . . , Ln
and C2 = C1 if [V1/v1, . . . , Vn/vn] is an assignment that do not lead C1 to
inconsistency. If there are not such assignments, then G2 =← false.

Every variable X used in constraint is associated with a domain DX . This
is done initially by the built-in predicate domain; domains and later reduced by
effect of the computation. As common in CLP, we denote the interval {a, a +
1, a+ 2, . . . , b} by a..b.

Let us consider a primitive constraint c on the variables X1, . . . , Xn. c is arc
consistent (hyper arc consistent if n > 2) if for all i ∈ {1, . . . , n} and for all
di ∈ Di exist d1 ∈ D1, . . . di−1 ∈ Di−1, di+1 ∈ Di+1, . . . , dn ∈ Dn such that
[X1/d1, . . . , Xn/dn] is a solution of c.

As explained in [5] there are several definitions of bounds consistency in
literature. We refer to the one implemented by SICStus Prolog3, by B Prolog4,
and by SWI Prolog, just to cite a few, and and called interval consistency in [2].
3 http://www.sics.se/isl/sicstuswww/site/
4 http://www.probp.com/

PrettyCLP: a Light Java Implementation for Teaching CLP 287

Let us consider a primitive constraint c on the variables X1, . . . , Xn. c is
bounds consistent (hyper bounds consistent if n > 2) if for all i ∈ {1, . . . , n} and
for all di ∈ {minDi,maxDi} (the two interval bounds), exist

d1 ∈ minD1..maxD1, . . . , di−1 ∈ minDi−1..maxDi−1,
di+1 ∈ minDi+1..maxDi+1, . . . , dn ∈ minDn..maxDn

such that [X1/d1, . . . , Xn/dn] is a solution of c.
Going back to the example in the Introduction, the constraint 2X = Y

where the domains DX = {0, 1}, DY = {0, 1, 2} is bounds consistent but not arc
consistent.

4 PrettyCLP

This section introduces PrettyCLP: Section 4.1 reports the concrete syntax of
the CLP part of PrettyCLP, Section 4.2 describes the procedures implemented
for constraint propagation and labeling, and Section 4.3 shows how the output
primitives have been modified and reports some system screenshots.

4.1 Concrete CLP syntax for PrettyCLP

Concretely, the set ΠC contains the constraint predicate symbols #= and #=<;
symbols #\=, #>, #>=, #< are accepted as a syntactic sugar for building negated
constraint literals. Standard arithmetic functional symbols are allowed as well.

The built-in instruction domain for assigning a finite domain to variables can
be used in two ways (lists are usual Prolog lists):

– domain(VARS, min, max), where VARS is a list of variables, and the domain
is the interval min..max.

– domain(VARS, DOMAIN): where VARS is a list of variables, and DOMAIN is a
list of integer numbers.

The labeling built-in has a unique argument: labeling(VARS), where VARS
is a list of variables assigned to a finite domain.

4.2 Constraint Propagation and Labeling

Every finite domain variable is assigned to a domain, namely a set of points that
can monotonically decrease during the computation, or increase again due to
backtracking. Domains are stored in a vector of integer values (we recall that
Java vectors are in fact a dynamic data structures that can be increased and
decreased as needed). This is realized by modifying the class Variable within
the module Data Types.

More in detail, a Java constructor is changed in order to characterize a vari-
able by a symbol. symbol is a PrettyProlog class, and a symbol can be the string
naming a variable or a constant or functional symbol of FC .

288 Alessio Stalla, Davide Zanucco, Agostino Dovier, Viviana Mascardi

Moreover, the class Domain is defined in the module Engine. This class stores
an array (again, a Java dynamic array) with an entry for each of the variables oc-
curring in the derivation and implements the methods for domain manipulation.
Among them, we would like to point out the methods:
– getDomain(Var X) that returns the (vector storing the) domain of a variable

X.
– domainVar(Var X, int min, int max) that initializes the domain of the

variable X with the interval min..max.
– updateDomain(Var X, Vector D) that replaces the current domain of the

variable X with the domain array D. This method simplifies propagation and
backtracking operations.

The parser of Pretty Prolog has been slightly modified to be able to deal
with constraint terms and atoms.

The class Engine is the core of the computation. Since the SLD resolution
is now coupled with constraint solving, we need to act on the class Engine.
Unification is called for standard terms, constraint solving for constraint terms.
The constructor that creates a new instance has been modified for dealing with
the array domains. Then the method ContinueSolving is called. Its role is
to either call the Constraint Solver procedure, called SolveConstraint, or the
unification procedures already developed in PrettyProlog.

The Constraint Solver returns a Boolean value: false can be obtained as
effect of constraint propagation; if constraint propagation ends without failing
it returns true. Constraint Propagation operates on both arc and bounds con-
sistency. The procedures called by the Constraint Solver are:
– Solve that receives as input a constraint and the domains of the variables

in it and elaborates it on the basis of its main predicate symbol. When se-
lected, unary constraints are used to reduce the domain of the corresponding
variable and removed. Constraints with two or more variables, instead, are
dealt with by:
• ArcSolveConstraint, implementing arc consistency, and
• BoundSolveConstraint, that implements bounds consistency.

In these two procedures, one variable per time is selected, then every value
in its domain is considered and a support for it is looked for in the domains
of the remaining variables (but with a different rule for arc vs bounds). In
the case of bounds, of course, a faster algorithm based on the bounds of the
domains is employed.

– SolveConstraint repeatedly applies the Solve procedures on all the con-
straints until a fixpoint is reached.

– ExprEval computes the various expressions involved in constraints when val-
ues are assigned to variables and is used as auxiliary procedure by ArcSolve/
BoundSolveConstraint.

The handling of labeling is made by a homonymous method. Variables in
the argument list are selected from left to right (heuristics leftmost of other
CLP(FD) systems) and smallest domain values are tried first (heuristics up).5

5 It it easy to implement other heuristics here. This will be done as future work.

PrettyCLP: a Light Java Implementation for Teaching CLP 289

This method also deals with backtracking, handling,choice points, and storing
and retrieving intermediate constraint stores.

Remark 1. As a final observation for this section, we would like to underline
a typical problem in CLP implementations coming from the weak typing of
constraint functional symbols and variables. In theory, terms and variables are
sorted, in practice this is not true. If the two terms 1 + 3 and 3 + 1 are found
within a unification they are assumed to be different even if the arguments are
integer numbers and the binary symbol + ∈ FC . On the contrary the constraint
1 + 3 #= 3 + 1 is true. This is also the behavior of our interpreter, but this may
lead a student, the target of PrettyCLP, to confusion.

Similarly, let us assume to find the constraint atom X #< 3 and the variable
X is not yet assigned to a domain. Some Prolog implementations will answer
X in -inf..2, thus implicitly assuming a starting domain -inf..+inf for each
finite domain variable. We have chosen a more rigid option: if the variable has
been not yet associated with a domain, it cannot be used in a constraint atom.
An error (a sort of type error) is returned.

4.3 Output rendering

After the parametric propagation procedures and the procedures for the labeling
have been implemented, we modified the graphical applet of PrettyProlog for
showing the new information. In particular:

– buttons for visualizing and erasing domains have been added to the applet
window;

– the field Constraint can be inspected from the Stack Viewer;
– two windows for inspecting Arc Consistency and Bounds Consistency based

propagation have been made available to PrettyCLP users.

Changes are done in the method TheoryViewer.

In Figures 2 and 3 we report the rendering of the two alternative executions
to a goal p(X,Y) where the predicate p is defined by the constraint:

domain([X],0,2), domain([Y],0,5), Y #= 2 * X.

In the current implementation, we decided to leave an unique SLD tree, while
different computed answers are returned in the Arc Consistency and Bounds
Consistency windows. Since Arc Consistency is more effective in reducing the
domains, it can be the case that an inconsistent branch of the SLD tree is found
some steps before than using bounds consistency. However, this case is extremely
rare. We have preferred to leave the tree obtained using Bounds Consistency (the
same computed by Standard Prolog system) only. However, the user can view
what would have happened with the other propagation technique looking at the
Arc Consistency window. In particular, all domains computed during the com-
putation are included in those computed with Bounds Consistency. Sometimes
they are strictly included and it may happen that one domain becomes empty

290 Alessio Stalla, Davide Zanucco, Agostino Dovier, Viviana Mascardi

before arriving at the end of the tree. This choice can be changed as future
work, namely, we could leave the user to select in advance (with a button) the
propagation choice and report the selected computation only.

In Figures 4–5 we report the execution of PrettyCLP on a Knapsack prob-
lem. The explicit labeling is required for variable W only. The computed solution
is shown in the main picture (Fig 4). In the labeling case the differences be-
tween Arc and Bounds become evident. An excerpt of the executed constraint
propagation is shown in Fig 5.

5 Related Work and Conclusions

Although visualization and tracing of constraint programs do not constitute a
new research area, implemented systems that provide dynamic visualization and
control functionalities for CLP(FD) are still few.

Among the oldest ones we may mention the Oz-Explorer system by C. Schulte
[12] which uses the search tree of a constraint problem as its central metaphor,
and exploration and visualization of the search tree are user-driven and inter-
active. Within the community of constraint programming, ILOG debugger6 is a
configurable tool with nice graphics capabilities. But, according to our opinion,
it is not suitable for beginners (and it is not a CLP visual debugger). Simi-
larly, CPVisu tracer7 is a module of the Java constraint solver on finite domains
CHOCO, producing XML files that, once interpreted using CPViz8, allow to see
information on the tree search, the states of constraints and variables at dif-
ferent points of computations, and a configuration file. It is a professional tool
(together with CHOCO, which is developed by a large group of people includ-
ing Francois Laburthe, Narendra Jussien, Xavier Lorca, and other contributors,
such as Nicolas Beldiceanu), but its scope is for debugging large programs rather
than for learning CP (and, in any case, it does not deal with CLP).

In [3], M. Carro and M. V. Hermenegildo address the design and implementa-
tion of visual paradigms for observing the execution of constraint logic programs,
aiming at debugging, tuning and optimization, and teaching. They describe two
tools, VIFID and TRIFID, exemplifying the devised depictions. In the compan-
ion paper [4] they describe the APT tool for running constraint logic programs
while depicting a (modified“) search tree, keeping information about the state of
the variables at every moment in the execution. This information can be used to
replay the execution at will, both forwards and backwards in time. The search-
tree view is used as a framework onto which constraint-level visualizations can
be attached.

The integration of explanations in the trace structure and some ideas on how
to implement the trace structure in a high-end system like SICStus are addressed
by [1].

6 http://www.cs.cornell.edu/w8/iisi/ilog/cp11/pdf/debugsolver.pdf
7 http://www.emn.fr/z-info/choco-solver/cpvisu-tracer/index.html
8 http://cpviz.sourceforge.net/

PrettyCLP: a Light Java Implementation for Teaching CLP 291

Fig. 2. PrettyCLP in action: Arc Consistency Propagation

Fig. 3. PrettyCLP in action: Bounds Consistency Propagation

292 Alessio Stalla, Davide Zanucco, Agostino Dovier, Viviana Mascardi

Fig. 4. PrettyCLP in action: Knapsack main output

Fig. 5. PrettyCLP in action: Knapsack, propagation details

PrettyCLP: a Light Java Implementation for Teaching CLP 293

More recently, F. Fages, S. Soliman, and R. Coolen developed CLPGUI [8],
a generic graphical user interface for visualizing and controlling the execution of
constraint logic programs. CLPGUI is based on a client-server architecture for
connecting a CLP process to a Java-based GUI process, and integrates a non-
intrusive tracing and control method based on annotations in the CLP program.
Arbitrary constraints and goals can be posted incrementally from the GUI in an
interactive manner, and arbitrary states can be recomputed. Several generic 2D
and 3D viewers of the variables and of the search tree are supported.

Although definitely simpler than some of the above systems as far as the
visualization of variables is concerned, PrettyCLP shows the original feature of
allowing the user to select the propagation strategies (e.g. arc consistency vs
bound consistency), which – to the best of our knowledge – is not supported by
any other tool.

As part of our close future activities we are planning to incorporate some
global constraints, such as the alldifferent one, into PrettyCLP. Propagation
procedures of global constraints allow to sensibly prune the search tree. This
has effects on the size and on the form of the SLD tree too. Therefore, we will
add buttons to enable/disable global consistency vs simple consistency so as to
select one or the other search tree.

Because of our teaching mission, from which the development of both Pret-
tyProlog and PrettyCLP stemmed, we are currently facing the problem of guid-
ing the student in his/her CLP learning activity. To this aim, we are designing
a set of benchmarks for supporting self-evaluation and for helping students in
identifying those aspects of CLP design and programming that they still need
to better understand. This benchmark will heavily ground upon PrettyCLP as
the tool that the students will be suggested to use in order to appreciate CLP
not only on the stage, but also behind the scene.

All the material relevant to PrettyProlog and PrettyCLP can be found at
http://code.google.com/p/prettyprolog/.

Acknowledgments

This work is partially supported by INdAM-GNCS 2010, INdAM-GNCS 2011,
and PRIN 20089M932N. We would like to thank Maurizio Martelli for the pre-
cious discussions during the design and implementation of the PrettyProlog vi-
sualizer.

References

1. Ågren, M., Szeredi, T., Beldiceanu, N., and Carlsson, M. Tracing and
explaining execution of clp(fd) programs. In WLPE (2002), pp. 1–16.

2. Carlsson, M., Ottosson, G., and Carlson, B. An open-ended finite domain
constraint solver. In Proc. Programming Languages: Implementations, Logics, and
Programs (1997), vol. 1292 of LNCS, Springer, pp. 191–206.

294 Alessio Stalla, Davide Zanucco, Agostino Dovier, Viviana Mascardi

3. Carro, M., and Hermenegildo, M. V. Tools for constraint visualisation: The
vifid/trifid tool. In Analysis and Visualization Tools for Constraint Programming
(2000), P. Deransart, M. V. Hermenegildo, and J. Maluszynski, Eds., vol. 1870 of
Lecture Notes in Computer Science, Springer, pp. 253–272.

4. Carro, M., and Hermenegildo, M. V. Tools for search-tree visualisation: The
apt tool. In Analysis and Visualization Tools for Constraint Programming (2000),
P. Deransart, M. V. Hermenegildo, and J. Maluszynski, Eds., vol. 1870 of Lecture
Notes in Computer Science, Springer, pp. 237–252.

5. Choi, C. W., Harvey, W., Lee, J. H. M., and Stuckey, P. J. Finite domain
bounds consistency revisited. In Australian Conference on Artificial Intelligence
(2006), vol. 4304 of LNCS, Springer, pp. 49–58.

6. Ducassé, M., Emde, A.-M., Kusalik, T., and Levy, J., Eds. Logic Program-
ming Environments, ICLP’90 Preconference Workshop. 1990. ECRC Technical
Report IR-LP-31-25.

7. Eisenstadt, M., and Brayshaw, M. A fine-grained account of Prolog execution
for teaching and debugging. Instructional Science 19, 4/5 (1990), 407–436.

8. Fages, F., Soliman, S., and Coolen, R. Clpgui: A generic graphical user inter-
face for constraint logic programming. Constraints 9, 4 (2004), 241–262.

9. Gavanelli, M. SLDNF-Draw: a visualisation tool of prolog operational semantics.
In CILC’07, Messina (June 2007).

10. Gavanelli, M., and Rossi, F. Constraint logic programming. In A 25-Year
Perspective on Logic Programming (2010), vol. 6125 of LNCS, pp. 64–86.

11. Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach, Second
Edition. Prentice Hall, 2003.

12. Schulte, C. Using the oz explorer for the development of constraint programs.
In LPE (1997), pp. 55–56.

13. Shinomi, H. Graphical representation and execution animation for Prolog pro-
grams. In MIV (1989), IEEE Computer Society, pp. 181–186.

14. Stalla, A., Mascardi, V., and Martelli, M. PrettyProlog: A Java Interpreter
and Visualizer of Prolog Programs. In CILC’09, Ferrara (June 2009). System
available at http://code.google.com/p/prettyprolog/.

15. Tamir, D. E., Ananthakrishnan, R., and Kandel, A. A visual debugger for
pure Prolog. Inf. Sci. Appl. 3, 2 (1995), 127–147.

PrettyCLP: a Light Java Implementation for Teaching CLP 295

A framework for structured knowledge
extraction and representation from natural

language via deep sentence analysis

Stefania Costantini1, Niva Florio1, and Alessio Paolucci1

Dip. di Informatica, Università di L’Aquila, Coppito 67100, L’Aquila, Italy
stefania.costantini@univaq.it

niva.florio@univaq.it

alessio.paolucci@univaq.it

Abstract. We present a framework that we are currently developing,
that allows one to extract knowledge from natural language sentences
using a deep analysis technique based on linguistic dependencies. The ex-
tracted knowledge is represented in OOLOT, an intermediate format that
we have introduced, inspired by the Language of Thought (LOT) and
based on Answer Set Programming (ASP). OOLOT uses an ontology-
oriented lexicon and syntax. Therefore, it is possible to export the ex-
tracted knowledge into OWL and native ASP.

1 INTRODUCTION

Many intelligent systems have to deal with knowledge expressed in natural lan-
guage, either extracted from books, web pages and documents in general, or ex-
pressed by human users. Knowledge acquisition from these sources is a challeng-
ing matter, and many attempts are presently under way towards automatically
translating natural language sentences into an appropriate knowledge representa-
tion formalism [1]. Although this task is a classic Artificial Intelligence challenge
(mainly related to Natural Language Processing and Knowledge Representation
[2]), with the Semantic Web growth new interesting scenarios are opening. The
Semantic Web aims at complementing the current text-based web with machine
interpretable semantics; however, the manual population of ontologies is very
tedious and time-consuming, and practically unrealistic at the web scale [3, 4].
Given the enormous amount of textual data that is available on the web, to
overcome the knowledge acquisition bottleneck, the ontology population task
must rely on the use of natural language processing techniques to extract rele-
vant information from the Web and transforming it into a machine-processable
representation.

In this paper we present a framework that we are currently developing. It
allows one to extract knowledge from natural language sentences using a deep
analysis technique based on linguistic dependencies and phrase syntactic struc-
ture. We also introduce OOLOT (Ontology-Oriented Language of Thought). It is

an intermediate language based on ASP, specifically designed for the representa-
tion of the distinctive features of the knowledge extracted from natural language.
Since OOLOT is based on an ontology-oriented lexicon, our framework can be
easily integrated in the context of the Semantic Web.

It is important to emphasize that the choice of ASP is a key point and
it is of fundamental relevance. In fact according to [5], this formalism is the
most appropriate one to deal with normative statements, default statements,
exceptions and many other characteristic aspects of knowledge encoded through
Natural Language.

Though this is an ongoing work, we believe to be able to argue in favour of
the usefulness and the potential of the proposed approach.

In particular, in Section 2 we introduce the framework architecture. In Sec-
tion 3 we analyze the state of the art for parsing and extraction of dependencies
taking into account our translation needs, taking into particular account three
kinds of parsers. Section 4 describes the context disambiguation and lexical item
resolution methods that we have devised. Section 5 introduces the intermediate
format OOLOT, while Section 6.3 describes the translation methodology with
the help of an example. Finally, Section 7 shows an exporting from OOLOT into
OWL example, and in Section 8 we conclude with a brief resume of achieved
goals and future works.

2 FRAMEWORK ARCHITECTURE

The proposed framework aims at allowing automatic knowledge extraction from
plain text, like a web page, producing a structured representation in OWL or
ASP as output. Thus, the framework can be seen as a standalone system, or can
be part of wider workflow, e.g. a component of complex semantic web applica-
tions.

Starting from plain text written in natural language, as first step we process
the sentence through a statistical parser (see Section 3). If we use a parser with
embedded dependency extractor, we can perform a single step and have as output
both the parse tree (constituents), and in the meantime the dependency graph.
Otherwise, if we use two different components, the workflow is that of Fig.1. In
this case, we use a simple algorithm for context disambiguation (see Section 4).
Then, each token is resolved w.r.t. popular ontologies including DBPedia and
OpenCYC and the context is used in case of multiple choices.

At this point we have enough information to translate the knowledge ex-
tracted from a natural language sentence into our intermediate OOLOT format.
OOLOT stands for “Ontological Oriented Language Of Though”, a language
mainly inspired by [6], that we have introduced as an intermediate represen-
tation language for the extracted knowledge in a way that is totally indepen-
dent from the original lexical items, and therefore, from the original language.
OOLOT is itself a language, but its lexicon is ontology-based; it uses Answer
Set Programming as basic host environment that allows us to compose a native,
high expressive knowledge representation and reasoning environment. For the

298 Stefania Costantini, Niva Florio, Alessio Paolucci

Fig. 1. The framework architecture

translation process described in Section 6, we employ a λ-calculus engine that
drives the translation into OOLOT, using information about the deep structure
of the sentence extracted in the previous steps.

From the ontology-based Language of Thought it is possible to directly trans-
late the encoded knowledge into OWL. In addition, it is also possible to export
the knowledge base in pure ASP.

3 PARSING

3.1 Background

In informatics and linguistics, parsing is the process that can determine the
morpho-syntactic structure of a sentence; parsing associates a sentence expressed
in a natural language with a structure (e.g. a parse tree structure), that analyses
the sentence by a certain point of view; thus there are morphological parsing,
syntactic parsing, semantic parsing, etc.

With regard to the syntactic parsing, analysis consists of a definition of the
phrases building up the sentence in their hierarchical order, likewise the con-
stituent analysis proposed by Chomsky [7]. In the 1950s Noam Chomsky said
natural language sentences can be generated by a formal grammar [8, 7]; this is
the so-called generative approach, motivated by the fact that people are able to
generate sentences that are syntactically correct and totally new (i.e., that have
never been heard before). Syntactic parser decomposes a text into a sequence of
tokens (for example, words), and attributes them their grammatical functions
and thematic or logical roles, with respect to a given formal grammar. The task
of syntactic parser is to say if the sentence can be generated by the grammar
and, if so, it gives the appropriate sentence syntactic representation (called parse
tree), showing also the relations between the various elements of the sentence [8,

A framework for knowledge extraction and representation from natural language 299

7].
Most of today’s syntactic parsers are mainly statistical [9–12]. They are based

on a corpus of training data that have been previously annotated (parsed) by
hand. This approach allows the system to gather information on the frequency
with which the various constructs are needed in specific contexts. A statistical
parser can use a search procedure on the space of all candidates, and it would
provide the probability of each candidate and makes it possible to derive the
most probable parse of a sentence.

In the ’90, Collins proposes a conditional and generative model which de-
scribes a straightforward decomposition of a lexicalized parse tree [11, 12] based
on a Probabilistic Context Free Grammar (PCFG). Charniak and Johnson’s
parser [10, 13] is based on a parsing algorithm for PCFG, but it is a lexical-
ized N-Best PCFG parser: it is a generative and discriminative reranking parser
which uses the MaxEnt reranker to select the best among the possible parses.
The Berkeley parser uses an automatically induced PCFG, parsing sentences
with a hierarchical state-splitting. Only statistics is not enough to determine
when to split each symbol in sub-symbols [14]; thus [14, 15] present an auto-
matic approach for obtaining annotation trees through a split-merge method.
At a first stage, this parser considers a simple PCFG derived from a treebank,
but then it iteratively refines this grammar, in order to sub-categorize basic
symbols (like NP and VP) into sub-symbols. So non-terminal basic symbols are
split and merged in order to maximize the training treebank and to add a larger
number of annotations to the previous grammar. This parser can learn auto-
matically the type of linguistic distinction showed in the manually annotated
treebank and then it can create annotation trees thanks to a more complex and
complete grammar.

Statistical parsing is useful to solve problems like ambiguity and efficiency,
but with this kind of parsing we lose part of the semantic information; this as-
pect is recovered thanks to dependency representation [16].

Dependency grammars (DGs) were proposed by the French linguist Tesnière
[17] and have recently received renewed attention (cfr. [18] and the references
therein). In Dependency Grammars, words in a sentence are connected by means
of binary, asymmetrical governor-dependent relationships. In fact, Tesnière as-
sumes that each syntactic connection corresponds to a semantic relation. In a
sentence, the verb is seen as the highest level word, governing a set of comple-
ments, which govern their own complements themselves. Opposed to the notion
of the sentence division into a subject and predicate, the grammatical subject in
Tesnière’s work is also considered subordinate to the verb. The valence of a verb
(its property of requiring certain elements in a sentence) determines the struc-
ture of the sentence it occurs in. Tesnière distinguishes between actants, which
are required by the valence of the verb, and circonstants which are optional.

3.2 Parser analysis

It is difficult to evaluate parsers; we can compare them in many ways, such as
the speed with which they examine a sentence or their accuracy in the analysis

300 Stefania Costantini, Niva Florio, Alessio Paolucci

(e.g. [23]). The task based evaluation seems to be the best one [16, ?]: we must
choose whether to use a parser rather than another simply basing on our needs.
At this stage of our ongoing research, we use the Stanford parser because it is
more suited to our requirements, both for the analysis of the constituents and
for that of the dependencies.

Stanford parser performs a dependency and constituent analysis [19, 20]. This
parser provides us with different types of parsing. In fact, it can be used as an
unlexicalized PCFG parser [19] to analyse sentences, or it can be used as a lexi-
calized probabilistic parser [20]. Thanks to an A* algorithm, the second version
combines the PCFG analysis with the lexical dependency analysis. At the mo-
ment the Stanford parser provides us a typed dependency and a phrase structure
tree. The Stanford typed dependencies (cfr. [16]) describe the grammatical rela-
tions in a sentence. The relations are binary and are arranged hierarchically; as
Tesnière suggested, Stanford dependency relations have a head and its depen-
dent but, unlike Tesnière, the head of a dependency can be any content words,
not only verbs. Thanks to rules [21] applied on phrase structure trees (also cre-
ated by the Stanford parser), typed dependencies are generated.
In particular, for constituent analysis, we choose to analyse the sentence ”Many
girls eat apples.”. Seeing Fig.2, we can notice that the parser attributes to each
token its syntactic roles, and it provides us also the grammatical function of each
word. In order to better understand the hierarchy of the syntactic structure is
useful to represent it as a tree (Fig.3).

(ROOT

 (S

 (NP (JJ Many) (NNS girls))

 (VP (VBP eat)

 (NP (NNS apples)))

 (. .)))

Fig. 2. Phrase structure produced by the Stanford parser for the sentence ”Many girls
eat apples”.

With regard to dependency analysis, the Stanford parser gives us two versions
of this analysis: the typed dependency structure (Fig.4) and the collapsed typed
dependency structure (Fig.5). In the first, each node of the sentence is a node
connected with a binary relation to another node; in the second, prepositions
are turned into relations (unfortunately, in this example, you may not notice the
difference). Thus, Fig.4 and Fig.5 show us that girls and many are connected
with an amod relation, that means an adjective phrase modifies the meaning of
the noun phrase; eat is connected to girls with a nsubj relation, where the noun
phrase is the syntactical subject of the verb; eat and apple are connected with
a dobj relation because the direct object of the verb phrase is the object of the
verb [16].

As reference for the following steps, we use the Stanford syntactic phrase
structure (Fig.2) and the Stanford collapsed typed dependencies structure (Fig.5).

A framework for knowledge extraction and representation from natural language 301

S

NP VP

JJ NNS

Many girls

VBP NP

NNS

appleseat

Fig. 3. Parse tree of the sentence ”Many girls eat apples.” for the analysis done by the
Stanford parser.

amod(girls-2, Many-1)

nsubj(eat-3, girls-2)

dobj(eat-3, apples-4)

Fig. 4. Typed dependency structure produced by the Stanford parser for the sentence
”Many girls eat apples.”.

amod(girls-2, Many-1)

nsubj(eat-3, girls-2)

dobj(eat-3, apples-4)

Fig. 5. Collapsed typed dependency structure produced by the Stanford parser for the
sentence ”Many girls eat apples.”.

4 CONTEXT DISAMBIGUATION AND LEXICAL
ITEM RESOLUTION

The context disambiguation task is a very important step in our work flow, as we
need to assign each lexical unit to the correct meaning, and this is particularly
hard due to the polysemy. For this task, we use a simple algorithm: we have a
finite set of contexts (political, technology, sport, ...), and as first step we built
a corpus of web pages for each context, and then we used each set as a training
set to build a simple lexical model. Basically we build a matrix where for each
row we have a lexical item, and for each column we have a context. The relation
(lexical item, context) is the normalized frequency of each lexical item into the
given context. The model is then used to assign the correct context to a given
sentence. We use a n × m matrix, where n is the number of lexical tokens
(or items), and m is the number of contexts. In other words, we give a score
for each lexical token in relation to each context. To obtain the final score we
perform a simple sum of the local values to obtain the global score, and thus
assign the final context to the sentence. Our method for context disambiguation

302 Stefania Costantini, Niva Florio, Alessio Paolucci

can certainly be improved, in particular [25], seems to be a good development
direction.

The context is crucial to choose the correct reference when a lexical item
has multiple meanings, and thus, in an ontology can be resolved in multiple
references. The context becomes the key factor for the resolution of each lexical
item to the relative reference.

We perform a lookup in the ontology for each token, or a set of them (using a
sliding window of length k). For example, using DBPedia, for each token (or a set
of tokens of length k), we perform a SPARQL query, assuming the existence of a
reference to the lexical item: if this is true, we’ve found the reference, otherwise
we go forward. If we found multiple references, we use the context to choose the
most appropriate one.

Given the sentence Many girls eat apples and it’s syntactic phrase structure
(Fig.2) and dependencies structure (Fig.5), as first step we tokenize the sentence,
obtaining:

Many, girls, eat, apples.

Before the lookup, we use the part of speech tagging from the parse tree to
group the consecutive tokens that belong to the same class. In this case, such
peculiar aspect of natural language is not present and thus the result is simply
the following:

(Many), (girls), (eat), (apples).

Excluding the lexicon for which we have a direct form, for each other lexicon
the reference ontology is resolved through a full text lookup; thus we obtain the
lexical item resolution in Table 1.

Table 1. Lexical item resolution example

Lexicon Ontology URI

girls DBPedia http://dbpedia.org/resource/Girl

eat DBPedia http://dbpedia.org/class/Eating

apples DBPedia http://dbpedia.org/resource/Apple

5 FROM THE LANGUAGE OF THOUGHT TO
OOLOT

The Language of Thought (LOT) is an intermediate format mainly inspired by
[6]. It has been introduced to represent the extracted knowledge in a way that

A framework for knowledge extraction and representation from natural language 303

is totally independent from original lexical items and, therefore, from original
language.

Our LOT is itself a language, but its lexicon is ontology oriented, so we
adopted the acronym OOLOT (Ontology-Oriented Language Of Thought). This
is a very important aspect: OOLOT is used to represent the knowledge extracted
from natural language sentences, so basically the bricks of OOLOT (lexicons)
are ontological identifier related to concepts (in the ontology), and they are not
a translation at lexical level.

In [26] a translation methodology from natural language sentences into ASP
that takes into accounts all words of the sentence is presented. In this method,
the final representation is itself dependent from the original lexical structure,
and this is sub-optimal if we want to export our knowledge base into a more
general formalism like, e.g., OWL.

In the next section we present the translation process.

6 TRANSLATING INTO OOLOT

6.1 Background

[26] describes a technique for extracting knowledge from natural language and
automatically translate it into ASP. To achieve this result we built an extension
of λ-calculus and we have introduced meta expressions to fully automate the
translation process, originally inspired by [5].

This is a key point in the process of representing knowledge extracted from
natural language, and thus for using it into other contexts, e.g. the Semantic
Web. The selection of a suitable formalism plays an important role: in fact,
though under many aspects first-order logic would represent a natural choice,
it is actually not appropriate for expressing various kinds of knowledge, i.e.
for dealing with default statements, normative statements with exceptions, etc.
Recent work has investigated the usability of non-monotonic logics, like ASP
[5] with encouraging results in terms of dealing with the kind of knowledge
represented through natural language.

OOLOT allows us to have native reasoning capabilities (using ASP) to sup-
port the syntactic and semantic analysis tasks. Embedded reasoning is of fun-
damental importance for the correct analysis of complex sentences, as shown in
[27]. The advantages of adopting an ASP-based host language is not limited to
the previous aspects: in fact, the integration of ASP and the Semantic Web is not
limited to the Natural Language Processing side. Answer Set Programming fits
very well with Semantic Web as demonstrated by the recent research efforts of
integrating rule-based inference methods with current knowledge representation
formalisms in the Semantic Web [28, 29].

Ontology languages such as OWL and RDF Schema are widely accepted and
successfully used for semantically enriching knowledge on the Web. However,
these languages have a restricted expressivity if we have to infer new knowledge
from existing one. Semantic Web needs a powerful rule language complementing

304 Stefania Costantini, Niva Florio, Alessio Paolucci

its ontology formalisms in order to facilitate sophisticated reasoning tasks. To
overcome this gap, different approaches have been presented on how to combine
Description Logics with rules, like in [29].

6.2 Lambda Calculus

λ-calculus is a formal system designed to investigate function definition, func-
tion application and recursion. Any computable function can be expressed and
evaluated via this formalism [30]. In [26] we extended the λ-calculus introduc-
ing the λ-ASP -ExpressionT that allows a native support for ASP, and, at the
same time, permits to formally instantiated to λ-ASP-Expression [5, 26]. For the
purpose of our running example, the set of λ-ASP -ExpressionT is available in
Table 2.

In the following subsection, we illustrate the translation process based on
λ-calculus. It is important to note that the choice of the lambda calculus was
made because it fully matches the specifications of the formal tool we need to
drive the execution of the steps in the right way.

6.3 Lambda-based translation

According to the workflow in Fig.1, the translation from plain text to the
OOLOT intermediate format makes use of the information extracted in several
steps. The information on the deep structure of the sentence is now used to drive
the translation using the λ-calculus according to the λ- expression definitions in
Table2.

Table 2. The λ-ASP-expression template

Lexicon SemClass λ−ASP − expression T

- noun λx.⟨noun⟩(x)

- verb λy.⟨verb⟩(y)

- transVerb λy.λw.⟨verb⟩(y, w)

many det λuλv.(
v@X ← u@X,
not ¬v@X,
possible(v@X, u@X),
usual(v@X, u@X)
)

A framework for knowledge extraction and representation from natural language 305

For each lexicon, we use the phrase structure in Fig.2 to determine the se-
mantic class to which it belongs. In this way, we are able to fetch the correct
lambda-ASP-expression template from the Table 2.

For the running example, as result we have the λ-ASP-expressions of Table
3.

Table 3. The λ-ASP-expressions

Lexicon λ−ASP − expression

apples λx.dbpedia : Apple(x)

eat λyλw.dbpedia : Eating(y, w)

girls λz.dbpedia : Girl(x)

many λuλv.(
v@X ← u@X,
not ¬v@X,
possible(v@X, u@X),
usual(v@X, u@X)
)

Now, differently from [26], we use the dependencies, that is, we use the deep
structure information, to drive the translation.

According to the dependency in Fig.5, the first relation that we use is amod(girls−
2, many−1). Thus, for the λ-calculus definition, we apply the λ-ASP-expression
for girls to the λ-ASP-expression for many:

λuλv.(
v@X ← u@X,
not ¬v@X,
possible(v@X, u@X),
usual(v@X,u@X)

)@@(λx.(dbpedia : Girl(x))

obtaining:

λv.(
v@X ← dbpedia : Girl(X),
not ¬v@X,
possible(v@X, dbpedia : Girl(X)),
usual(v@X, dbpedia : Girl(X))

)

306 Stefania Costantini, Niva Florio, Alessio Paolucci

The second relation, nsubj(eat− 3, girls− 2), drives the application of the
λ-expression for eat to the expression for girls that we obtained in the previous
step:

λv.(
v@X ← dbpedia : Girl(X),
not ¬v@X,
possible(v@X, dbpedia : Girl(X)),
usual(v@X, dbpedia : Girl(X))

)@@(λzλw.(dbpedia : Eating(z, w))

that reduces to:

dbpedia : Eating(X, W)← dbpedia : Girl(X),
not ¬dbpedia : Eating(X, W),
possible(dbpedia : Eating(X, W), dbpedia : Girl(X)),
usual(dbpedia : Eating(X, W), dbpedia : Girl(X))

Then, we apply apple to the expression we have seen, obtaining the final
result:

dbpedia : Eating(X, dbpedia : Apple)← dbpedia : Girl(X),
not ¬dbpedia : Eating(X, dbpedia : Apple),
possible(dbpedia : Eating(X, dbpedia : Apple), dbpedia : Girl(X)),
usual(dbpedia : Eating(X, dbpedia : Apple), dbpedia : Girl(X))

7 EXPORTING INTO OWL

Our framework has been designed to export the knowledge base from OOLOT
into a target formalism. For now, we are working on a pure ASP and OWL
exporter.

Exporting into OWL is a very important feature, because it allows endless
possibilities due to its native Semantic Web integration. In this way, the frame-
work as a whole becomes a power tool that starting from plain text produces
the RDF/OWL representation of the sentences; through ASP it takes care of
special reasoning and representation features of natural language.

To complete the example, the resulting RDF representation is:

Fig. 6. RDF

A framework for knowledge extraction and representation from natural language 307

The export into OWL has, at the present stage, some drawbacks, including
loosing of some aspects of natural language that instead are perfectly managed
in OOLOT. The export procedure is ongoing work, so there is room for improve-
ment. Due to the nature of the problem, that is very complex, these aspects will
be the subject of a future work.

8 CONCLUSION

In this paper, we have proposed a comprehensive framework for extracting knowl-
edge from natural language and representing the extracted knowledge in suitable
formalisms so as to be able to reason about it and to enrich existing knowledge
bases. The proposed framework is being developed and an implementation is
under way and will be fully available in short time. The proposed approach
incorporates the best aspects and results from previous related works and, al-
though in the early stages, it exhibits a good potential and its prospects for
future development are in our opinion really interesting.

Future improvements concern many aspects of the framework. First of all, we
have to choose the best parser or establish how to combine the best aspects of
all them. On the OOLOT side, there is the need to better formalize the language
itself, and better investigate the reasoning capabilities that it allows, and how
to take the best advantage from them.

The ontology-oriented integration is at a very early stage, and there is room
for substantial improvements, including a better usage of the current reference
ontologies, and the evaluation study about using an upper level ontology, in
order to have a more homogeneous translation.

References

1. Bos, J., Markert, K.: Recognising textual entailment with logical inference. In:
HLT ’05: Proceedings of the conference on Human Language Technology and Em-
pirical Methods in Natural Language Processing, Association for Computational
Linguistics (2005) 628–635

2. Pereira, F., Shieber, S.: Prolog and natural-language analysis. Microtome Pub-
lishing (2002)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. The Semantic Web (2007) 722–735

4. Kasneci, G., Ramanath, M., Suchanek, F., Weikum, G.: The YAGO-NAGA ap-
proach to knowledge discovery. SIGMOD Record 37(4) (2008) 41–47

5. Baral, C., Dzifcak, J., Son, T.C.: Using answer set programming and lambda cal-
culus to characterize natural language sentences with normatives and exceptions.
In: Proceedings of the 23rd national conference on Artificial intelligence - Volume
2, AAAI Press (2008) 818–823

6. Kowalski, R.: Computational Logic and Human Thinking: How to be Artificially
Intelligent - In Press

7. Chomsky, N.: Syntactic Structures. The MIT Press (1957)
8. Chomsky, N.: Three models for the description of language. IEEE Transactions

on Information Theory 2(3) (1956) 113–124

308 Stefania Costantini, Niva Florio, Alessio Paolucci

9. Charniak, E.: Tree-bank grammars. In: Proceedings of the National Conference
on Artificial Intelligence. (1996) 1031–1036

10. Charniak, E., Johnson, M.: Coarse-to-fine n-best parsing and maxent discrim-
inative reranking. In: Proceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, Association for Computational Linguistics (2005)
173–180

11. Collins, M.: A new statistical parser based on bigram lexical dependencies. In: Pro-
ceedings of the 34th annual meeting on Association for Computational Linguistics,
Association for Computational Linguistics (1996) 184–191

12. Collins, M.: Three generative, lexicalised models for statistical parsing. In: Proceed-
ings of the 35th Annual Meeting of the Association for Computational Linguistics
and Eighth Conference of the European Chapter of the Association for Computa-
tional Linguistics, Association for Computational Linguistics (1997) 16–23

13. McClosky, D., Charniak, E., Johnson, M.: Effective self-training for parsing. In:
Proceedings of the main conference on Human Language Technology Conference
of the North American Chapter of the Association of Computational Linguistics,
Association for Computational Linguistics (2006) 152–159

14. Petrov, S., Barrett, L., Thibaux, R., Klein, D.: Learning accurate, compact, and
interpretable tree annotation. In: Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual meeting of the Association for
Computational Linguistics, Association for Computational Linguistics (2006) 433–
440

15. Petrov, S., Klein, D.: Improved inference for unlexicalized parsing. In: Proceedings
of NAACL HLT 2007. (2007) 404–411

16. de Marneffe, M., Manning, C.: The stanford typed dependencies representation. In:
Coling 2008: Proceedings of the workshop on Cross-Framework and Cross-Domain
Parser Evaluation, Association for Computational Linguistics (2008) 1–8

17. Tesnière, L.: Elèments de syntaxe structurale. Klincksieck, Paris (1959) ISBN
2252018615.

18. Neuhaus, P., Bröker, N.: The complexity of recognition of linguistically adequate
dependency grammars. In: Proc. of ACL-97/EACL-97. (1997)

19. Klein, D., Manning, C.: Accurate unlexicalized parsing. In: Proceedings of the
41st Annual Meeting on Association for Computational Linguistics-Volume 1, As-
sociation for Computational Linguistics (2003) 423–430

20. Klein, D., Manning, C.: Fast exact inference with a factored model for natural
language parsing. Advances in neural information processing systems (2003) 3–10

21. De Marneffe, M., MacCartney, B., Manning, C.: Generating typed dependency
parses from phrase structure parses. In: Proceedings of LREC. Volume 6., Citeseer
(2006) 449–454

22. Sleator, D., Temperley, D.: Parsing english with a link grammar. Arxiv preprint
cmp-lg/9508004 (1995)

23. Cer, D., de Marneffe, M., Jurafsky, D., Manning, C.: Parsing to stanford depen-
dencies: Trade-offs between speed and accuracy. LREC 2010 (2010)

24. : Index to link grammar documentation http://www.link.cs.cmu.edu/link/

dict/.
25. Banerjee, S., Pedersen, T.: An adapted lesk algorithm for word sense disambigua-

tion using wordnet. Computational Linguistics and Intelligent Text Processing
(2002) 117–171

26. Costantini, S., Paolucci, A.: Towards translating natural language sentences into
asp. In: Proc. of the Intl. Worksh. on Answer Set Programming and Other Com-
puting Paradigms (ASPOCP), Edimburgh. (2010)

A framework for knowledge extraction and representation from natural language 309

27. Costantini, S., Paolucci, A.: Semantically augmented DCG analysis for next-
generation search engine. CILC (July 2008) (2008)

28. Eiter, T.: Answer set programming for the semantic web. Logic Programming
(2010) 23–26

29. Schindlauer, R.: Answer-set programming for the Semantic Web (2006)
30. Church, A.: A set of postulates for the foundation of logic. The Annals of Mathe-

matics 33(2) (1932) 346–366

310 Stefania Costantini, Niva Florio, Alessio Paolucci

Logic-based reasoning support for SBVR

Dmitry Solomakhin1), Enrico Franconi2), and Alessandro Mosca2)

Free University of Bozen-Bolzano, Italy
Piazza Domenicani 3, 39100 Bolzano, Italy

1)Dmitry.Solomakhin@stud-inf.unibz.it, 2)[surname]@inf.unibz.it

Abstract. Automated support to enterprize modeling has increasingly
become a subject of interest for organizations seeking solutions for stor-
age, distribution and analysis of knowledge about business processes.
This interest has recently resulted in approving the standard for spec-
ifying Semantics of Business Vocabulary and Business Rules (SBVR).
Despite the existence of formally grounded notations, up to now SBVR
still lacks a sound and consistent logical formalization which would allow
developing automated solutions able to check the consistency of a set of
business rules. This work reports on the attempt to provide logical foun-
dations for SBVR by the means of defining a specific first-order deontic-
alethic logic (FODAL). The connections of FODAL with the modal logic
QK and the description logic ALCQI have been investigated and, on
top of the obtained theoretical results, a special tool providing automated
support for consistency checks of a set of ALCQI-expressible deontic and
alethic business rules has been implemented.

1 Introduction

Automated support to enterprize modeling has increasingly become a subject of
interest for organizations seeking solutions for storage, distribution and analysis
of knowledge about business processes. One of the most common approaches for
describing business and the information used by that business is the rule-based
approach [4], which was adopted by the Object Management Group (OMG) for
a standard for specifying business objects and rules. The Semantics of Business
Vocabulary and Business Rules (SBVR) [19] standard provides means for de-
scribing the structure of the meaning of rules, so called “semantic formulation”,
expressed in one of the intuitive notations, including the natural language that
business people use [2] and Object-Role Modeling (ORM2) diagrams [8]. ORM2
has recently become widely used as conceptual modeling approach combining
both formal, textual specification language and graphical modeling language [9].
It consists in identifying and articulating the rules that define the structure
(alethic) and control the operation (deontic) of an enterprize [18]. The main
expectation from automated solutions built upon this approach is the ability to
automatically determine consistency of business rules in a business model, so
that they can be further exploited to build information systems and relational
databases that are coherent with the intended domain business logic.

Several attempts have been made so far in order to provide a logical formal-
ization for structural and operational rules in SBVR and its notations. The most
significant related work includes several formalizations of the purely structural
fragment of ORM2, including translation to first-order predicate logic (FOL)
[10] and some description logics (DL), e.g. [14] and [12]. However, none of the
existing approaches enables consistency checks for a combined set of possibly
interacting alethic and deontic business rules.

In this paper we define a multimodal first-order deontic-alethic logic (FO-
DAL) with sound and complete axiomatization that captures the desired se-
mantics of and interaction between business rules. We then report on the logical
properties of such formalization and its connections with the modal logic QK
and the description logic ALCQI. Finally we present the tool which provides
automated support for consistency checks of a set of ALCQI-expressible deon-
tic and alethic ORM2 constraints. Additionally, it implements the translation of
aforementioned class of ORM2 constraints into an OWL2 ontology.

The rest of the paper is organized as follows. In the second section an overview
of the SBVR standard and its ORM2 notation is given. Third section describes
the proposed logical formalization in terms of first-order deontic-alethic logic
(FODAL) along with its syntax, semantics and complete and sound axiomati-
zation. Next two paragraphs are devoted to modeling SBVR rules with FODAL
and checking their consistency with the help of this logic, while in the sixth
section a connection with standard modal logic is introduced. Finally, the last
paragraph describes the tool developed to provide automated support for con-
sistency checks together with translation to OWL2.

2 SBVR Overview

A core idea of business rules formally supported by SBVR is the following [19]:
“Rules build on facts, and facts build on concepts as expressed by terms. Terms
express business concepts; facts make assertions about these concepts; rules con-
strain and support these facts”. The notions of terms and facts of this “business
rules mantra” correspond to SBVR noun concepts and verb concepts (or fact
types) respectively.

Noun and verb concepts. According to the SBVR 1.0 specification [19]
a noun concept is defined as a “concept that is the meaning of a noun or noun
phrase”. It has several subtypes: object type, individual concept and fact type
role. An object type is defined as “noun concept that classifies things on the
basis of their common properties”, while individual concept is “a concept that
corresponds to only one object [thing]”. A role is a “noun concept that corre-
sponds to things based on their playing a part, assuming a function or being
used in some situation”.

A verb concept (or fact type) represents the notion of relations and is defined
as “a concept that is the meaning of a verb phrase”. A fact type can have one
(characteristic), two (binary) or more fact type roles.

312 Dmitry Solomakhin, Enrico Franconi, Alessandro Mosca

Fig. 1. SBVR overview

Business rules. The main types of rules defined in SBVR standard are
structural business rules and operative business rules (See Figure 1). Structural
(definitional) rules specify what the organization takes things to be, how do the
members of the community agree on the understanding of the domain [5]. They
define the characteristics of noun concepts and put constraints on verb concepts
and can not be broken. Operative (behavioral) business rules are intended to
describe the business processes in organization and can be either ignored or
violated by people.

Conceptual model. An SBVR conceptual model CM = 〈S, F 〉 is a struc-
ture intended to describe a business domain, where S is a conceptual schema,
declaring fact types and rules relevant to the business domain, and F is a popula-
tion of facts that conform to this schema. Business rules defined in the conceptual
schema S can be considered as high-level facts (i.e., facts about propositions)
and play a role of constraints, which are used to impose restrictions concerning
fact populations.

The SBVR standard provides means for formally expressing business facts
and business rules in terms of fact types of pre-defined schema and certain logical
operators, quantifiers, etc. These formal statements of rules may be transformed
into logical formulations, which can in turn be used for exchange with other
rules-based software tools. Such logical rule formulations are equivalent to for-
mulae in 2-valued first-order predicate calculus with identity [19]. In addition to
standard universal (∀) and existential (∃) quantifiers, for the sake of convenience,
SBVR standard allows logical formulation to use some pre-defined [8] numeric
quantifiers, such as at-most-one (∃0..1), exactly-n (∃n, n ≥ 1) and others.

In order to express the structural or operational nature of a business rule, the
corresponding rule formulation uses any of the basic alethic or deontic modalities.
Structural rule formulations use alethic operators: � = it is necessary that and
♦ = it is possible that ; while operative rule formulations use deontic modal
operators O = it is obligatory that, P = it is permitted that, as well as F = it
is forbidden that.

Logic-based reasoning support for SBVR 313

Notations for business vocabulary and rules. There are several com-
mon means of expressing facts and business rules in SBVR, namely through
statements, diagrams or any combination of those, each serving best for dif-
ferent purposes ([16], [19, Annex C, Annex L]). While graphical notations are
helpful for demonstrating how concepts are related, they are usually impractical
when defining vocabularies or expressing rules. We use r to denote a business
rule in SBVR regardless the particular format in which it is written. For the
sake of readability we will denote any necessity claim as r� , possibility claim as
r♦ , obligation claim as r

O
and permission claim as r

P
.

One of the most promising notations for SBVR is Object-Role Modeling
(ORM2), which is a conceptual modeling approach combining both formal, tex-
tual specification language and formal graphical modeling language [9]. ORM2
specification language applies to mixfix predicates of any arity and contains
predefined patterns covering a wide range of constraints typical for business
domains. An example of a structural rule expressed as necessity statement in
ORM2 specification language is the following:

r = Each visitor has at most one passport.

An example illustrating ORM2 graphical notation is introduced on Figure 2.

Fig. 2. Example of ORM2 diagram

The advantage of ORM2 over other notations is that it is a formal language
per se, featuring rich expressive power, intelligibility, and semantic stability [11].
There exist several translations from non-modal ORM2 expressions to standard
logics, including translation to first-order logic ([10]) and some description logics
([14], [7]). We will hereafter denote by φr̂ a first-order representation of a non-
modal ORM2 expression1 r̂ from a rule r. Similarly, we will denote by φ

DL

r̂ a
description logic representation of a non-modal ORM2 expression r̂.

Aforementioned existing translations to standard logics may be seen as at-
tempts to provide a logical formalization for structural and operational rules.
However, since they consider only the purely structural fragment of ORM2, they
are not capable of providing consistency checks for a combined set of possibly
interacting alethic and deontic business rules.

1 Since the nature of business rules implies the absence of uncertainty, it means that
the resulting first-order formulae will not contain free variables, i.e. will be closed
formulae. Then an SBVR rule may be represented by an expression resulted from
application of modalities and boolean connectives to a set of closed FOL formulae φr̂i .

314 Dmitry Solomakhin, Enrico Franconi, Alessandro Mosca

3 First-order deontic-alethic logic (FODAL)

In this section we describe our attempt to provide logical foundations for SBVR
by the means of defining a specific multi-modal logic. The basic formalisms we
use to model business rule formulations are standard deontic logic (SDL) and
normal modal logic S4, which are both propositional modal logics. We then
construct a first-order deontic-alethic logic (FODAL) – a multimodal logic, as a
first-order extension of a combination of SDL and S4 to be able to express busi-
ness constraints defined in SBVR. In order to construct the first-order extension
for the combined logic we follow the procedure described in [6].

3.1 Syntax

The alphabet of FODAL contains the following symbols:

– a set of propositional connectives: ¬,∧.
– a universal quantifier: ∀ (for all).
– an infinite set P = {P 1

1 , P
1
2 , ..., P

2
1 , P

2
2 , ..., P

n
1 , P

n
2 , ...} of n-place relation sym-

bols (also referred to as predicate symbols).
– an infinite set V = {v1, v2, ...} of variable symbols.
– modal operators: alethic – � (necessity) and deontic – O (obligation).

FODAL formulae. The formulae of FODAL are defined inductively in the
following way:

– Every atomic formula is a formula.
– If X is a formula, so is ¬X.
– If X and Y are formulae, then X ∧ Y is a formula.
– If X is a formula, then so are �X and OX.
– If X is a formula and v is a variable, then ∀vX is a formula.

The existential quantifier (∃) as well as other propositional connectives (∨,→,↔)
are defined as usual, while additional modal operators (♦,P ,F) are defined in
the following way:

♦φ ≡ ¬�¬φ Pφ ≡ ¬O¬φ Fφ ≡ O¬φ (1)

A FODAL formula with no free variable occurrences is called a closed formula
or a sentence. A modal sentence is a sentence whose main logical operator is a
modal operator. An atomic modal sentence is a modal sentence which contains
one and the only modal operator.

3.2 Semantics

Since SBVR itself interprets constraints in the context of possible worlds which
correspond to states of the fact model (i.e. different fact populations), the choice
of varying domain Kripke semantics is intuitively justified. Also, since SBVR
rule formulations may includes two types of modalities: deontic and alethic, - we
utilize the notion of two-layer Kripke frames with accessibility relations RO and
R� respectively.

Logic-based reasoning support for SBVR 315

Augmented frame. A varying domain augmented bimodal frame is a re-
lational structure Fvar = 〈W, RO, R�,D〉, where 〈W, RO, R�〉 is a two-layer
Kripke frame, W is a non-empty set of worlds, R(·) are binary relations on W
and D is a domain function mapping worlds of W to non-empty sets. A domain
of a possible world w is then denoted as D(w) and a frame domain is defined as
D(F) =

⋃{D(wi)|wi ∈ W}.
In order to correctly capture the behavior and interaction of the alethic and

deontic modal operators it is necessary to constrain the corresponding accessi-
bility relations: the alethic accessibility is usually taken to be a reflexive and
transitive relation (S4) [3], while the behavior of a deontic modality is classi-
cally considered to be captured by a serial relation (KD) [15]. We refer to the
corresponding class of bimodal frames as S4⊗KD-frames.

Moreover, since one of the objectives of the formalization under development
is to define the consistency of the set of business rules, it should also take into
account the existing interaction between alethic and deontic modalities. The
desired interaction can be verbalized as “Everything which is necessary is also
obligatory” and then expressed as a following FODAL formula:

�X → OX (2)

It can be proved that the formula 2 defines a special subclass of S4⊗KD-frames.

Theorem 1. The modal formula �X → OX defines the subclass of augmented
bimodal S4⊗KD-frames F = 〈W, RO, R�,D〉 such that RO ⊆ R�, where R�
is a preorder and RO is serial. We then call such frame a FODAL frame.
Proof: For the complete proof please refer to [17].

Interpretation and model. An interpretation I in a varying domain aug-
mented frame Fvar = 〈W, RO, R�,D〉 is a function which assigns to each m-
place relation symbol P and to each possible world w ∈ W some m-place
relation on the domain D(w) of that world. I can be also interpreted as a
function that assigns to each possible world w ∈ W some first-order inter-
pretation I(w). A FODAL varying domain first-order model is a structure
M = 〈W, RO, R�,D, I〉, where 〈W, RO, R�,D〉 is a FODAL frame and I is
an interpretation in it.

Truth in a model. The satisfiability relation between FODAL models and
formulae is then defined in the usual way, using the notion of valuation which
maps variables to elements of the domain.
Let M = 〈W, RO, R�,D, I〉 be a FODAL model, X,Y and Φ be FODAL for-
mulae. Then for each possible world w ∈ W and each valuation σ on D(M) the
following holds:

– if P is a m-place relation symbol, then M, w �σ P (x1, ..., xm) if and only if
(σ(x1), ..., σ(xm)) ∈ I(P,w) or, equivalently, I(w) �F OL

σ P (x1, ..., xm),
– M, w �σ ¬X if and only if M, w 2σ X,
– M, w �σ X ∧ Y if and only if M, w �σ X and M, w �σ Y ,
– M, w �σ ∀xΦ if and only if for every x-variant σ′ of σ at w, M, v �σ Φ,
– M, w �σ ∃xΦ if and only if for some x-variant σ′ of σ at w, M, v �σ Φ,

316 Dmitry Solomakhin, Enrico Franconi, Alessandro Mosca

– M, w �σ �X if and only if for every v ∈ W such that wR�v, M, v �σ X,
– M, w �σ ♦X if and only if for some v ∈ W such that wR�v, M, v �σ X,
– M, w �σ OX if and only if for every v ∈ W such that wROv, M, v �σ X,
– M, w �σ PX if and only if for some v ∈ W such that wROv, M, v �σ X.

3.3 Axiomatization

A FODAL axiom system for first-order alethic-deontic logic is defined following
the approach presented in [6] and is obtained by combining the axiom systems
for the propositional modal logics S4 and KD and extending the resulting
combination with additional axiom schemas and the axiom 9 reflecting desired
interaction between alethic and deontic modalities.

Axioms. All the formulae of the following forms are taken as axioms.

(Tautologies S4) Any FOL substitution-instance of a theorem of S4 (3)
(Tautologies KD) Any FOL substitution-instance of a theorem of KD (4)

(Vacuous ∀) ∀xφ ≡ φ, provided x is not free in φ (5)
(∀ Distributivity) ∀x(φ→ ψ)→ (∀xφ→ ∀xψ) (6)
(∀ Permutation) ∀x∀yφ→ ∀y∀xφ (7)
(∀ Elimination) ∀y(∀xφ(x)→ φ(y)) (8)

(Necessary O) �φ→ Oφ (9)

Rules of inference.

(Modus Ponens)
φ φ→ ψ

ψ
(Alethic Necessitation)

φ

�φ (10)

(Deontic Necessitation)
φ

Oφ
(∀ Generalization)

φ

∀xφ (11)

Theorem 2. The FODAL axiom system is complete and sound with respect to
the class of FODAL frames.
Proof: For the complete proof please refer to [17].

4 Modeling SBVR vocabulary and rules with FODAL

Given an SBVR conceptual schema S we define the following translation τ(·)
from elements of S to notions of first-order deontic-alethic logic:

– For each noun concept A from S, τ(A) is an unary predicate in FODAL.
– For each verb concept R from S, τ(R) is an n-ary predicate in FODAL

(n ≥ 2).

Recall that an SBVR business rule may be represented by an expression resulted
from application of modalities and boolean connectives to a set of closed first-
order formulae φr̂i

. Then for each SBVR rule r from S, its FODAL formalization
τ(r) is defined inductively as follows:

Logic-based reasoning support for SBVR 317

– τ(r̂) = φr̂, where r̂ is an non-modal SBVR expression and φr̂ is its first-order
translation,

– τ(¬r) = ¬τ(r),
– τ(r1 ◦ r2) = τ(r1) ◦ τ(r2), ◦ ∈ {∧,∨,→,↔}, where r1 and r2 are rule

formulations,
– τ(�r̂) = �τ(r̂) and τ(Or̂) = Oτ(r̂).

Example 1. Assume the following set of business rules, expressed in SBVR Struc-
tured English:

(r1) Each car rental is insured by exactly one credit card.

(r2) Each luxury car rental is a car rental.

(r3) It is obligatory that each luxury car rental is insured by at least

two credit cards.

Then the corresponding FODAL formulas are the following:

τ(r1) = ∀x∃1y(CarRental(x) ∧ Insured(x, y)),
τ(r2) = ∀x(LuxuryCarRental(x)→ CarRental(x)),
τ(r3) = O(∀x∃≥2y(LuxuryCarRental(x) ∧ Insured(x, y))).

While our FODAL formalization of SBVR rules provides logical mechanism
supporting rule formulations with multiple occurrences of modalities, SBVR
standard mostly focuses on normalized business constraints [19, p.108] that may
be expressed by rule statements of the form of atomic modal sentences or by
statements reducible to such a form via mechanisms provided by FODAL ax-
iomatization. As a matter of fact, restricting the domain of interest only to such
atomic modal rule formulations allows to obtain some useful results concerning
satisfiability reduction and connection to standard logics, as shown in [17].

Hereafter we will only consider SBVR rules expressible in one of the following
forms of atomic modal sentences:

�φ ♦φ Oφ Pφ (12)

where φ is any closed wff of first-order logic.
In the case of having negation in front of the modal operator, we assume appli-
cation of the standard modal negation equivalences in order to obtain the basic
form of the initial rule.

FODAL regulation. A FODAL regulation Σ is a set of FODAL atomic
modal sentences formalizing structural and operational rules of an SBVR con-
ceptual schema S. We introduce the following designations:

τ(r�) = �η, τ(r♦) = ♦π,
τ(r

O
) = Oθ, τ(r

P
) = P ρ,

Σ = {�η1, ...,�ηk,♦π1, ...,♦πl, Oθ1, ...,Oθm,P ρ1, ...,P ρn} (13)

Σ∧ =
k∧

i=1

�ηi ∧
l∧

i=1

♦πi ∧
m∧

i=1

Oθi ∧
n∧

i=1

P ρi (14)

where every ηi, πi, θi, ρi is a closed first-order logic formula.

318 Dmitry Solomakhin, Enrico Franconi, Alessandro Mosca

5 Consistency of a set of business rules

The final objective of the proposed formalization is to provide an automation
solution with reasoning support for SBVR business modeling and business pro-
cesses monitoring. It is well known that when reasoning about some particular
universe of discourse, consistency is essential.

Assume a FODAL regulation Σ representing a set of structural and operative
business rules. The task of consistency check for Σ is defined as procedure which
analyzes the given set Σ and decides whether the rules do not contradict each
other, i.e. there is no formula ψ such that Σ ` ψ ∧ ¬ψ ≡ ⊥.
A FODAL regulation Σ is called internally inconsistent when the specified con-
straints contradict each other when the system is populated. We then define a
minimal inconsistent set Σ⊥ ⊆ Σ such that Σ⊥ ` ⊥ and ∀∆ ⊂ Σ⊥, ∆ 0 ⊥.

We distinguish several types of inconsistency depending on types of modali-
ties of rules involved. The set Σ is called alethic inconsistent if it is inconsistent
and the minimal inconsistent set Σ⊥ contains formulae of only alethic nature,
i.e. Σ⊥ ⊆ Σ�. The set Σ is called deontic inconsistent if it is inconsistent and
the minimal inconsistent set Σ⊥ contains formulae of only deontic nature, i.e.
Σ⊥ ⊆ ΣO. Otherwise, if Σ⊥ ⊆ Σ� ∪ΣO, the set Σ is called cross inconsistent.

According to the completeness of the FODAL logic we have that Σ 0 ψ if
and only if there exists a FODAL model M and a possible world w in it, such
that M, w � Σ ∧ ¬ψ. Therefore, it is sufficient to state the satisfiability of the
conjunction of all formulae of the set:

Σ∧ =
k∧

i=1

�ηi ∧
l∧

i=1

♦πi ∧
m∧

i=1

Oθi ∧
n∧

i=1

P ρi

Bearing in mind the fact that the regulation Σ may only contain FODAL atomic
modal sentences and taking into account the properties of accessibility relations
of the FODAL frame F, we can obtain the following result:

Theorem 3. A FODAL regulation Σ∧ =
∧k
i=1 �ηi ∧

∧l
i=1 ♦πi ∧

∧m
i=1 Oθi ∧∧n

i=1 P ρi is FODAL-satisfiable if and only if each of the following formulae
N ,O,Qj ,Pj is independently first-order satisfiable:

N =
k∧

i=1

ηi (15a)

O =
m∧

i=1

θi ∧
k∧

i=1

ηi (15b)

Qj = πj ∧
k∧

i=1

ηi, ∀j =
−−−→
1 . . . l (15c)

Pj = ρj ∧
m∧

i=1

θi ∧
k∧

i=1

ηi, ∀j =
−−−→
1 . . . n (15d)

Proof: For the complete proof please refer to [17].

Logic-based reasoning support for SBVR 319

Observe that satisfiability ofN follows naturally from satisfiability of anyQj .
The same holds for O and Pj respectively. However, the satisfiability checks for
15a and 15b should be examined explicitly, since Σ may only contain necessity
and obligation rules. Moreover, such definition allows to detect the actual source
of unsatisfiability of the FODAL regulation Σ.

Modularity of the approach. It should be noted that the developed ap-
proach of satisfiability reduction possesses a property of modularity, i.e. it does
not depend on the formalism behind the rule bodies ηi, θi, πi and ρi, as long as
formalism-specific satisfiability relation is provided.

6 Reduction from FODAL to monomodal logic QK

As a matter of fact, the FODAL logic inherits the property of undecidability from
both its component logics: standard predicate modal logics QS4 and QKD are
undecidable [13]. However, decidability results have been obtained for several
well-studied fragments of quantified modal logics [20]. This section defines a
truth-preserving translation of atomic modal sentences of the FODAL logic into
standard predicate modal logic QK, which allows to use those results.

Monomodal simulating pointed frame. Given a FODAL frame
F = 〈W, RO, R�,D〉 and a possible world w0 ∈ W, a monomodal simulating
pointed frame Fsw0

is defined as a tuple 〈Ws, Rs,Ds, w0〉, such that:
– Ws includes w0 and all its deontic and alethic successors:
Ws = {w0}∪{v | (w0, v) ∈ RO}∪{v | (w0, v) ∈ R�} = |since RO ⊆ R� and
R� is reflexive| = {v | (w0, v) ∈ R�}.

– Rs = {(w0, v) | (w0, v) ∈ R�}, and �s,♦s are modal operators associated
with Rs.

– Ds is a domain function on Ws such that Ds(v) = D(v) ∪ {πDs},∀v ∈ Ws,
where πDs

/∈ D is a new service domain symbol.

Since the definition of Rs does not preserve specific properties of RO and R�,
the resulting frame Fsw0

belongs neither to serial nor to transitive nor to reflexive
class of frames and therefore can be classified as a K-frame.

Monomodal translation. Given a FODAL regulation Σ expressed as a
conjunction of FODAL atomic modal sentences 14, a monomodal translation of
regulation MTR(Σ∧) is defined inductively as follows:

MTR(φ) = φ,where φ is an objective FODAL formula,

MTR(φ1 ∧ φ2) = MTR(φ1) ∧MTR(φ2),where φ1 and φ2 are FODAL atomic
modal sentences,

MTR(�ψ) = �sMTR(ψ), MTR(Oψ) = �s(¬Π →MTR(ψ)),

MTR(♦ψ) = ♦s(MTR(ψ) ∧Π), MTR(Pψ) = ♦s(MTR(ψ) ∧ ¬Π),

where ψ is a objective FODAL formula and Π is a 0-place predicate symbol,
i.e. propositional letter, encapsulating the nature of the original modality of the
rules of possibility and permission.

320 Dmitry Solomakhin, Enrico Franconi, Alessandro Mosca

Simulated pointed model. Given a FODAL model M = 〈F, I〉 and a
possible world w0 ∈ W, a simulated pointed model Ms

w0
is defined as a tuple

〈Fs
w0
, Is〉 such that:

– Fsw0
= 〈Ws, Rs,Ds, w0〉 is a monomodal simulating pointed frame for F =

〈W, RO, R�,D〉 and a possible world w0 ∈ W,
– Is is a first-order interpretation on the frame Fsw0

such that:
• For each v ∈ Ws and for every n-place predicate P , Is(P, v) = I(P, v),
• For each v ∈ Ws such that (w0, v) ∈ RO, Is(Π, v) = ∅,
• For each v ∈ Ws such that (w0, v) /∈ RO, Is(Π, v) = {πDs}.

We now state formally that the translation given above is truth-preserving
with respect to varying domain semantics.

Theorem 4. For any FODAL regulation Σ, any FODAL model M and any
possible world w0 of a model, we have that

M, w0 � Σ if and only if Ms
w0
, w0 � MTR(Σ), (16)

where Ms
w0

is a simulated pointed model for M and w0.

Proof: For the complete proof please refer to [17].

Therefore, the truth-preserving translationMTR defined for FODAL regulations
enables the transfer of decidability results from well-studied fragments of predi-
cate modal logics ([20], [1]) to FODAL. In particular, the following fragments of
FODAL logic are decidable:
– the set of atomic modal sentences with at most two variables,
– the set of monadic atomic modal sentences, all predicate symbols in which

are at most unary,
– the set of atomic modal sentences, modal operators in which are applied to

subformulas from the guarded fragment of first-order logic.

7 Implementation of automated reasoning support tool

7.1 General description of the tool

The ORM2 automated reasoning support tool is implemented in Java and in-
cludes a parser for ORM2 Formal Syntax [7], a set of Java classes represent-
ing the ORM2 knowledge database, a translator into an OWL2 ontology and a
modal reasoning engine using HermiT or FaCT++ as an underlying reasoner.
The workflow diagram of the tool is depicted on Figure 3. Currently, the tool
provides the following functionality:

– Checking the consistency of a given ORM2 schema which may include both
alethic (necessities and possibilities) and deontic (obligations and permis-
sions) constraints. One of the advantages of the underlying approach is the
straight-forward possibility to determine whether the inconsistency is caused
purely by alethic or deontic constraints or by their combination. Additionally
to the result of the consistency check, the tool prints out the list of concepts
which are involved in conflicting constraints.

Logic-based reasoning support for SBVR 321

– Translating a given ORM2 schema into OWL2 ontology which can then be
saved in various formats for further use. However, this translation does not
support modalities in their diversity and, therefore, takes into account only
structural constraints (i.e. alethic rules).

Fig. 3. Workflow Diagram

1 Neumont ORM Architect for Visual Studio
2 PNA Group Discovery and Validation Assistant

7.2 Logical foundations of implementation

The algorithm of the developed automated reasoning support tool relies on two
fundamental results.

Firstly, it implements the procedure defined in [7] to translate a set of con-
straints from ORM2 Formal Syntax to ALCQI description logic, which is in
fact a fragment of OWL2. Since the implemented ORM2 reasoning procedure
involves less expressive ALCQI logic as underlying formalism [17], it does not
support reasoning about the following information about the ORM2 conceptual
schema:

– frequency constraints on multiple roles,
– generalized subset constraints on relations,
• still supported: simple case of stand-alone roles,
• still supported: special case of contiguous full-set of roles;

– ring constraints (NB: drawback of mapping n-ary relations via reification).

The same information is lost by translating a given ORM2 schema into OWL2
ontology.

Secondly, in order to check the consistency of a set of business rules expressed
in ALCQI-definable fragment of ORM2, we utilize the modularity of the ap-
proach defined in Section 5 and adapt the result of satisfiability reduction for
the case of general description logic DL. The satisfiability relation for ORM2 is
then provided by the semantic-preserved translation from ORM2 Formal Syntax
to ALCQI [7].

322 Dmitry Solomakhin, Enrico Franconi, Alessandro Mosca

Theorem 5. A FODAL regulationΣ = {�η1, ...,�ηk,♦π1, ...,♦πl,Oθ1, ...,Oθm,
P ρ1, ...,P ρn}, expressed in DL-definable fragment of ORM2, is internally con-
sistent if and only if each of the following description logic formulae NDL

, ODL

,
QDL

j , PDL

j is independently satisfiable in DL:

NDL

=
kl

i=1

ηi ODL

=
ml

i=1

θi u
kl

i=1

ηi (17)

QDL

j = πj u
kl

i=1

ηi, PDL

j = ρj u
ml

i=1

θi u
kl

i=1

ηi, ∀j =
−−−→
1 . . . n

Thus, we can reduce the consistency of a given set of constraints to ALCQI
satisfiability, which in turn can be interpreted as unsatisfiable concepts’ check
in resulting OWL2 ontology. Indeed, whenever a formula in ALCQI is unsatis-
fiable, it means that the concept definition expressed by this formula contains a
contradiction which prevents the concept from having a model, i.e. the concept
is forced to not have any instances, hence is unsatisfiable.

7.3 Usage of the tool

In the following section we will demonstrate the functionality of the implemented
tool by means of a real-life example of its usage. The graphical user interface of a
tool is introduced on Figure 5 and contains controls which allow to select an input
file, underlying reasoner, output file and output format for resulting ontology (if
needed). The consistency check for an input ORM2 schema is performed after
loading the input file and the result of the check is communicated by visual flag
as well as by a detailed log in the corresponding window.

Checking the consistency of a given ORM2 schema. In order to il-
lustrate the functionality of the consistency check we will consider the ORM2
schema obtained by merging two conceptual models (e.g.A andB) and depicted on
the Figure 4. This schema contains the following set of conflicting business rules:
(RA

1) Each car rental is insured by exactly one credit card.

(RB
1) Each luxury car rental is a car rental.

(RB
2) It is obligatory that each luxury car rental is insured by at least

two credit cards.

Fig. 4. Inconsistent ORM2 Schema

The given set of constraints can be fully expressed in ALCQI description
logic, therefore we can use the developed reasoning support tool for consistency
check. The schema on Figure 4 is internally inconsistent with respect to obli-
gation (RB

2) since the latter clearly contradicts the structural constraint (RA
1)

Logic-based reasoning support for SBVR 323

which, together with is-a constraint on luxury car rental, simply does not sup-
port more than one credit card. Therefore, for any luxury car rental the obligatory
cardinality constraint cannot be satisfied. The same conclusion is indeed inferred
by the implemented tool on Figure 5.

Fig. 5. The Graphical User Interface

8 Conclusion
In this paper we introduced a logical formalization of the Semantics of Business
Vocabulary and Rules standard (SBVR) by defining a first-order deontic-alethic
logic (FODAL) with its syntax, semantics and complete and sound axiomatiza-
tion, that captures the semantics of and interaction between business rules.

We also showed that satisfiability in FODAL logic may be reduced to a stan-
dard first-order satisfiability for a class of formulas restricted to atomic modal
sentences. Moreover, in order to establish a relationship with a standard logical
formalism, we defined a truth-preserving translation from a fragment of bimodal
FODAL into quantified monomodal logic QK, that can be used to facilitate the
transfer of decidability results from well-studied fragments of predicate modal
logics to FODAL.

Finally we presented the ORM2 reasoning tool which provides an automated
support for consistency checks of the conceptual model along with its translation
to OWL2 ontology. The main functionality of the tool is a consistency check of
a set of ALCQI-expressible deontic and alethic business rules. Another impor-
tant task supported by the tool is translation of the aforementioned fragment
of an ORM2 schema into an OWL2 ontology, which, however, does not sup-
port any modalities except necessity due to lack of notions representing deontic
constraints in OWL2.

The future research in the field of logical formalization of SBVR aims at
studying the problem of entailment with respect to possible interaction of alethic
and deontic modalities. Another future course of work includes defining an ap-
proach to translate an ORM2 schema with its alethic and deontic rules to SWRL
or some other extension of OWL2.

324 Dmitry Solomakhin, Enrico Franconi, Alessandro Mosca

References

1. Hajnal Andréka, Johan Van Benthem, and István Németi. Modal languages and
bounded fragments of predicate logic, 1996.

2. Donald E. Baisley, John Hall, and Donald Chapin. Semantic formulations in SBVR.
In Rule Languages for Interoperability. W3C, 2005.

3. Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Number 53 in
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
UK, 2001.

4. Paolo Ceravolo, Cristiano Fugazza, and Marcello Leida. Modeling semantics of
business rules. In Proceedings of the Inaugural IEEE International Conference On
Digital Ecosystems and Technologies (IEEE-DEST), February 2007.

5. Donald Chapin. SBVR: What is now possible and why? Business Rules Journal,
9(3), 2008.

6. Melvin Fitting and Richard L. Mendelsohn. First-order modal logic. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1999.

7. Enrico Franconi, Alessandro Mosca, and Dmitry Solomakhin. ORM2: Syntax and
semantics. Internal report, KRDB Research Centre for Knowledge and Data, 2011.

8. Terry Halpin. A Logical Analysis of Information Systems: Static Aspects of the
Data-oriented Perspective. PhD thesis, Department of Computer Science, Univer-
sity of Queensland, 1989.

9. Terry Halpin. Object-Role Modeling (ORM/NIAM). In Handbook on Architectures
of Information Systems, pages 81–102. Springer-Verlag, 1998.

10. Terry Halpin and Tony Morgan. Information Modeling and Relational Databases.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2 edition, 2008.

11. Terry A. Halpin and Jan Pieter Wijbenga. FORML 2. In Ilia Bider, Terry A.
Halpin, John Krogstie, Selmin Nurcan, Erik Proper, Rainer Schmidt, and Roland
Ukor, editors, BMMDS/EMMSAD, volume 50 of Lecture Notes in Business Infor-
mation Processing, pages 247–260. Springer, 2010.

12. Rami Hodrob and Mustafa Jarrar. Mapping ORM into OWL 2. In Proceedings of
the 1st International Conference on Intelligent Semantic Web-Services and Appli-
cations, ISWSA ’10, pages 9:1–9:7, New York, NY, USA, 2010. ACM.

13. G. E. Hughes and M. J. Cresswell. A New Introduction To Modal Logic. Routledge,
1996.

14. C. Maria Keet. Mapping the Object-Role Modeling language ORM2 into Descrip-
tion Logic language DLRifd. CoRR, abs/cs/0702089, 2007.

15. Paul McNamara. Deontic logic. In Edward N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Fall 2010 edition, 2010.

16. Ronald G. Ross. Principles of the Business Rule Approach. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 2003.

17. Dmitry Solomakhin. Logical Formalization of Semantic Business Vocabulary and
Rules. MSc thesis, Faculty of Informatics, Vienna University of Technology, http:
//media.obvsg.at/AC07810206-2001, 2011.

18. The Business Rules Group. Defining business rules. What are they really? Tech-
nical report, The Business Rules Group, 2001.

19. The Object Management Group. Semantics of Business Vocabulary and Business
Rules (SBVR). Formal specification, v1.0, 2008.

20. Frank Wolter and Michael Zakharyaschev. Decidable fragments of first-order modal
logics. J. Symb. Log., 66(3):1415–1438, 2001.

Logic-based reasoning support for SBVR 325

Winning CaRet Games with Modular
Strategies?

Ilaria De Crescenzo and Salvatore La Torre

Dipartimento di Informatica
Università degli Studi di Salerno

Abstract. Recursive state machines are a well-accepted formalism for
modelling the control flow of systems with potentially recursive proce-
dure calls. In the open systems setting, i.e., systems where an execution
depends on the interaction of the system with the environment, the nat-
ural counterpart is two-player recursive game graphs which essentially
are recursive state machines where vertices are split into two sets each
controlled by one of the players.
We focus on solving games played on such graphs with respect to winning
conditions expressed by a formula of the temporal logic CaRet and such
that the protagonist can only use modular strategies (modular CaRet
games). In a modular strategy, the protagonist may use as memory only
the portion of the play which is local to the current activation of the
current module. Therefore, every time a module is entered, the memory
used by the protagonist gets reset.
The main motivation for considering modular strategies is related to
the synthesis of system controllers. In fact, a modular strategy would
correspond to a modular controller for the considered system. Modular
strategies have been already studied with winning conditions expressed
as reachability, safety, Büchi automata or LTL formulas. In this paper
we extend these results to non-regular winning conditions by considering
specifications expressed in CaRet. In particular, we show that deciding
whether the protagonist has a winning modular strategy in a CaRet
game is 2ExpTime-complete, that matches the complexity of deciding
modular LTL games.

1 Introduction

The interest for games naturally arises in many contexts. In the formal analysis
of systems, games are closely related to the controller synthesis problem and to
the verification of open systems, and are useful tools for solving decision problems
such as, for example, the model-checking of the µ-calculus formulas (see [6, 9]).

In controller synthesis, given a description of the system where some of the
choices depend upon the input and some represent uncontrollable internal non-
determinism, the goal is to design a controller that supplies inputs to the system
? This work was partially funded by the MIUR grants FARB 2009-2010 Università

degli Studi di Salerno (Italy).

so that the product of the controller and the system satisfies the correctness
specification, that clearly corresponds to computing winning strategies in two-
player games. See [10] for a survey.

In the open systems setting, for instance, the Alternating Temporal Logic
allows specification of requirements such as “module A can ensure delivery of
the message no matter how module B behaves” [2]; module checking deals with
the problem of checking whether a module behaves correctly no matter in which
environment it is placed [8].

In this paper, we focus on pushdown systems. Pushdown systems accurately
model the control flow in programs of sequential imperative programming lan-
guages with recursive procedure calls. A large number of hardware and software
systems can be captured by this model, such as programs of object oriented
languages, systems with distributed architectures and communication protocols.
The study of games on such systems has traditionally focused on determining
the existence of a winning strategy, that is a mapping that specifies for each
play ending into a controlled state the next move such that each resulting play
satisfies the winning conditions [5, 12].

Here, we consider modular strategies [4], that are strategies where the next
move is determined only looking at the local memory of the current activation
of the current module. It is known that modular reachability games are NP-
complete [4]. Also, modular strategies have been considered for winning condi-
tions expressed as an ω-regular language, using Büchi, Co-Büchi automata or
linear temporal logic formulas, and in particular, modular LTL games are known
to be 2ExpTime-complete [3].

We extend the results on modular strategies to a more general class of winning
conditions. We allow winning conditions expressed as formulas of the temporal
logic CaRet [1]. The logic CaRet combines the temporal modalities of LTL
with different kinds of successor (global, abstract and caller) and can express
both regular requirements and a variety of non-regular properties such as partial
and total correctness of program blocks or inspection of the stack. By using
an automaton theoretic approach, we show that solving the modular CaRet
games is decidible within double exponential time. Since modular LTL games
are already 2ExpTime-hard and CaRet sintactically includes LTL, we get that
also modular CaRet games are 2ExpTime-complete.

2 Preliminary

Recursive game graph. A recursive game graph (RGG) is composed of game
modules that are essentially two-player graphs (i.e., graphs whose vertices are
partitioned into two sets depending on the player who controls the outgoing
moves) with entry and exit nodes and two different kinds of vertices: the nodes
and the boxes. A node is a standard graph vertex and a box corresponds to
invocations of other game modules in a potentially recursive manner (in partic-
ular, entering into a box corresponds to a module call and exiting from a box
corresponds to a return from a module). Each RGG has a distinct game module

328 Ilaria De Crescenzo, Salvatore La Torre

which is called the start module. A state of an RGG is composed by a call stack
and a node. The notion of run can be defined analogously to the computation of
a standard procedural program (the modules corresponding to the procedures).
A play of an RGG is a run starting from an entry node of the start module.

For a formal definition of an RGG we refer the reader to [4].

Strategies. Given a player P , a strategy is a function that associates a move to
every run that ends in a node controlled by P . A modular strategy consists of
a set of local strategies, one for each game module, that are used together as
a global strategy for a player . A local strategy for a module can only refer to
the local memory of the module, i.e. the sequence of vertices that correspond to
internal nodes, call or returns of the module. This sequence corresponds to the
portion of the play concerning to the current invocation of the module.

For detailed comments and formal definitions on recursive game graphs,
strategies and modular strategies we refer the reader to [4].

Syntax ϕ := p | ϕ ∨ ϕ | ¬ ϕ | ©gϕ | ©aϕ | ©−ϕ | ϕ Ugϕ | ϕ Uaϕ | ϕ U−ϕ (where
p ∈ AP ∪ {call, ret, int})

Semantics for a word α = α1, α2, α3, ..., αn, ... ∈ Σ̂ω and n ∈ N :

– (α, n) |= p iff αn = (X, d) and p ∈ X or p = d
– (α, n) |= ϕ1 ∨ ϕ2 iff (α, n) |= ϕ1 or (α, n) |= ϕ2
– (α, n) |= ¬ϕ iff (α, n) 2 ϕ
– (α, n) |=©gϕ iff (α, succgα(n)) |= ϕ, i.e., iff (α, n+ 1) |= ϕ
– (α, n) |=©aϕ iff succaα(n)) 6= ⊥ and (α, succaα(n)) |= ϕ

– (α, n) |=©−ϕ iff succ−α (n)) 6= ⊥ and (α, succ−α (n)) |= ϕ

– (α, n) |= ϕ1 Ubϕ2 (for any b ∈ {g, a,−}) iff there is a sequence of position
i0, i1, ..., ik, where i0 = n, (α, ik) |= ϕ2 and for every 0 ≤ j ≤ k − 1, ij + 1 =

succbα(ij)) and (α, ij) |= ϕ1

Fig. 1. Syntax and semantics of CaRet.

CaRet. Let Σ = 2AP where AP is a finite set of atomic propositions. We
consider the augmented alphabet of Σ that is Σ̂ = Σ × {call, ret, int}.

The syntax and the semantics of CaRet are reported in Fig. 1. We refer the
reader to [1] for a detailed definition of CaRet.

In this logic, three different notions of successor are used:

– the global-successor (succg) which is the usual successor function. It points
to next node, whatever module it belongs;

– the abstract-successor (succa) which, for internal moves, corresponds to the
global successor and for calls corresponds to the matching returns;

– the caller successor (succ−) which is a ”past” modality that points to the
innermost unmatched call.

Typical properties that can be expressed by the logic CaRet are pre and
post conditions. An example is the formula 2[(call ∧ p ∧ pA) → ©aq]. If we
assume that all calls to procedure A are characterized by the proposition pA,
the formula expresses that if the pre-condition p holds when the procedure A
is invoked, then the procedure terminates and the post-condition q is satisfied

Winning CaRet Games with Modular Strategies 329

upon the return. This is the requirement of total correctness. Observe the use
of the abstract next operator to refer to the return associated with the call.

Modular CaRet games. A modular CaRet game is a pair 〈G,ϕ〉 where G
is a RGG whose vertices (nodes, calls and returns) are labeled with a set of
propositions and ϕ is a CaRet formula. Given a modular CaRet game 〈G,ϕ〉
we want solve the problem of deciding whether there exists a modular strategy
such that the resulting plays are guaranteed to satisfy ϕ.

Detailed comments and formal definitions for modular CaRet games can be
found in [13].

3 Solving modular CaRet games

In this section, we briefly sketch our solution to CaRet games. For the omitted
details, we refer the interested reader to [13].

Our solution consists of three main steps.
Let 〈G,ϕ〉 be a modular CaRet game.
The first step consists of constructing from 〈G,ϕ〉 an equivalent game 〈G′, color〉

with parity winning conditions such that |G′| = O(2|ϕ|) . We build on the top
of the construction given in [1] for model checking CaRet formulas. The main
differences are that we apply the construction to the negation of the formula
ϕ instead of to the formula ϕ directly, and introduce fresh nodes to ensure the
correct semantics of the interaction of the two players. Negating the formula is
needed to use correctly the construction from [1]. We recall that this construc-
tion, such as all the constructions which are tableau based, are nondeterministic
and therefore cannot be directly combined with a game graph in a cross product.
Starting from the negated formula, we can apply the same tableau construction
but now interpreting the nondeterminism as universality, and thus dualizing also
the winning conditions we obtain a game graph which is equivalent to the start-
ing one with respect to the considered decision problem. The resulting winning
condition is the conjunction of a Büchi condition with a generalized co-Büchi
one, that can be simplified to a single pair Rabin condition and thus to an
equivalent parity condition.

Also, notice that both G and ϕ can define context-free languages, and prob-
lems such as inclusion and emptiness of intersection are undecidable for context-
free languages [7]. Therefore, translating ϕ into an automaton and then inter-
secting it with the recursive game graph does not seem feasible.

The second step consists of constructing from the parity game 〈G′, color〉 a
two-way alternating parity tree automaton Awin similarly to what is done in [3].
The resulting automaton accepts a strategy tree iff it corresponds to a winning
modular strategy.

For the last step of our solution, we observe that by using [11] we can convert
Awin to a one-way nondeterministic tree automaton and take its intersection
with the Astrat that is a tree automaton accepting strategy trees. Thus, we get a
one-way nondeterministic automaton A′ which accepts a tree iff it corresponds

330 Ilaria De Crescenzo, Salvatore La Torre

to a winning strategy tree. Checking the emptiness of this automaton takes
polynomial time in the number of states and exponential in the number of colors
in the parity condition [10].

Since the constructed recursive game graph G′ is doubly exponential in the
formula ϕ and linear in the recursive game graph G, color is constant and LTL
games are already 2ExpTime-hard, we get:

Theorem 1. Deciding modular CaRet games is 2ExpTime-complete.

References

1. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested calls and
returns. In Proc. of the 10th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’04, LNCS 2988, pages 467–481.
Springer, 2004.

2. R. Alur, T. Henzinger, and O. Kupferman. Alternating-time temporal logic. Jour-
nal of the ACM, 49(5):1–42, 2002.

3. R. Alur, S. La Torre, and P. Madhusudan. Modular strategies for infinite games
on recursive graphs. In Proc. of the 15th International Conference on Computer
Aided Verification, CAV’03, LNCS 2725, pages 67-79. Springer, 2003.

4. R. Alur, S. La Torre, and P. Madhusudan. Modular strategies for recursive game
graphs. In Proc. 9th Intern. Conf. on Tools and Algorithms for the Construction
and the Analysis of Systems, TACAS’03, LNCS 2619, pages 363–378. Springer,
2003.

5. T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In Au-
tomata, Languages and Programming, 29th Int’l Coll., ICALP, Malaga, Spain, July
8-13, 2002, Proceedings, LNCS 2380, pages 704–715. Springer.

6. E. A. Emerson. Model checking and the mu-calculus. In N. Immerman and P. Ko-
laitis, editors, Proceedings of the DIMACS Symposium on Descriptive Complexity
and Finite Models, pages 185–214. American Mathematical Society Press, 1997.

7. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

8. O. Kupferman, M. Vardi, and P. Wolper. Module checking. Information and
Computation, 164(2):322–344, 2001.

9. W. Thomas. Languages, automata, and logic. Handbook of Formal Language
Theory, III:389–455, 1997.

10. W. Thomas. Infinite games and verification. In Proceedings of the International
Conference on Computer Aided Verification CAV’02, LNCS 2404, pages 58–64.
Springer, 2002.

11. M. Vardi. Reasoning about the past with two-way automata. In Proc. 14th Intern.
Coll. on Automata, Languages, and Programming, ICALP’98, LNCS 1443 , pages
628–641. Springer, 1998.

12. I. Walukiewicz. Pushdown processes: Games and model-checking. Information and
Computation, 164(2):234–263, January 2001.

13. Giochi su Grafi Pushdown rispetto a Strategie Modulari.
http://www.dia.unisa.it/professori/latorre/ilaDec/tesi2011.pdf, 2011

Winning CaRet Games with Modular Strategies 331

A Note on the Approximation of Mean-Payoff Games

Raffaella Gentilini1

1University of Perugia, Italy

Abstract. We consider the problem of designing approximation schemes for the
values of mean-payoff games. It was recently shown that (1) mean-payoff with
rational weights scaled on [−1, 1] admit additive fully-polynomial approxima-
tion schemes, and (2) mean-payoff games with positive weights admit relative
fully-polynomial approximation schemes. We show that the problem of design-
ing additive/relative approximation schemes for general mean-payoff games (i.e.
with no constraint on their edge-weights) is P-time equivalent to determining
their exact solution.

1 Introduction

Two-player mean-payoff games are played on weighted graphs1 with two types of ver-
tices: in player-0 vertices, player 0 chooses the successor vertex from the set of outgoing
edges; in player-1 vertices, player 1 chooses the successor vertex from the set of outgo-
ing edges. The game results in an infinite path through the graph. The long-run average
of the edge-weights along this path, called the value of the play, is won by player 0 and
lost by player 1.

The decision problem for mean-payoff games asks, given a vertex v and a threshold
ν ∈ Q, if player 0 has a strategy to win a value at least ν when the game starts in v.
The value problem consists in computing the maximal (rational) value that player 0 can
achieve from each vertex v of the game. The associated (optimal) strategy synthesis
problem is to construct a strategy for player 0 that secures the maximal value.

Mean-payoff games have been first studied by Ehrenfeucht and Mycielski in [1],
where it is shown that memoryless (or positional) strategies suffice to achieve the op-
timal value. This result entails that the decision problem for these games lies in NP
∩ coNP [2, 18], and it was later shown to belong to2 UP ∩ coUP [10]. Despite many
efforts [19, 18, 13, 5, 6, 20, 9, 12], no polynomial-time algorithm for the mean-payoff
game problems is known so far.

Beside such a theoretically engaging complexity status, mean-payoff games have
plenty of applications, especially in the synthesis, analysis and verification of reactive
(non-terminating) systems. Many natural models of such systems include quantitative
information, and the corresponding question requires the solution of quantitative games,
like mean-payoff games. Concrete examples of applications include various kinds of
scheduling, finite-window online string matching, or more generally, analysis of online
problems and algorithms, as well as selection with limited storage [18]. Mean-payoff
games can even be used for solving the max-plus algebra Ax = Bx problem, which in

1 in which every edge has a positive/negative (rational) weight
2 The complexity class UP is the class of problems recognizable by unambiguous polynomial

time nondeterministic Turing machines [14]. Obviously P⊆ UP ∩ coUP ⊆ NP ∩ coNP.

Problems

Algorithms Decision Problem Value Problem Note

[12] O(|E | · |V | ·W) O(|E | · |V |2 ·W · (log|V |+ logW)) Deterministic

[18] Θ(|E | · |V |2 ·W) Θ(|E | · |V |3 ·W) Deterministic

[20] O(|E | · |V | · 2 |V |) O(|E | · |V | · 2 |V | · logW) Deterministic

[9] min(O(|E | · |V |2 ·W), min(O(|E | · |V |3 ·W · (logV + logW)), Randomized
2O(
√
|V |·log|V |) · logW) 2O(

√
|V |·log|V |) · logW)

Table 1. Complexity of the main algorithms to solve mean-payoff games.

turn has further applications [6]. Beside their applicability to the modeling of quantita-
tive problems, mean-payoff games have tight connections with important problems in
game theory and logic. For instance, parity games [8] and the model-checking problem
for the modal mu-calculus [11] are poly-time reducible to mean-payoff games [7], and
it is a long-standing open question to know whether these problems are in P.

Table 1 summarize the complexity of the main algorithms for solving mean-payoff
games in the literature. In particular, all deterministic algorithms for mean-payoff games
are either pseudopolynomial (i.e., polynomial in the number of vertices |V |, the number
of edges |E|, and the maximal absolute weight W , rather than in the binary represen-
tation of W) or exponential [19, 18, 13, 12, 20, 17]. The works in [9, 3] define a ran-
domized algorithm which is both subexponential and pseudopolynomial. Recently, the
authors of [15, 4] show that the pseudopolynomial procedures in [18, 13, 12] can be used
to design (fully) polynomial value approximation schemes for certain classes of mean-
payoff games: namely, mean-payoff games with positive (integer) weights or rational
weights with absolute value less or equal to 1. In this paper, we consider the problem
of extending such positive approximation results for general mean-payoff games, i.e.
mean-payoff games with weights arbitrary shifted/scaled on the line of rational num-
bers.

2 Preliminaries and Definitions

Game graphs A game graph is a tuple Γ = (V,E,w, 〈V0, V1〉) whereGΓ = (V,E,w)
is a weighted graph and 〈V0, V1〉 is a partition of V into the set V0 of player-0 vertices
and the set V1 of player-1 vertices. An infinite game on Γ is played for infinitely many
rounds by two players moving a pebble along the edges of the weighted graph GΓ . In
the first round, the pebble is on some vertex v ∈ V . In each round, if the pebble is on
a vertex v ∈ Vi (i = 0, 1), then player i chooses an edge (v, v′) ∈ E and the next
round starts with the pebble on v′. A play in the game graph Γ is an infinite sequence
p = v0v1 . . . vn . . . such that (vi, vi+1) ∈ E for all i ≥ 0. A strategy for player i
(i = 0, 1) is a function σ : V ∗ · Vi → V , such that for all finite paths v0v1 . . . vn with
vn ∈ Vi, we have (vn, σ(v0v1 . . . vn)) ∈ E. A strategy-profile is a pair of strategies
〈σ0, σ1〉, where σ0 (resp. σ1) is a strategy for player 0 (resp. player 1). We denote by
Σi (i = 0, 1) the set of strategies for player i. A strategy σ for player i is memoryless

334 Raffaella Gentilini

if σ(p) = σ(p′) for all sequences p = v0v1 . . . vn and p′ = v′0v
′
1 . . . v

′
m such that

vn = v′m. We denote by ΣM
i the set of memoryless strategies of player i. A play

v0v1 . . . vn . . . is consistent with a strategy σ for player i if vj+1 = σ(v0v1 . . . vj) for
all positions j ≥ 0 such that vj ∈ Vi. Given an initial vertex v ∈ V , the outcome of
the strategy profile 〈σ0, σ1〉 in v is the (unique) play outcomeΓ (v, σ0, σ1) that starts in
v and is consistent with both σ0 and σ1. Given a memoryless strategy πi for player i
in the game Γ , we denote by GΓ (πi) = (V,Eπi , w) the weighted graph obtained by
removing from GΓ all edges (v, v′) such that v ∈ Vi and v′ 6= πi(v).

Mean-Payoff Games A mean-payoff game (MPG) [1] is an infinite game played on
a game graph Γ where player 0 wins a payoff value defined as the long-run average
weights of the play, while player 1 loses that value. Formally, the payoff value of a play
v0v1 . . . vn . . . in Γ is

MP(v0v1 . . . vn . . .) = lim inf
n→∞

1
n
·
n−1∑

i=0

w(vi, vi+1).

The value secured by a strategy σ0 ∈ Σ0 in a vertex v is

valσ0(v) = inf
σ1∈Σ1

MP(outcomeΓ (v, σ0, σ1))

and the (optimal) value of a vertex v in a mean-payoff game Γ is

valΓ (v) = sup
σ0∈Σ0

inf
σ1∈Σ1

MP(outcomeΓ (v, σ0, σ1)).

We say that σ0 is optimal if valσ0(v) = valΓ (v) for all v ∈ V . Secured value and opti-
mality are defined analogously for strategies of player 1. Ehrenfeucht and Mycielski [1]
show that mean-payoff games are memoryless determined, i.e., memoryless strategies
are sufficient for optimality and the optimal (maximum) value that player 0 can secure
is equal to the optimal (minimum) value that player 1 can achieve.

Theorem 1 ([1]). For all MPG Γ = (V,E,w, 〈V0, V1〉) and for all vertices v ∈ V , we
have

valΓ (v) = sup
σ0∈Σ0

inf
σ1∈Σ1

MP(outcomeΓ (v, σ0, σ1)) = inf
σ1∈Σ1

sup
σ0∈Σ0

MP(outcomeΓ (v, σ0, σ1)),

and there exist two memoryless strategies π0 ∈ ΣM
0 and π1 ∈ ΣM

1 such that

valΓ (v) = valπ0(v) = valπ1(v).

Moreover, uniform optimal strategies exist for both players, i.e. there exists a strategy
profile 〈σ0, σ1〉 that can be used to secure the optimal value independently of the initial
vertex [1]. Such a strategy profile is said the optimal strategy profile.

The following lemma characterizes the shape of MPG values in a MPG Γ =
(V,E,w, 〈V0, V1〉) with integer weights in {−W, . . . ,W}. Note that solving MPG with
rational weights is P-time reducible to solving MPG with integer weights [20, 18].

A Note on the Approximation of Mean-Payoff Games 335

Lemma 1 ([1, 20]). Let Γ = (V,E,w, 〈V0, V1〉) be a MPG with integer weights and
let W = max(v,v′)∈E |w(v, v′)|. For each vertex v ∈ V , the optimal value valΓ (v) is a
rational number n

d such that 1 ≤ d ≤ |V | and |n| ≤ d ·W .

We consider the following three classical problems [18, 9] for a MPG Γ = (V,E,w, 〈V0, V1〉):

1. Decision Problem. Given a threshold ν ∈ Q and a vertex v ∈ V , decide if valΓ (v) ≥
ν.

2. Value Problem. Compute for each vertex v ∈ V the value valΓ (v).
3. (Optimal) Strategy Problem . Given an MPG Γ , compute an (optimal) strategy

profile for Γ .

Approximate Solutions for MPG

Dealing with approximate MPG solutions, we can take into consideration either ab-
solute or relative error measures, and define the notions of additive and relative MPG
approximate value.

Definition 1 (MPG additive ε-value). Let Γ = (V,E,w, 〈V0, V1〉) be a MPG, let
v ∈ V and consider ε ≥ 0. The value ṽal ∈ Q is said an additive ε-value on v if and
only if:

|ṽal − valΓ (v)| ≤ ε
Definition 2 (MPG relative ε-value). Let Γ = (V,E,w, 〈V0, V1〉) be a MPG, let v ∈
V and consider ε ≥ 0. The value ṽal ∈ Q is said a relative ε-value on v if and only if:

|ṽal − valΓ (v)|
|valΓ (v)| ≤ ε

Note that additive MPG ε-values are shift-invariant. More precisely, if ṽal is an additive
approximate ε-value on the vertex v in Γ = (V,E,w, 〈V0, V1〉), then ṽal + k is an
additive approximate ε-value in the MPG Γ ′ = (V,E,w + k, 〈V0, V1〉), where all the
weights are shifted by k. On the contrary, additive MPG ε-values are not scale-invariant.
In fact, if ṽal is a relative ε-value for v in the MPG Γ = (V,E,w, 〈V0, V1〉), then k · ṽal
is a relative ε · k-value for v in the MPG Γ ′ = (V,E,w · k, 〈V0, V1〉), where all the
weights are multiplied by k. In other words, the additive error on Γ is amplified by a
factor k in the scaled version of the game, Γ ′. Conversely, relative MPG ε-values are
scale invariant but not shift invariant.

The notions of (fully) polynomial approximation schemes w.r.t relative and additive
errors are formally defined below.
Definition 3 (MPG Fully Polynomial Time Approximation Scheme (FPTAS)). An
additive (resp. relative) fully polynomial approximation scheme for the MPG Γ =
(V,E,w, 〈V0, V1〉) is an algorithm A such that for all ε > 0, A computes an additive
(resp. relative) ε-value in time polynomial w.r.t. the size3 of Γ and 1

ε .

Definition 4 (MPG Polynomial Time Approximation Scheme (PTAS)). An additive
(resp. relative) polynomial approximation scheme for the MPG Γ = (V,E,w, 〈V0, V1〉)
is an algorithm A such that for all ε > 0, A computes an additive (resp. relative) ε-
value in time polynomial w.r.t. the size of Γ .

3 Given Γ = (V,E,w, 〈V0, V1〉), size(Γ) = |E| + |V | + log(W), where W is the maximum
(absolute value) of a weight in Γ .

336 Raffaella Gentilini

3 Mean-Payoff Games and Additive Approximation Schemes

Recently, [15] provides an additive fully polynomial scheme for the MPG value prob-
lem on graphs with rational weights in the interval [−1,+1]. A natural question is
whether we could efficiently approximate the value in MPG with no restrictions on
the weights. The next theorem shows that a generalization of the positive approxima-
tion result in [15] on MPG with arbitrary (rational) weights would indeed provide a
polynomial time exact solution to the MPG value problem.

Theorem 2. The MPG value problem does not admit an additive FPTAS, unless it is in
P.

Proof. We start to consider the MPG problem on graphs with integer weights. Assume
that the MPG value problem on graphs with integer weights admits an additive FPTAS.
Given a MPG Γ = (V,E,w, 〈V0, V1〉) and a vertex v ∈ V , let |V | = n and ε =

1
2n(n−1) . Then, our FPTAS computes an additive ε-value ṽal on v in time polynomial
w.r.t. n. By Lemma 1, valΓ (v) is a rational number with denominator d such that 1 ≤
d ≤ n. Two rationals with denominator d for which 1 ≤ d ≤ n have distance at least

1
n(n−1) . Hence, there is a unique rational with denominator d, 1 ≤ d ≤ n, within the

interval I = {q ∈ Q | ṽal−ε ≤ q ≤ ṽal+ε}, where ε = 1
2n(n−1) . Such unique rational

is valΓ (v) and can be easily found in time logarithmic w.r.t. n [16]. Thus, we have an
algorithm A to solve the value problem on Γ in time polynomial w.r.t. n. The MPG
problem on graphs with rational weights can be reduced in polynomial time (w.r.t. the
size of Γ) to the MPG on graphs with integer weights by simply resizing the weights
in the original graph [20, 12]. ut

In view of the proof of the above theorem, we could still hope to obtain some positive
approximation results for general (i.e. arbitrarly scaled) MPG by considering weaker
notion of approximations with respect to FPTAS. Unfortunately, the next lemma shows
that the following is sufficient to show that the MPG value problem is in P: determining
in time polynomial w.r.t. the size of a given MPG Γ a k-approximate value of v, where
v ∈ V and k is an arbitrary constant.

Theorem 3. For any constant k: If the problem of computing an additive k-approximate
MPG value can be solved in polynomial time (w.r.t. the size of the input MPG), then
the MPG value problem belongs to P.

Proof. We start to consider MPG with integer weights. Let v be a vertex in the MPG
Γ = (V,E,w : E 7→ [−W,W], 〈V0, V1〉) and denote |V | = n. If 2k + 1 > (n − 2)!,
then the problem of determining valΓ (v) can be solved in time O(kk) = O(1) by
simply enumerating all the strategies available to the players.

Otherwise, assume 2k+1 ≤ (n−2)!. Consider the game Γ ′ = (V,E,w′, 〈V0, V1〉),
where ∀e ∈ E : w′(e) = w(e) · n!. By hypothesis, there is an algorithm A that
computes a k-approximate value ṽal for v on Γ ′ in time T polynomial w.r.t. the size
of Γ ′. Since log(W · n!) = O(n · log(n) + log(W)), T is also polynomial w.r.t.
the size of Γ . By construction, valΓ

′
(v) is an integer. There are at most 2k + 1 in-

tegers in the interval [ṽal − k, ṽal + k], thus we have at most 2k + 1 candidates

{ bṽal−kcn! , . . . , b̃val+kcn! } for valΓ (v). Moreover, those candidates lie in an interval of

A Note on the Approximation of Mean-Payoff Games 337

length L ≤ 2k+1
n! ≤

(n−2)!
n! = 1

n·(n−1) . The minimum distance between two possible
candidates for valΓ (v) is 1

n·(n−1) .
The exact value valΓ (v) is thus the unique rational number with denominator of

size at most n that lies in the interval [bṽal−kcn! , b̃val+kcn!] and can be easily found in time
logarithmic w.r.t. n [16].

The MPG problem on graphs with rational weights can be reduced in polynomial
time (w.r.t. the size of Γ) to the MPG on graphs with integer weights by simply resizing
the weights in the original graph [20, 12]. ut

A direct consequence of Theorem 3 is that the MPG value problem does not admit
a PTAS, unless it is in P. More precisely, Theorem 2 and Theorem 3 entail a result
of P-time equivalence between the exact MPG value problem and the three classes of
approximations listed in Corollary 1.

Corollary 1. The following problems are P-time equivalent:

1. Solving the MPG value problem.
2. Determining an additive FPTAS for the MPG value problem.
3. Determining an additive PTAS for the MPG value problem.
4. Computing an additive k-approximate MPG value in polynomial time, for any con-

stant k.

4 Mean-Payoff Games and Relative Approximation Schemes

In the recent work in [4], the authors consider the design approximation schemes for
the MPG value problem based on the relative–rather than absolute–error. In particular,
they provide a relative FPTAS for the MPG value problem on graphs with nonnegative
weights. Note that negative weights are necessary to encode parity games and the µ-
calculus model checking into MPG games [10]. The following theorem considers the
problem of designing (fully) polynomial approximation schemes for the MPG value
problem on graphs with arbitrary (positive and negative) rational weights. It shows that
solving such a problem would indeed provide an exact solution to the MPG value prob-
lem, computable in time polynomial w.r.t. the size of the MPG.

Theorem 4. The MPG value problem does not admit a relative PTAS, unless it is in P.

Proof. Let Γ = (V,E, p, 〈V0, V1〉) be a MPG, let v ∈ V . Assume that MPG admit a
relative PTAS and consider ε = 1

2 . Our assumption entails that we have an algorithm
A that computes a relative 1

2 -value ṽal for v in time polynomial w.r.t. the size of Γ .
We show that ṽal ≥ 0 if and only if valΓ (v) ≥ 0. In other words, we show that the
MPG decision problem is PTIME reducible to the computation of a relative 1

2 -value.
By definition of relative ε-value, for ε = 1

2 , we have:

|ṽal − valΓ (v)|
|valΓ (v)| ≤ 1

2
(1)

We have four cases to consider:

338 Raffaella Gentilini

1. In the first case, assume that ṽal − valΓ (v) ≥ 0 and ṽal ≥ 0. By contradiction,
suppose valΓ (v) < 0. Then, Disequation implies:

ṽal − valΓ (v) ≤ 1
2 · |valΓ (v)| ⇒

ṽal ≤ valΓ (v) + 1
2 · |valΓ (v)| < 0

that contradicts our hypothesis.
2. In the second case, assume that ṽal − valΓ (v) ≥ 0 and ṽal < 0. Then, 0 > ṽal ≥
valΓ (v). that contradicts our hypothesis.

3. In the third case, assume that ṽal − valΓ (v) < 0 and ṽal < 0. By contradiction,
suppose valΓ (v) > 0. Then, Disequation implies:

valΓ (v)− ṽal ≤ 1
2 · |valΓ (v)| ⇒

ṽal ≥ valΓ (v)− 1
2 · |valΓ (v)| ≥ 0

that contradicts our hypothesis.
4. The last case to consider is: ṽal − valΓ (v) < 0 and ṽal ≥ 0. Then, valΓ (v) >
ṽal ≥ 0.

Provided a P-time algorithm for deciding whether valΓ (v) ≥ 0, a dichotomic search
can be used to determine valΓ (v) in time polynomial w.r.t. the size of Γ [12, 20]. ut

As a direct consequence of Theorem 4 we obtain the following result of P-time equiv-
alence involving the computation of MPG exact and approximate solutions.

Corollary 2. The following problems are P-time equivalent:

1. Solving the MPG value problem.
2. Determining a relative FPTAS for the MPG value problem.
3. Determining a relative PTAS for the MPG value problem.

References

1. A. Ehrenfeucht and J. Mycielski. International journal of game theory. Positional Strategies
for Mean-Payoff Games, 8:109–113, 1979.

2. A. V. Karzanov and V. N. Lebedev. Cyclical games with proibitions. Mathematical Pro-
graming, 60:277–293, 1993.

3. D. Andersson and S. Vorobyov. Fast algorithms for monotonic discounted linear programs
with two variables per inequality. Technical Report Preprint NI06019-LAA, Isaac Newton
Institute for Mathematical Sciences, Cambridge, UK, 2006.

4. Y. Boros, K. Elbassioni, M. Fouz, V. Gurvich, K. Makino, and B. Manthey. Stochastic
mean-payoff games: Smoothed analysis and approximation schemes. In Proc. of ICALP:
Colloquium on Automata, Languages and Programming, 2011.

5. A. Condon. On algorithms for simple stochastic games. In Advances in Computational
Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, pages 51–73. American Mathematical Society, 1993.

6. V. Dhingra and S. Gaubert. How to solve large scale deterministic games with mean payoff
by policy iteration. In Proc. Performance evaluation methodolgies and tools, article no. 12.
ACM, 2006.

A Note on the Approximation of Mean-Payoff Games 339

7. E. A. Emerson, C. Jutla, and A. P. Sistal. On model checking for fragments of the µ-calculus.
In Proc. of CAV: Computer Aided Verification, LNCS 697, pages 385–396. Springer, 1993.

8. Y. Gurevich and L. Harrington. Trees, automata, and games. In Proc. of STOC: Symposium
on Theory of Computing, pages 60–65. ACM, 1982.

9. H. Bjorklund and S. Vorobyov. A combinatorial strongly subexponential strategy improve-
ment algorithm for mean payoff games. Discrete Applied Mathematics, 155:210–229, 2007.

10. M. Jurdzinski. Deciding the winner in parity games is in UP ∩ coUP. Inf. Process. Lett.,
68(3):119–124, 1998.

11. D. Kozen. Results on the propositional mu-calculus. Theor. Comput. Sci., 27:333–354, 1983.
12. L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J-F. Raskin. Faster algorithms for mean

payoff games. Formal Methods in System Design, 38(2):97–118, 2011.
13. N. Pisaruk. Mathematics of operations research. Mean Cost Cyclical Games, 4(24):817–828,

1999.
14. C. M. Papadimitriou. Computational complexity. Addison-Wesley, Reading, Massachusetts,

1994.
15. A. Roth, M. Balcan, A. Kalai, and Y. Mansour. On the equilibria of alternating move games.

In Proc. of SODA: Symposium on Discrete Algorithms, pages 805–816. ACM, 2010.
16. S. Kwek and K. Mehlhorn. Optimal search for rationals. Information Processing Letters,

86:23–26, 2003.
17. S. Schewe. From parity and payoff games to linear programming. In Proceedings of MFCS:

Mathematical Foundations of Computer Science, LNCS 5734, pages 675–686. Springer,
2009.

18. U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158:343–359, 1996.

19. V. A. Gurvich, A. V. Karzanov, and L. G. Kachiyan. Ussr computational mathematics and
mathematical physics. Cyclic Games and an Algorithm to Find Minmax Cycle Means in
Directed Graphs, 5(28):85–91, 1988.

20. Y. Lifshits and D. Pavlov. Potential theory for mean payoff games. Journal of Mathematical
Sciences, 145(3):4967–4974, 2007.

340 Raffaella Gentilini

Coalitional Games with Priced-Resource Agents�

Dario Della Monica, Margherita Napoli, and Mimmo Parente

Dept. of Computer Science, Università di Salerno, Fisciano (Italy),
{ddellamonica|napoli|parente}@unisa.it

Abstract. Alternating-time Temporal Logic (ATL) and Coalition Logic
(CL) are well-established logical formalisms particularly suitable to model
games between dynamic coalitions of agents (like e.g. the system and the
environment). Recently, the ATL formalism has been extended in order
to take into account boundedness of the resources needed for a task to
be performed. The resulting logic is known as Resource-bounded ATL
(RB-ATL) and has been presented in quite a variety of scenarios. Model
checking RB-ATL in very general setting is usually undecidable. Nev-
ertheless, model checking procedures for semantically or syntactically
restricted versions of RB-ATL have been proposed. In this paper, we an-
alyze the problem of coalitions of agents that need to perform complex
tasks, by using resources with a variable price. We highlight a certain
number of problems and considerations, based on different interpreta-
tions of shortage of resources, leading to different scenarios.

1 Introduction

Automated verification of multi-agent systems is a significant topic in the re-
cent literature in artificial intelligence [1]. The need of modeling this kind of
systems has inspired logical formalisms, the most famous being the Alternating-
time Temporal Logics [4] and the Coalition Logic (CL) [8,9], oriented towards
the description of collective behaviors.

The idea of such logics is that agents can join together in team (or coali-
tions) and share resources to accomplish a task (or reach a goal). In particular,
Alternating-time Temporal Logics have been introduced in [4], where the full
alternating-time temporal language, denoted by ATL∗, has been presented, along
with two significant fragments, namely, ATL and ATL+.

In [7], Goranko has studied the relationship between the (expressive power
of the) two formalisms. In particular, he has shown that CL can be embedded
into ATL. Anyway, none of the two logics takes into account the boundedness
of the resources. Approaches towards verification of multi-agent systems under
resource constraints can be found in [2,3,5]. In [2], Alechina et al. introduce the
logic RBCL, whose language extends the one of CL with explicit representation
of resource bounds. In [3], the same authors propose an analogous extension for
ATL, called RB-ATL, and give a PTIME model checking procedure mostly based
� This is a preliminary work. Ideas and concepts presented in this paper have been

investigated more deeply in [6].

on the one for ATL. In [5], Bulling and Farwer introduce the logics RAL and
RAL∗. The former represents a generalization of Alechina et al.’s RB-ATL, the
latter is ATL∗ extended with resource bounds. The authors study several syntac-
tic and semantic variants of RAL and RAL∗ with respect to the (un)decidability
of the model checking problem. In particular, while previous approaches only
conceive actions consuming resources, they introduce the notion of actions pro-
ducing resources. It turned out that such a new notion makes the model checking
problem undecidable.

The paper is structured as follows. In the next section, we make some consid-
erations about scenarios proposed in the literature, we illustrate our proposals,
and show that the model checking problem is still decidable. Then, in the last
section, we propose new scenarios for which the model checking problem is under
study.

2 Our scenario

This section contains an epistemic discussion about the formalization of a multi-
agent system in which agents can cooperate to perform a task and are subject to
a limited availability of resources, that is an intrinsic feature of any real-world
system. Our discussion hinges on existing approaches in the literature (see e.g.
[2,3,5]) and represents an attempt to do a further step towards the formalization
of such complex systems.

Formulas of the formalisms proposed in [2,3,5] allow one to assign an en-
dowment of resources to the agents by means of the so-called team operators,
(borrowed from ATL) and to state that a team of agents can perform a task.
Due to the nesting of the team operators in a formula (which reflects the fact
that coalitions may change in a game), during the execution of the task, the
agents can be provided with a new endowment of resources to perform subtasks.
This is somehow unrealistic, as it does not take into account issues related to
procurement of resources. In particular, a very significant present-day issue is
that resources are available on the market (or in nature) in limited amount, and
the cost for achieving them depends on such an availability.

First improvement. Thus, our first proposal is to introduce the notion of
price of resources. Unlike the existing approaches, agents are equipped with an
amount of money instead of an endowment of resources. They can use money for
getting resources. Notice that money cannot be considered as a resource like the
others for at least two reasons. First, according to our aim of assigning, to each
resource, a price that is variable depending on several factors (e.g., the current
availability of the resource on the market), it is necessary to introduce the new
component money with the special ability of “measuring” the value of all the
resources, thus making it possible for the agent to acquire them when needed.
Second, since the money as the special ability of “measuring” the value of the
resources makes sense to consider problems of optimization (e.g., minimization
of the amount of money needed to acquire the resources to perform a task).
Formulas of our logic state that a team of agents is able to perform a given

342 Dario Della Monica, Margherita Napoli, Mimmo Parente

task provided with a given amount of money. We also introduce a notion of
global availability of resources on the market, the intended meaning being that,
whenever an agent acquires resources from the market, the global availability is
decreased, whenever it produces resources, the global availability is increased.
The price of resources can be any function of the several components into play. In
our approach, prices of resources depend on their global availability, the acting
agent, and the physical location.

Second improvement. Another aspect that has not been fully analyzed in the
literature is the problem of actions producing resources. On the one hand, in
[2,3], actions can only consume resources; on the other hand, in [5], the authors
state that whenever actions can produce resources the model checking problem is
undecidable. In this paper, we show how to constrain the way in which actions
can produce resources, still preserving the decidability of the model checking
problem. The idea is that it is possible, at a given time, for an action to pro-
duce a resource in a quantity that is not greater than the amount that has
already been consumed so far. This implies that, even if actions can produce
resources, the global availability of the market will never be greater than the
initial global availability, that is crucial for the model checking algorithm. Such
a notion makes sense as, in practical terms, it allows one to model significant
real-world scenarios, such as, acquiring memory by a program, leasing a car dur-
ing a travel, and, in general, any scenario in which an agent is releasing resources
previously acquired.

2.1 Team and task

So far, we have talked about teams (or coalitions) of agents performing a task.
But we have not clarified yet the two notions of team and task. First of all, a
task is a goal that has to be reached and, for what concerns us, is represented by
a logical formula that has to be satisfied. A team of agents is a subset of agents
that act collectively in order to perform a task. To this end, they select a strategy
that univocally determines their behavior in each possible configuration of the
system. Nevertheless, the behavior of the remaining agents, that we collectively
denote as the opponent, is undetermined. Aim of the team is to guarantee that
the task is performed independently of the opponent’s behavior, that is, the task
must be guaranteed for each possible opponent’s strategy.

The formalism that naturally fits our intention is the logic ATL, that allows
one to fix a strategy for the agents of a team and to force an ‘LTL-like’ property,
representing the task, to be true over all the possible executions (or outcomes)
of the system. Obviously, its syntax and semantics will be extended in order to
deal with resource constraints.

2.2 The special resource ‘time’

One can be interested in answering questions of the kind “is it possible for the
team A of agents to complete the task in x time-unit?”. It is clear that the

On a Logic for Coalitional Games with Priced-Resource Agents 343

resource ‘time’ neither can be bought nor rented. It is in a certain sense out of
the control of the agents, as it is only possible to specify that a task should be
executed within some given time constraints, while it is not possible to administer
it. Thus, resource ‘time’ will be treated in a special way with respect to other
resources.

2.3 Game structure

A game structure G is based on a graph whose vertices, called locations, are
labeled by atomic propositions. In each location, each agent can choose among a
non-empty set of actions to be performed. Any possible combination of actions
gives rise to transitions, that are the edges of the graph. In general, actions
consume and produce resources. Each resource has a price that is variable and
depends on, inter alia, the current availability of that resource on the market.
Thus, a transition can be executed if the resources needed to perform the actions
are available and each agent has enough money to acquire them.

Let Z denote the set of integers, N denote the set of non-negative integers, and
let M = (N∪{∞})r. A game structureG is a tuple 〈Q,AP , V, Ag,Σ,∆,R, t, c, ρ〉,
where:

– Q is the finite set of locations, AP is the finite set of propositional letters,
and V : Q→ 2AP is the valuation function;

– Ag = {a1, a2, . . . , an} is the finite set of agents, and Σ is the finite set of
actions, denoted by α1, α2, . . .,

– ∆ : Q×Ag → 2Σ is the action function that defines the possible actions of an
agent in a given location. By an abuse of notation, we use ∆ also to denote
the function from Q to 2Σn

defined as ∆(q) = ∆(q, a1) × . . .×∆(q, an);
– R = {R1, . . . , Rr} is the finite set of resource types. It contains the particular

resource time, denoted by R1;
– t : Q×Σn → Q is the transition function over the set of locations. It is a par-

tial function defined for any pair (q, 〈α1, . . . , αn〉) such that 〈α1, . . . , αn〉 ∈
∆(q);

– c : Σ × Ag → Zr is the cost function, assigning a cost to each action per-
formed by an agent. A negative cost represents a resource consumption, while
a positive cost represents a resource production;

– ρ : M × Ag × Q → Nr is the price function, denoting the price of each
resource, depending on the current resource availability, the acting agent,
and the current location. Without loss of generality, we can assume the
price of the resource ‘time’ to be always zero, as it is a resource that cannot
be acquired and thus its price is meaningless.

2.4 A logical formalization: PRB-ATL

We now define the logic Priced RB-ATL (PRB-ATL). The formulae are given by
the following grammar.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A$〉〉 © ϕ | 〈〈A$〉〉�ϕ | 〈〈A$〉〉ϕUϕ | ∼ �b

344 Dario Della Monica, Margherita Napoli, Mimmo Parente

where p ∈ AP , A ⊆ Ag, ∼∈ {<,≤,=,≥, >}, and �b ∈ M. Moreover, $ ∈
(N ∪ {∞})n is a vector representing the availability of money of the agents.
For each agent a ∈ Ag, by $a we denote the availability of money for the agent
a. Intuitively, formulae of the kind ∼ �b tests the current availability of resources
on the market. Formulae of the kind 〈〈A$〉〉ψ, with ψ ∈ {©ϕ,�ϕ, ϕUϕ} state
that the team A has a strategy such that, for every action performed by the
opponent (i.e, Ag \ A), ψ is satisfied, and such that the total expenses of each
agent a ∈ A is less than or equal to $a. Without loss of generality, we can assume
$a = ∞ for each a /∈ A.

In order to give the formal semantics we must first define the following no-
tions. From now on, let G be a generic game structure. We extend the sum op-
eration to sum between vectors component-wise. Additionally, we use the usual
component-wise comparison relations between vectors.

Definition 1 (configuration and computation). A configuration of G is a
pair c = 〈q, �m〉 ∈ Q × M. A finite computation (resp., infinite computation)
over G is a finite (resp., infinite) sequence of configurations (of G) π = c1c2 . . .,
such that, for each i, if ci = 〈qi, �mi〉 and ci+1 = 〈qi+1, �mi+1〉, then there exists
a transition t(qi, �α) = qi+1, with �α = 〈α1, . . . , αn〉, such that �mi+1 = �mi +∑n

j=1 c(αj , aj).

Given a team A, a move of A, denoted �αA, is a vector of actions αa, for all
a ∈ A, representing the action performed by the agents of A. To represent the
possible moves of the team A at any location q, we extend the function ∆ with
the function ∆̂A : Q → 2Σ|A|

representing the Cartesian product of ∆(q, a), for
all a ∈ A.

Definition 2 (strategy). A strategy FA for the team of agents A is a function
which associates, to each finite computation π = c1c2 . . . cs, with cs = 〈q, �m〉,
a move �αA, such that �αA ∈ ∆̂A(q). A strategy is said to be memoryless if
FA(π) = FA(π′) for each pair of computations π, π′ such that π = c1c2 . . . cs,
π′ = c′1c

′
2 . . . c

′
s′ , cs = 〈q, �m〉, c′s = 〈q, �m′〉.

In other words, a strategy FA determines the behavior of the agents in the
team A. Anyway, for each move �αA (of the team A) and location q ∈ Q, de-
pending on the move of the opponent, there are several possibilities for the next
location. The set including all such possibilities is called the set of outcomes of
the move �αA (of the team A) at location q, denoted by out(q, �αA). As a con-
sequence, given an initial location q1, a strategy FA corresponds to a tree of
computations, called outcomes of the strategy FA from the location q1 and de-
noted by out(q1, FA).

Finally, in order to prevent actions producing resources to cause a reim-
bursement of money to the agent, we define cons : Σ × Ag → Zr in such a way
that cons(α, a) returns the vector obtained from the vector c(α, a) by replac-
ing the positive components with zeros and the negative components with the
corresponding absolute value.

On a Logic for Coalitional Games with Priced-Resource Agents 345

Let π = c1c2 . . . ∈ out(q0, FA), where ci = 〈qi, �mi〉 for all i, be a computation
and let �αi = 〈αi

a〉a∈Ag be the move performed by the agents at the configuration
ci for all i.

Definition 3 (consistent computations). The computation π is ($, �m1)-consistent
for a strategy FA if, for each i ≥ 0, �0 ≤ �mi ≤ �m1, and a ∈ A

i∑

j=1

ρ(�mj , a, qj) · cons(αj
a, a) ≤ $a.

The semantics of the logic can be defined as usual and we omit it here.

2.5 Model checking

The model checking problem consists in verifying whether a formula ϕ is satisfied
in a location q of a game structure G, with an initial resource availability �m ∈ M.

The algorithm for model checking our logic is mostly based on the one pro-
posed in [4] and used in [3] for model checking, respectively, ATL and its resource-
bounded extension RB-ATL. Roughly speaking, it works by computing, for each
sub-formula ψ of the formula ϕ to be model checked, the set of states in which
ψ holds. The main difficulties when dealing with bounds on resources are the
following. First, the set of sub-formulae must be replaced by an extended set of
formulae (see [3]), that includes, for each sub-formula of the form 〈〈A$〉〉ψ, all
the formulae 〈〈A$′ 〉〉ψ for each $′ < $. Second, the state does not correspond
anymore to the vertices of the game structure, but to configurations, that is,
pairs 〈q, �m〉 ∈ Q ×M. Third, during the analysis of the computations over the
game structure, the algorithm must take into account the resource availability
on the market in order to guarantee that in each instant of the computation all
the resources are still available, as well as to be able to compute the current
prices of resources, that depend also on their availability. Finally, it must be
ensured that, even if actions can produce resources, availability of each resource
may not be higher than the initial availability.

Thus, we now state the main result, without showing the proof in this pre-
liminary version. Full details of both the formalization and the algorithm will
appear in a forthcoming paper.

Let M be the greater component appearing in the initial resource availability
vector �m.

Theorem 1. The model checking problem for PRB-ATL is decidable in time
O(M r× |ϕ |r+1×|G |).

3 Discussion

A further line of research in which we intend to investigate is when, given a
formula in our logic, the coalitions are unknown, that is they are not specified

346 Dario Della Monica, Margherita Napoli, Mimmo Parente

and we may ask whether, for each nested sub-formula, there exists a team and
a money endowment such that the formula is satisfied. More precisely, given
a formula Ψ where 〈〈X$i

i 〉〉 are the team operators occurring in it, we want
to compute the coalitions Xi such that Ψ is satisfied with minimum expense in
terms of both money and resources. Let us notice that if the minimality condition
is not requested, then the problem can be trivially solved.

Another feature we are investigating is when each agent has a price. In this
scenario, in which agents are themselves resources to be acquired to perform the
task, it makes sense to consider the problem of deciding which team is able to
perform the task at the minimum cost.

References

1. Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge. On the logic of
coalitional games. In AAMAS, pages 153–160, 2006.

2. Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and Abdur Rakib. A logic
for coalitions with bounded resources. In Proc. of the 21st International Joint
Conference on Artificial Intelligence, IJCAI ’09, pages 659–664, 2009.

3. Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and Abdur Rakib. Resource-
bounded alternating-time temporal logic. In Proc. of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems: Volume 1, AAMAS ’10, pages
481–488, 2010.

4. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time tem-
poral logic. Journal of ACM, 49:672–713, September 2002.

5. Nils Bulling and Berndt Farwer. On the (un-)decidability of model checking
resource-bounded agents. In Proc. of the 19th European Conference on Artificial
Intelligence, ECAI ’10, pages 567–572, 2010.

6. D. Della Monica, M. Napoli, and M. Parente. On a Logic for Coalitional Games
with Priced-Resource Agents. Electronic Notes in Theoretical Computer Science
(ENTCS), 278:215–228, 2011. Proc. of the 7th Workshop on Methods for Modalities
(M4M 2011) and the 4th Workshop on Logical Aspects of Multi-Agent Systems
(LAMAS 2011).

7. Valentin Goranko. Coalition games and alternating temporal logics. In Proc. of the
8th Conference on Theoretical Aspects of Rationality and Knowledge, TARK ’01,
pages 259–272, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

8. Marc Pauly. A logical framework for coalitional effectivity in dynamic procedures.
Bulletin of Economic Research, 53(4):305–324, 2001.

9. Marc Pauly. A modal logic for coalitional power in games. Journal of Logic and
Computation, 12(1):149–166, 2002.

On a Logic for Coalitional Games with Priced-Resource Agents 347

Cyclic Pregroups and Natural Language:
a Computational Algebraic Analysis

Claudia Casadio and Mehrnoosh Sadrzadeh

1Faculty of Psychology, Chieti University, IT
casadio@unich.it

2Computing Laboratory, Oxford University, UK
mehrs@comlab.ox.ac.uk

Abstract. The calculus of pregroups is introduced by Lambek [1999]
as an algebraic computational system for the grammatical analysis of
natural languages. Pregroups are non commutative structures, but the
syntax of natural languages shows a diffuse presence of cyclic patterns
exhibited in different kinds of word order changes. The need of cyclic
operations or transformations was envisaged both by Z. Harris and N.
Chomsky, in the framework of generative transformational grammar. In
this paper we propose an extension of the calculus of pregroups by intro-
ducing appropriate cyclic rules that will allow the grammar to formally
analyze and compute word order and movement phenomena in differ-
ent languages such as Persian, French, Italian, Dutch and Hungarian.
This cross-linguistic analysis, although necessarily limited and not at all
exhaustive, will allow the reader to grasp the essentials of a pregroup
grammar, with particular reference to its straightforward way of com-
puting linguistic information.

1 Introduction

In this paper we apply logical cyclic rules to the analysis of word order changes in
natural languages. The need of some kind of cyclic operations or transformations
was envisaged both by Harris [1966, 1968] and Chomsky [1981, 1986] for the
treatment of the linguistic contexts referred to with the term movement. In the
paper we present a formal approach to natural language based on two cyclic rules
that hold in the systems of Noncommutative and Cyclic Multiplicative Linear
Logic (NMLL,CyMLL), developed by Abrusci [1991, 2002] from Yetter [1990].
A critical move of this paper is to embed such cyclic rules into the calculus
of Pregroups recently introduced by Lambek [1999, 2001, 2008]. The calculus
has been succesfully applied to a variety of natural languages from English and
German, to French and Italian, and others [see Casadio and Lambek 2008].

We show that the formal grammar obtained by so extending the pregroup
calculus allows one to compute string of words belonging to various kinds of
natural languages, deriving grammatical sentences involving different types of
word order changes or movements, with particular reference to the way in which
unstressed clitic pronouns attach to their verbal heads. Cross-linguistic evidence

is provided comparing languages belonging to the Indo-European family, like
Persian, on the one side, French and Italian, on the other, as representatives
of the Romance group. Moreover the analysis is extended to include Dutch, as
a representative of the West Germanic group, and Hungarian, as a represen-
tative of the Uralic family, non related to the Indo-European languages. Such
cross-linguistic prespective extends the results of preceding work [Casadio and
Sadrzadeh 2011, Sadrzadeh 2010], and the analysis proposed for Dutch is new.

We conclude with a short discussion of the logical and methodological con-
nections of the present analysis to cyclic linear logic [Yetter 1990, Abrusci 1991,
2002].

2 Cyclic rules for the Calculus of Pregroups

2.1 Pregroup grammar

Pregroups are introduced by Lambek in [1999] as an alternative to the Syntactic
Calculus, a well known model of categorial grammar largely applied in the fields
of theoretical and computational linguistics; see e.g. Moortgat [1997], Morrill
[2010]. The calculus of pregroups is a particular kind of substructural logic that is
compact and non-commutative [Buszkowsi 2001, 2007]. Pregroups in fact are non
conservative extensions of Noncommutative Multiplicative Linear Logic (NMLL)
in which left and right iterated negations, equivalently left and right iterated
adjoints, do not cancel [Abrusci 2001, Casadio 2001, Casadio and Lambek 2002,
Lambek 2001, 2008].

A pregroup {G, . , 1, `, r, →} is a partially ordered monoid in which each
element a has a left adjoint a`, and a right adjoint ar such that

a`a → 1 → a a`

a ar → 1 → ara

where the dot “.”, that is usually omitted, stands for multiplication with unit
1, and the arrow denotes the partial order1. In linguistic applications syntactic
types (or categories) are assigned to the words in the dictionary of a language,
the symbol 1 is assigned to the empty string of types, and the operation of
multiplication is interpreted as linguistic concatenation. Adjoints are unique and
the following results are proved (see Lambek [2008] for details)

1` = 1 = 1r ,
(a · b)` = b ` · a ` , (a · b)r = b r · a r ,

a→ b

b` → a` ,
a→ b
br → ar ,

b` → a`

a`` → b`` ,
br → ar

arr → brr .
1 A partial order ‘≤’ (here denoted by the arrow ‘→’) is a binary relation which is

reflexive: x ≤ x, transitive: x ≤ y and y ≤ z implies x ≤ z, and anti-symmetric:
x ≤ y and y ≤ x implies x = y. We may read x ≤ y as saying that everything of type
x is also of type y. The arrow is introduced to show the inference between types, like
in type logical grammmars.

350 Claudia Casadio, Mehrnoosh Sadrzadeh

Linguistic applications make particular use of the equation ar` = a = a`r ,
allowing the cancellation of double opposite adjoints, and of the rules

a`` a` → 1 → a` a`` , ar arr → 1 → arr ar

contracting and expanding left and right adjoints respectively; just contractions
are needed to check and determine if a given string of words is a sentence:

a` a → 1 and a ar → 1 .

A pregroup is freely generated by a partially ordered set of basic types. From each
basic type a we form simple types by taking single or repeated adjoints: . . . a``,
a`, a, ar, arr. . . . Compound types or just types are strings of simple types.

Like in categorial grammars we have two essential steps: (i) assign one or
more (basic or compound) types to each word in the dictionary; (ii) check the
grammaticality and sentencehood of a string of words by a calculation on the
corresponding types, where the only rules involved are contractions and ordering
postulates such as α → β (α, β basic types).

Taking as basic types: n (noun), π (nominative argument), o (accusative
argument), w (dative argument), λ (locative argument), i (infinitive verb), s
(sentence), we obtain simple types such as n`, nr, π`, πr, o`, or, . . . , and com-
pound types such as (πrs o`), the type of a transitive verb with subject in the
nominative case and object in the accusative case. For example, the types of the
constituents of the sentence “I saw him.” are as follows, where the subscript 1
in π1 means first person singular, and the subscript 2 in s2 indicates the past
tense2

I saw him.
π1 (πr1s2 o

`) o

We say that a sentence is grammatical iff the computation (or calculation) of
the types assigned to its words reduces to the type s, a procedure depicted by
the under-link diagrams3.

2.2 Cyclic rules in theoretical linguistics

In the Sixties Zellig Harris developed a cyclic cancellation automaton [1966, 1968]
as the simplest device to recognize sentence structure by computing strings of
words through cancellations of a given symbol with its left (or right) inverse.
2 We analyze a sentence of the form SUBJ VP by assigning types (πk sj), for j = 1,
. . . ,7 denoting the seven basic tenses, and k denoting the six verbal persons (singular
k = 1, 2, 3, plural k = 4, 5, 6).

3 These diagrams are reminescent of the planar poof nets of non-commutative linear
logic, connecting the formulas, decorated by a left or right adjoint with their positive
counterparts, by means of under-links that satisfy the requirements of parallelism
and planarity (Abrusci 2002, Lambek 1999, 2008, Buszkowski 2007).

Cyclic pregroups and natural language: a computational algebraic analysis 351

The formalism proposed by Harris is sufficient for many languages, requiring
just string concatenation for sentence derivation, but the same limitations of
context free grammars are met [Francez and Kaminski 2007, Buszkowski and
Moroz 2008]. Different kinds of cyclic transformations were explored by Chom-
sky [e.g. 1981] to compute constituents movement in long distance dependencies.
As argued by Lambek [2008], the analysis of modern European languages re-
quires that word symbols (logical types) take double superscripts, like in Harris
[1968], or the double adjoints defined in pregroup grammar, wherever Chom-
sky’s approach postulates a trace. The calculus of pregroups meets in this sense
the requirements of Chomsky’s transformational grammar expressing traces by
means of double adjoints.

2.3 Introducing cyclic rules into pregroups

We extend the pregroup calculus with two cyclic rules that will allow us to anal-
yse a variety of movement phenomena in natural languages. It is important to
point out that the addition of cyclic rules is not equivalent to the reintroduc-
tion of the structural rule of Commutativity into the pregroup calculus (a logic
without structural rules like the Syntactic Calculus).

These rules are derivable into NMLL (or also CyMLL) cf. Abrusci [2002]

` Γ,∆
` ∆+2, Γ

(rr)
` Γ,∆
` ∆,Γ−2

(``)

In the notation of pregroups (positive formulae as right adjoints and negative
formulae as left adjoints), the formulation of the two cyclic rules becomes

(1) qp ≤ prrq (2) qp ≤ pq``

The monoid multiplication of the pregroup is non-commutative, but if we
add to the pregroup calculus the cyclic rules defined above as metarules, then
we obtain a limited form of commutativity, for p, q ∈ P .

Metarules are postulates introduced into the dictionary of the grammar to
simplify lexical assignments and make syntactic calculations quicker: the types
assigned to the words of a given language are assumed to be stored permanently
in the speaker’s ‘mental’ dictionary; to prevent overloading this mental dictio-
nary, the grammar includes metarules asserting that, if the dictionary assigns a
certain type to a word, then this word may also have certain other types. The
effect of the two cyclic metarules is that the cyclic type of each verb form is
derivable from its original type.

3 Word Order and Cyclicity in Natural Languages

In the following section we present a cross-linguistic analysis comparing lan-
guages belonging to the Indo-European family, like Persian, on the one side,
French and Italian, on the other side, as representatives of the Romance group.

352 Claudia Casadio, Mehrnoosh Sadrzadeh

The analysis is also extended to include Dutch, as a representative of the West
Germanic group, and Hungarian, as a representative of the Uralic family, which
is not related to the Indo-European family.

3.1 Cross-linguistic motivations

In Persian the subject and object of a sentence occur in pre-verbal position (Per-
sian is a SOV language), but they may attach themselves as clitic pronouns to
the end of the verb and form a one-word sentence. By doing so, the word order
changes from SOV to VSO. A similar phenomenon happens in Romance lan-
guages like Italian and French, but the movement goes in the opposite direction:
verbal complements occurring in post-verbal position, can take a clitic form and
move to a pre-verbal position.

These movements have been accounted for in the pregroup grammar for
French [Bargelli and Lambek 2001] and Italian [Casadio and Lambek 2001] by
assigning clitic words types with double adjoints. In this paper we present a
different approach offering a unified account of clitic movement by adding two
cyclic rules (or metarules) to the lexicon of the pregroup grammar. The import
of these rules is that the clitic type of the verb is derivable from its original type.

Clitic Rule (1): If prq is the original type of the verb, then so is qp`.

Clitic Rule (2): If qp` is the original type of the verb, then so is prq.

The over-lined types p`, pr are introducend as a notational convenience to dis-
tinguish the clitic pronouns from the non-clitic stressed pronouns or arguments.
For any clitic pronoun p, we postulate the partial order p ≤ p to express the fact
that a clitic pronoun is also a kind of pronoun. We assume that for all p, q ∈ P ,
we have pq = p q.

3.2 Clitic movement in Persian

In Persian the subject and object of a sentence occur in pre-verbal position
(Persian is a SOV language), but they may attach themselves as clitic pronouns
to the end of the verb and form a one-word sentence (word order changes from
SOV to VSO). The clitic clusters (pre-verbal vs. post-verbal) for the sentence I
saw him, “man u-ra didam” in Persian, exhibit the following general pattern:

I him saw
man u-ra didam.
π o (orπrs)

saw I him
did am ash.
s o`π` π o

The over-lined types π, o, stand for the clitic versions of the subject and object
pronouns.

Cyclic pregroups and natural language: a computational algebraic analysis 353

Including clitic rule (1) in the lexicon of the pregroup grammar of Persian,
we obtain the clitic form of the verb from its original type. The original Persian
verb has the type: orπrs = (πo)rs , which is of the form prq; after applying
the clitic rule we obtain: s(πo)` = s(π o)` = so`π`, i.e. the type of the verb with
postverbal clitics. The clitic rule can be seen as a re-write rule and the derivation
can be depicted as a one-liner as follows

orπrs = (πo)rs ; s(πo)` = so`π`

To form these one-word sentences, one does not necessarily have pronouns for
subject and object in the original sentence. They can as well be formed from
sentences with nominal subjects and objects, for example the sentence I saw
Nadia, in Persian “man Nadia-ra didam”, becomes “did-am-ash” and is typed
exactly as above.

Hassan Nadia saw
Hassan Nadia-ra did.
π o (orπrs) → s

saw he her
di d ash.

(s o` π`) π o → s

One can form a yes-no question from any of the sentences above, by adding the
question form “aya” to the beginning of the sentence. Since in Persian the word
order of the question form is the same as that of the original sentence, the clitic
movement remains the same and obeys the same rule [Sadrzadeh 2008]

Did Hassan Nadia see?
aya Hassan Nadia-ra did?
qs` π o (orπrs) → q

Did see he her?
aya di d ash?
qs` (so`π`) π o → q

3.3 Clitic movement in French

In French, the clitic clusters move in the opposite direction with respect to
Persian. We need therefore the clitic rule (2). Using this rule we can derive
the type of the clitic form of the verb from its original type. Consider a simple
example, the sentence “Jean voit Marie.” (Jean sees Marie) and its clitic form
“Jean la voit”. We type these as follows

Jean voit Marie.
π (πrs o`) o → s

Jean la voit.
π o (orπrs)→ s

To derive the clitic type of the verb from its original type, we start with the
original type of “voit” : (πrs o`) take q = (πrs) and p` = o` , apply clitic rule
(2) and obtain the type: (orπrs) . The following is an example with the locative
object λ and its clitic pronoun λ .

Jean va à Paris.
π (πrsλ`) λ → s

Jean y va.
π λ (λ

r
πrs)→ s

Again the clitic rule (2) easily derives (λ
r
πrs) from (πrsλ`). Now consider the

more complicated example “Jean donne une pomme à Marie” (Jean gives an
apple to Marie); we type it as follows

354 Claudia Casadio, Mehrnoosh Sadrzadeh

Jean donne une pomme à Marie.
π (πrsw`o`) o w

While learning French at school, it’s difficulty to remember the order of the
clitic pronouns in these sentences; clitic rule (2) offers a hint: according to it a
verb of the type (πrsw`o`) can also be of type wrorπrs, taking q = (πrs) and
p = (ow)`. This type will result in the following grammatical sentence

Jean la lui donne.
π o w wrorπrs

But it will not make the following incorrect order grammatical

Jean lui la donne.
π w o wrorπrs .

3.4 Clitic movement in Italian

Sentences with one occurrence of a pre-verbal clitic can be obtained exactly
like in French, as shown in the following examples corresponding to the French
sentences given above: “Gianni vede Maria” and its clitic form “Gianni la vede”

Gianni vede Maria.
π (πrs o`) o → s

Gianni la vede.
π o (orπrs)→ s

To derive the clitic type of the verb we start with the original type (πrso`), take
q = πrs and p` = o`, apply clitic rule (2) and obtain the type (orπrs). The
same process is obtained with a locative argument λ and the corresponding clitic
pronoun λ, where the clitic rule derives (λ

r
πrs) from (πrsλ`).

Gianni va a Roma.
π (πrs λ`) λ → s

Gianni ci va.
π λ (λ

r
πrs)→ s

When we consider the more complicated cases of a verb with two arguments
like in “Gianni da un libro a Maria” (Gianni gives a book to Maria), or “Gianni
mette un libro sul tavolo” (Gianni puts a book on the table), we find that clitics
pronouns occur in the opposite order with respect to French: e.g. the verb “dare”
(to give) has the clitic form “Gianni glie lo da” (Gianni to-her it gives).

In Casadio and Lambek [2001] this problem was handled by introducing a
second type for verbs with two complements (πrs o`w`) and (πrs o`λ`); assuming
these verb types and applying clitic rule (2) we obtain the correct clitic verb
forms to handle the cases of pre-verbal cliticization:

(πrs o`w`) = (πrs(wo)`) ; ((wo)r πr s) = (or wr πr s)

the same with λ in place of o.

Gianni glie lo da.
π w o (orwrπrs)→ s

Gianni ce lo mette.
π λ o (orλ

r
πrs)→ s

Cyclic pregroups and natural language: a computational algebraic analysis 355

The following diagram shows the general pattern of preverbal cliticization in
Italian with a verb taking two arguments:

I (nom) you (dat) it (acc) say
io te lo dico
π w o (orwrπrs)

4 Insights into Hungarian and Dutch word order

In the previous section we have dealt with a special kind of movement: the clitic
movement, limited to certain words moving from before to after the verb (or
the other way around) and becoming clitics. In this section we show that similar
cyclic rules can be used to reason about movement of words in general. This
movement is more free: firstly all words, or relevant words strings, can move;
secondly the movement is not restricted to the context surrounding the verb.

4.1 Word order in Dutch subordinate clauses

In Dutch (like in German), the position of the finite verb in main clauses differs
from that in subordinate clauses. The unmarked order of the former is SVO,
while the latter exhibit an SOV pattern. Also concerning word order Dutch
is similar to German in that the finite verb always occurs in second position
in declarative main clauses (V2), while the verb appears in final position in
subordinate clauses: a sentence like “hij kocht het boek” (he bought the book) in
subordinate clauses becomes “. . . hij het boek kocht” (he the book bought); with
more arguments, “Jan geeft het boek aan Marie” (Jan gives the book to Marie)
becomes “. . . Jan het boek aan Marie geeft” (Jan the book to Marie gives).

In order to reason about these kinds of movement, we generalize our clitic
rule (2), corresponding to the r ight cyclic axiom, to all words by removing the
bar from the types and the word ‘original’ from the definition, obtaining the
following rule allowing verb argoments to move up the string from right to left

Move Rule (1): If qp` is the type of the verb, so is prq.

The rule allows us to correctly type the examples mentioned above

hij kocht het boek
he bought the book
π (πrs o`) o → s

omdat hij het boek kocht
because he the book bought
ss` π o (orπrs)→ s

omdat Jan het boek aan Marie geeft
because Jan the book to Marie gives

π o w (wrorπrs)

356 Claudia Casadio, Mehrnoosh Sadrzadeh

Consider now an example with a modal verb “Ann wil Marie kussen” (Ann
wants to kiss Marie) and the corresponding embedded clause “dat Ann Marie
wil Kussen” (that Ann wants to kiss Marie)

Ann wil Marie kussen
Ann wants Marie kiss
π (πrs i`) o (ori) → s

dat Ann Marie (wil kussen)
that Ann Marie (wants kiss)
ss` π o (orπrs) → s

By contraction we obtain the type of the string “wil kussen”: (πrs i`) (i o`) →
(πrs o`); then by applying move rule (1) we obtain the type (orπrs) expect-
ing the object to occur before the verb string. The clause-final verb clusters
in Dutch and German have been estensively studied in different linguistic theo-
ries, see Steedman [1985], Haegeman and van Riemsdijk [1986], Moortgat [1997],
Lambek [2000]: a common observation is that while German prefers nested de-
pendencies, between verbs and their arguments, Dutch prefers crossed depen-
dencies. Consider the following sentences where “geld”: NP2 and “Marie”: NP3

are arguments of “geven”: V2, “Piet”: NP1 is an argument of the perception
verb “zag”: V1. In the second example, an embedded clause, the dependencies
between the two verbs and their arguments are crossed.

Jan zag Piet geld Marie geven
Jan saw Piet money Marie give
π (πrs i` o`1) o1 o2 w (wror2 i)→ s

. . . Jan Piet Marie geld (zag geven)

. . . Jan Piet Marie money (saw give)
π o1 w o2 (or2 w

r or1π
rs)→ s

In the first example, “Jan zag Piet geld Marie geven” (Jan saw Piet give money to
Marie), the type (i w`o`2) of “geven” is converted by move rule (1) into (wror2 i)
where o1 = “Piet”, o2 = “geld”, w = “Marie”; for q = i and p` = (w`o`2) = (o2w)`,
we have (o2w)` ; (o2w)r = (wror2). In the second example, first we apply move
rule (1) to the type (πrs i` o`1) of “zag” and obtain (or1π

rs i`), for p = o1; then
we get the type of the verb string “zag geven” by contraction: (or1π

rs i`) (i o`2w
`)

→ (or1π
rs o`2w

`); finally, applying again the cyclic rule, we obtain (or2 w
r or1π

rs),
for p` = (w o2)`. A similar analysis applies to the sentence “Jan Piet Marie zag
laten zwemmen” (Jan saw Piet make Marie swim).

. . . Jan Piet Marie (zag laten zwemmen)

. . . Jan Piet Marie (saw make swim)
π o1 o2 (or2 o

r
1 π

r s) → s

4.2 Word order changes in Hungarian

Examples of still more radical word order changes are offered by languages such
as Hungarian4 , where the movement is caused by a change of focus in the sen-
tence. Words move within the sentence to reflect or focus on a certain meaning.
For instance the following Hungarian sentence, which has no focus in it, simply
means “János took two books to Péternek yesterday”.
4 agglutinative

Cyclic pregroups and natural language: a computational algebraic analysis 357

János tegnap elvitt két könyvet Péternek.
János yesterday took two books to Péternek.

This can become as follows

János tegnap két könyvet vitt el Péternek.
János yesterday two books took to Péternek.
π λ o (orλrπrsw`) w

which means “Only two books were taken by János to Péternek yesterday”. This
is an example of a single move: két könyvet has moved from after the verb
to before it. More sophisticated movements are also possible, for instance in the
following sentence

Péternek vitt el tegnap János két könyvet.
To Péternek took yesterday János two books.

w (wrso`π`λ`) λ π o

which means “It was to Péternek and to no one else that the two books were
taken”. This is an example of a multi move: not only Péternek has moved to the
beginning of the sentence, but also first tegnap and then János have moved from
before the verb to after it, and in so doing have changed their order with regard
to each other. For more details on single and multi moves and a formalization
of a notion of focus, we refer the reader to Sadrzadeh [2010]; here instead we
review some examples. In order to reason about these kinds of movement, we
generalize our previous cyclic rules in the following way

Move Rule (2): If prq is in the type of the verb, so is qp`.

Move Rule (3): If qp` is in the type of the verb, so is prq.

Taking π to stand for the type of the subject, o for the first object, w for
the second object, and λ for the adverb, we assign the following types to the
constituents of our example sentence, which had no focus in it yet

János tegnap elvitt két könyvet Péternek.
π λ (λrπrsw`o`) o w

The focus can be on the subject or either of the objects. In each case, they will
appear right before the verb after the movement. For the case of the subject, i.e.
János the temporal adverb yesterday moves to after the verb, as follows

János vitt el tegnap két könyvet Péternek.
János took yesterday two books to Péternek.
π (πrsw`o`λ`) λ o w

358 Claudia Casadio, Mehrnoosh Sadrzadeh

We use our new cyclic rules to derive the new type of the verb as follows: apply
move rule (2) to the type of the verb (λrπrsw`o`), by taking q to be (πrsw`o`)
and p to be λ. If the focus is on the first object, i.e. two books, then it moves
before the verb and the sentence above and its typing change as follows

János tegnap két könyvet vitt el Péternek.
János yesterday two books took to Péternek.
π λ o (orλrπrsw`) w

To derive the new verb type, we apply move rule (3) to the original type of the
verb (λrπrsw`o`), by taking q to be (λrπrsw`), and p to be o. The focus can also
be on the second object Péternek and the verb; for details see Sadrzadeh [2010].
As an example of multi move, consider our above sentence, typed as follows

Péternek vitt el tegnap János két könyvet.
To Péternek took yesterday János two books.

w (wrs o`π`λ`) λ π o

Here Péternek has moved to the beginning of the sentence, but also first tegnap
and then János have moved from before the verb to after it, and in so doing
have changed their order with regard to each other. The calculation for deriving
the new type of the verb reflects the above complications and needs repetitive
applications of the rules. It is as follows

Start from the original type of the verb (λrπrsw`o`) and, first Péternek moves

to the front; to obtain this we apply rule (3) to the subtype (λrπrsw`), take

p to be w, and obtain (wrλrπrso`). Then tegnap moves after the verb, for

this we apply rule (2) to the subtype (λrπrso`), take p to be λ, and obtain

(wrπrso`λ`). Finally János moves to after tegnap, for this we apply rule (2)

to the subtype (πrso`), take p to be π, and obtain (wrso`π`λ`).

Free as they might seem, we need some restrictions to avoid certain over genera-
tions, mainly caused by the presence of the word in. Formulation of these exceed
the purpose of this paper and can be found in Sadrzadeh [2010]. In a nutshell,
they will prevent formation of types such as (πrλ`sw`o`) and (λrπrsorw`).

5 Clitic Rules and Cyclic Pregroups

Following Lambek [1999, 2001, 2008], we have formulated the clitic rules as
metarules. At some risk of overgeneration, one is tempted to formulate these
rules as axioms and add them to the pregroup calculus, or add their rule version
to the sequent calculus of compact bilinear logic [Buszkowski 2001, 2002]. Note
that the addition of our cyclic axioms (or cyclic rules) is not equivalent to the

Cyclic pregroups and natural language: a computational algebraic analysis 359

reintroduction of the structural rule of Commutativity into the pregroup calculus
(a logic without structural rules like the Syntactic Calculus)5. These axioms
belong to the cyclic calculus studied by Abrusci [1991, 2002] and introduced in
the following way

` Γ,∆
` ∆+2, Γ

(rr)
` Γ,∆
` ∆,Γ−2

(ll)

Via the standard translation from the Syntactic Calculus to pregroups [Lam-
bek 1999, Buszkowski 2001] (positive formulae as right adjoints and negative
formulae as left adjoints), the axiomatic version of these rules becomes

(1) qp ≤ pqll (2) qp ≤ prrq

We can refer to (1) and (2) as cyclic axioms, in particular to the first one as the
left cyclic axiom and to the second one as the right cyclic axiom. We can then
re-formulate our clitic metarules as clitic axioms

Persian prq ≤ qpl French-Italian qpl ≤ prq

where the latter is derivable from the former, and prove the following results:

Proposition 1. The clitic axioms are derivable from the cyclic axioms.

Proof. The axiom for French and Italian is derivable form the right cyclic axiom
as follows, take p to be pl and observe that (pl)rr = pr, then one obtains qpl ≤
prq. Since p ≤ p, and since adjoints are contravariant, we have pr ≤ pr, thus
prq ≤ prq, and by transitivity of order we obtain qpl ≤ prq. The axiom for
Persian is derivable from the left cyclic axiom as follows: take q to be pr and
p to be q. Now since (pr)ll = pl, we obtain prq ≤ qpl, and since p ≤ p, by
contravariance, pl ≤ pl, thus qpl ≤ qpl, and by transitivity of order prq ≤ qpl.

It is interesting that the rules for clitic movement correspond to logical rules
of cyclicity. Accordingly, one may call French and Italian right cyclic languages
and Persian a left cyclic language. The consequences of enriching a pregroup
with these cyclic axioms (or rules) are however not so desirable.

Proposition 2. A pregroup P with either of the cyclic axioms is a partially
ordered group.

Proof. Consider the left cyclic axiom; if one takes q = 1, we obtain pr ≤ pl for
all p ∈ P , from which one obtains pll ≤ p. Here take p = wr for some w ∈ P
and obtain wl ≤ wr. Now since we have pr ≤ pl for all p, we obtain wr = wl. A
similar argument can be made for the right cyclic axiom.
5 An approach in this line is proposed by Francez and Kaminski [2007], where a free

pregroup grammar is extended by a finite set of additional (commutative) inequa-
tions between types, leading to a class of mildly context-sensitive languages, allowing
the analysis of crossed dependencies and extractions.

360 Claudia Casadio, Mehrnoosh Sadrzadeh

Although, as proven by Abrusci and Lambek, cyclic bilinear logic is a con-
servative extension of bilinear logic (or non-commutative linear logic), this is
not the case for cyclic compact bilinear logic and compact bilinear logic (the
logical calculus of pregroups) [Lambek 2008, Barr 2004]. The relations among
these system are however of real interest to be studied both from the logical and,
particularly, from the linguistic point of view.

We conclude observing that the present analysis is consistent with previous
work on French [Bargelli and Lambek 2001] and Italian [Casadio and Lambek
2001], where iterated adjoints are used to type clitic pronouns. We can prove in
fact that iterated adjoints show up in our work too, since as observed by Lambek,
the pr used in the metarule for French and Italian is nothing but (pl)rr, and the
pl used for Persian is nothing but (pr)ll.

6 Conclusions

We have applied the calculus of pregroups to a selected set of sentences involving
word order changes in different languages: Persian, French, Italian, Dutch and
Hungarian. The cross-linguistic results we have obtained provide evidence in
favour of the theoretical and computational advantages offered by the pregroup
calculus extended with appropriate cyclic rules. These rules in turn represent a
stimulating challenge for the development of logical grammars. We have in fact
shown that those calculations, or computations, that in pregroups are dealt with
logical types involving double adjoints (corresponding to Chomskian traces),
can be performed, in the different languages, by means of appropriate cyclic
operations.

References

1. Abrusci, V. M.: Phase Semantics and Sequent Calculus for Pure Noncommutative
Classical Linear Propositional Logic. J. Symbolic Logic 56(4), 1403–1451 (1991)

2. Abrusci, M.: Classical Conservative Extensions of Lambek Calculus. Studia Logica
71, 277–314 (2002).

3. Abrusci, V.M., Casadio C. eds: New Perspectives in Logic and Formal Linguistics.
Proceedings of the 5th Roma Workshop. Rome, Bulzoni (2002)

4. Ajdukiewicz, K.: Die syntaktische Konnexitaat, Studia Philosophica, 1, 1-27 (1935).
Eng. trans., Syntactic connexion. In Polish Logic, ed. S. McCall. Oxford, Clarendon
Press (1967)

5. Bargelli, D., Lambek J.: An Algebraic Approach to French Sentence Structure. In
Logical Aspects of Computational Linguistics, edited by P. de Groote, G. Morrill,
and C. Retoré, 62–78. Berlin, Springer-Verlag (2001)

6. Barr, M.: *-Autonomous Categories Revisited, Journal of Pure and Applied Algebra,
111, 1–20 (1996)

7. Barr, M.: On Subgroups of The Lambek Pregroup. Theory and Application of Cat-
egories 12(8), 262–269 (2004)

8. Buszkowski, W.: Lambek Grammars Based on Pregroups. In Logical Aspects of
Computational Linguistics edited by P. de Groote, G. Morrill, and C. Retoré, 95–
109. Berlin, Springer-Verlag (2001)

Cyclic pregroups and natural language: a computational algebraic analysis 361

9. Buszkowski, W.: Type Logics and Pregroups. Studia Logica 87(2–3), 145-169 (2007)
10. Buszkowski, W., Moroz, K.: Pregroup Grammars and Context-free Grammars. In

Casadio and Lambek eds., 1–21 (2008)
11. Casadio, C.: Non-Commutative Linear Logic in Linguistics. Grammars 4(3), 167–

185 (2001)
12. Casadio, C.: Applying Pregroups to Italian Statements and Questions. Studia Log-

ica 87, 253–268 (2007)
13. Casadio, C., Lambek, J.: An Algebraic Analysis of Clitic Pronouns in Italian. In

Logical Aspects of Computational Linguistics edited by P. de Groote, G. Morrill,
and C. Retoré, 110–124. Berlin, Springer-Verlag (2001)

14. Casadio, C., Lambek, J.: A Tale of Four Grammars. Studia Logica 71(2), 315–329
(2002)

15. Casadio, C., Lambek, J. (eds.): Recent Computational Algebraic Approaches to
Morphology and Syntax. Milan, Polimetrica (2008)

16. Casadio, C., Sadrzadeh, M.: Clitic Movement in Pregroup Grammar: a Cross-
linguistic Approach. Proceeding 8th International Tbilisi Symposium on Language,
Logic and Computation, Springer (2011)

17. Chomsky, N.: Lectures on Government and Binding. Dordrecht, Foris (1981)
18. Chomsky, N.: Barriers. Cambridge, The MIT Press (1986)
19. Francez, N., Kaminski, M: Commutation-Augmented Pregroup Grammars and

Mildly Context-Sensitive Languages. Studia Logica 87(2/3), 295-321 (2007)
20. Grishin, V. N. : On a generalization of the Ajdukiewicz-Lambek system. In Studies

in Nonclassical Logics and Formal Systems, Moscow, Nauka 315-343 (1983). Eng.
trans. by D. Cubric, edited by author. In Abrusci and Casadio (eds.) 9-27 (2001)

21. Haegeman, L., van Riemsdijk, H.: Verb Projection Raising, Scope, and the Typol-
ogy of Rules Affecting Verbs. Linguistic Inquiry, 17 (3), 417–466 (1986)

22. Harris, Z. S.: Methods in Structural Linguistics. Chicago (1951)
23. Harris, Z. S.: A Cycling Cancellation-Automaton for Sentence Well-Formedness.

International Computation Centre Bulletin 5, 69–94 (1966)
24. Harris, Z. S.: Mathematical Structures of Language, Interscience Tracts in Pure

and Applied Mathematics, John Wiley & Sons., New York (1968)
25. Kíslak - Malinowska, A.: Pregroups as a tool for typing relative pronouns in Pol-

ish, Proceedings of Categorial Grammars. An Efficient Tool for Natural Language
Processing, Montpellier, 114-128 (2004)

26. Kíslak - Malinowska, A.: Polish Language in Terms of Pregroups. In: Casadio, C.,
Lambek, J. (eds.) Recent Computational Algebraic Approaches to Morphology and
Syntax. Polimetrica, Milan, 145–172 (2008)

27. Klavans, J. L.: Some Problems in a Theory of Clitics. Bloomington, Indiana Lin-
guistics Club (1982)

28. Kusalik, T.: Product Pregroups as an Alternative to Inflectors. In Recent Compu-
tational Algebraic Approaches to Morphology and Syntax, edited by C. Casadio and
J. Lambek, 173–190. Milan, Polimetrica (2008)

29. Lambek, J.: The Mathematics of Sentence Structure. American Mathematics
Monthly 65, 154–169 (1958)

30. Lambek, J. : Deductive Systems and Categories I. Syntactic Calculus and Residu-
ated Categories. Mathematical Systems Theory, 2(4), 287–318 (1968)

31. Lambek, J.: From Categorial Grammar to Bilinear Logic. In Doŝen, K., P.
Schroeder-Heister, eds. Substructural Logics. Oxford, Oxford University Press, 207–
237 (1993)

32. Lambek, J.: Type Grammar Revisited. In Logical Aspects of Computational Lin-
guistics, edited by A. Lecomte et al., 1–27. Springer LNAI 1582 (1999)

362 Claudia Casadio, Mehrnoosh Sadrzadeh

33. Lambek, J.: Type Grammar Meets German Word Order. Theoretical Linguistics
26, 19–30 (2000)

34. Lambek, J.: Type Grammars as Pregroups. Grammars 4(1), 21–39 (2001)
35. Lambek, J.: A computational Algebraic Approach to English Grammar. Syntax

7(2), 128–147 (2004)
36. Lambek, J.: From Word to Sentence: a Pregroup Analysis of the Object Pronoun

Who(m). Journal of Logic, Language and Information 16, 303–323 (2007)
37. Lambek, J.: From Word to Sentence. A Computational Algebraic Approach to

Grammar. Polimetrica, Monza (MI) (2008)
38. Monachesi, P.: A Grammar of Italian Clitics. ITK Dissertation Series, Tilburg

(1995)
39. Morrill, G.: Categorial Grammar. Logical Syntax, Semantics, and Processing. Ox-

ford University Press, Oxford (2010)
40. Moortgat, M.: Categorical Type Logics. In Handbook of Logic and Language, edited

by J. van Benthem and A. ter Meulen, 93–177. Amsterdam: Elsevier (1997)
41. Moortgat, M.: Symmetric Categorial Grammar. J. Philos. Logic 38, 681–710 (2009)
42. Preller, A., Lambek, J.: Free Compact 2-categories. Mathematical Structures for

Computer Sciences 17, 309–340 (2007)
43. Preller, A., Prince, V.: Pregroup Grammars with Linear Parsing of the French Verb

Phrase. In Recent Computational Algebraic Approaches to Morphology and Syntax
edited by C. Casadio and J. Lambek, 53-84. Milan, Polimetrica (2008)

44. Preller, A., Sadrzadeh, M.: Semantic Vector Space and Functional Models for Pre-
group Grammars. Journal of Logic, Language and Information (2011)

45. Sadrzadeh, M.: Pregroup Analysis of Persian Sentences. In Casadio and Lambek
eds., 121–143 (2008)

46. Sadrzadeh, M.: An Adventure into Hungarian Word Order with Cyclic Pregroups.
In AMS-CRM proceedings of Makkai Fest. (2010)

47. Steedman, M.: Dependency and Cordination in the Grammar of Dutch and English.
Language, 61 (3), 523–568 (1985)

48. Stabler, E. P.: Tupled Pregroup Grammars. In Recent Computational Algebraic
Approaches to Morphology and Syntax edited by C. Casadio and J. Lambek, 23–52.
Milan, Polimetrica (2008)

49. Yetter, D. N.: Quantales and (non-Commutative) Linear Logic. Journal of Symbolic
Logic, 55 (1990)

50. Wanner, D.: The Development of Romance Clitic Pronouns. From Latin to Old
Romance. Amsterdam, Mouton de Gruyter (1987)

51. Zwicky, A. M., Pullum, G. K.: Cliticization vs. Inflection: English n’t. Language
59(3), 502-513 (1983)

Cyclic pregroups and natural language: a computational algebraic analysis 363

TERENCE: An Adaptive Learning System for
Reasoning about Stories with Poor Comprehenders

and their Educators

Tania di Mascio1, Rosella Gennari2, and Pierpaolo Vittorini3

1 DIEI – University of L’Aquila – Via G. Gronchi – 67100, L’Aquila, IT.
2 CS Faculty, Free University of Bozen-Bolzano - P.za Domenicani, 3 – 39100 Bolzano, IT.

3 MISP – University of L’Aquila – P.le S. Tommasi, 1 – 67100 Coppito, L’Aquila, IT.

Abstract. Text comprehension skills and strategies develop enormously from
the age of 7-8 until the age of 11, when children advance as independent readers.
Nowadays, more and more young children turn out to be poor (text) compre-
henders: they demonstrate text comprehension difficulties, related to inference-
making skills, despite proficiency in word decoding and other low-level cogni-
tive skills. Though there are several pencil-and-paper reading interventions for
improving inference-making skills on text, and specifically addressed to poor
comprehenders, the design and development of adaptive learning systems for this
purpose are lagging behind. The use of more intelligent adaptive learning systems
to tailor such interventions to poor comprehenders has a tremendous potential.
TERENCE embodies that potential. It is a Collaborative Project funded by the
EC under the ICT Call 5 FP7-ICT-2009-5 (1 October 2010-30 September 2013).
TERENCE will design and develop an intelligent adaptive learning system. In
particular, the system’s smart games will ask children to draw inferences about
events of stories, in Italian and in English. Moreover, the system will allow teach-
ers to choose and custom-tailor the types of stories and games according to the
needs of their learners. The TERENCE consortium involves European experts in
diverse and complementary fields (art and design, computer science, engineering,
linguistics, evidence-based medicine, psychology), and sees the constant involve-
ment of the end-users (poor comprehenders and their educators) from schools in
the UK and in Italy. The paper overviews the TERENCE project.

1 Introduction

Developing the capabilities of children to comprehend written texts is key to their de-
velopment as young adults. From the age of 7-8 until the age of 11, children develop as
independent readers. Nowadays, more and more children in that age range turn out to
be poor (text) comprehenders: they demonstrate difficulties in deep text comprehension,
despite well developed low-level cognitive skills like vocabulary knowledge, e.g., see
[2] for hearing poor comprehenders, and [5] for deaf poor comprehenders. In particular,
several studies experimentally demonstrate that poor comprehenders fail to master the
following reasoning skills in processing written stories:

(s1) coherent use of cohesive devices such as temporal connectives,

(s2) inference-making from different or distant parts of a text, integrating them coher-
ently,

(s3) detection of inconsistencies in texts.

Nowadays, there is clear evidence that such reasoning skills (s1, s2, and s3) are very
likely to be causally implicated in the development of deep text comprehension. In
particular, experiments show that inference-making questions centred around (s1, s2,
and s3), together with adequate visual aids, are pedagogically effective in fostering
deep comprehension of stories, e.g., see [4].

However, finding stories and educational material that are appropriate for poor com-
prehenders is a challenge, and hence educators are left alone in their daily interaction
with poor comprehenders. Most learning material for novice comprehenders is paper
based, and is not easily customisable to the specific requirements of poor comprehen-
ders, e.g., in the types, number or position of temporal connectives. Few systems pro-
mote general reading interventions, but they have high-school or university textbooks
as learning material, instead of stories, and are developed for old children or adults, and
not specifically for poor comprehenders.

TERENCE is a Collaborative Project funded by the EC under the ICT Call 5 FP7-
ICT-2009-5 (1 October 2010-30 September 2013) and aims at designing and developing
an intelligent adaptive learning system (ALS) [1]. The main end-users of the TER-
ENCE ALS are: learners, namely, primary-school poor comprehenders, hearing and
deaf, older than 7-8; educators, namely, primary-school teachers and support teachers,
as well as parents of the TERENCE learners. The learning material (in English and in
Italian) of the TERENCE ALS will be stories adapted to the specific requirements of
poor comprehenders, and its reading interventions will be mainly interactive question-
games centred around reasoning skills, like (s1), (s2), and (s3) above, that foster the
development of deep text comprehension, both accompanied by adequate visual aids.

This paper outlines the TERENCE project and the work already conducted therein.
It first specifies the chosen design methodology in Section 2. Then it outlines the con-
ceptual model of the TERENCE ALS in Section 2. It continues with the design of the
architecture in Section 4 and ends with a recap conclusive section.

2 The Design Methodology

The TERENCE system is developed following the user-centred design (UCD) method-
ology [3]. Generally speaking, the UCD places the end user, actively, at the centre of
the design process, which is iteratively repeated until attaining the usability of the sys-
tem. The iterative process revolves around the following main activities: a) analysis and
specification of the context of use; b) analysis and specification of the user require-
ments; c) design prototypes; d) evaluate the prototypes against the specification of the
requirements. In TERENCE we went through the first phase of the analysis of the con-
text of use and the requirements, which resulted into the semi-formal specification of:

1. the characteristics of the users, like knowledge, skills, experience, education, train-
ing, physical attributes, habits and capabilities;

366 Tania Di Mascio, Rosella Gennari, Pierpaolo Vittorini

2. the tasks, like successful reading interventions by class teachers for improving read-
ing comprehension;

3. the environments, divided into organisational, physical and socio-cultural charac-
teristics that may influence the usage and acceptance of the system.

Our design of the conceptual model of the TERENCE ALS, which is outlined in Sec-
tion 3 below, is based on such specifications and on the study of the state of the art
of conceptual modelling for ALSs. In the UCD, the design evolves cyclically through
refinements of the requirements, thus also the conceptual models of TERENCE will be
updated accordingly. The following section outlines the current conceptual model.

3 The TERENCE Conceptual Model

As mentioned above, TERENCE is developed as an ALS. Its conceptual model in-
cludes:

1. the domain model for the learning material, that are stories and games,
2. the user model for the users, including the educator and learner sub-models,
3. the adaptation model for the adaptation learning process.

In the remainder, for space limitations, we only sketch the design of the domain model,
and of the learner sub-model of the user model.

3.1 The Learner Sub-Model

The study of the state of the art for user modeling in ALSs and the specifications of
the user characteristics, in particular, the poor comprehenders’ reading skills, allowed
the consortium to define the following sub-models of the user model: the learner sub-
model; the educator sub-model; the expert sub-model.

The learner sub-model consists of three parts. The first structures general basic data
about the learner such as name. The second is really specific to TERENCE: it structures
information concerning the reading comprehension skills of poor comprehenders, anal-
ysed and specified in semi-formal format by the TERENCE consortium. By analysing
such skills, the system will be able to adapt, to its learner, its learning material, struc-
tured as in the domain model. The third part of the learner sub-model structures data
about the learner’s interaction with the system.

3.2 The Domain Model

The main learning material of the TERENCE ALS consists in illustrated stories and
games. During the analysis of the requirements and of the context of use of TERENCE,
the tasks of the users were analyses and specified. Their specification allowed us to
structure the learning material as in the domain model. This is divided into the story
and game sub-models.

The story model represents data related to the stories that the learners interact with.
For instance, stories are structured into books, each book has a genre and related avatars.

TERENCE: An Adaptive Learning System for Reasoning about Stories 367

Furthermore, each story is annotated using natural language processing tools. The an-
notations, for instance, provide us with the events of which the story is made, specifying
their actors, location and temporal relations.

Each story has associated games. Preliminary prototypes of the games are being
designed by following assessed interventions for stimulating the reasoning skills on
texts outlined in the introductory section and resulting from our user requirements’
semi-formal analysis. For instance, according to this, poor comprehenders are in need of
inference-making games that pose and solicit questions about relations between events
in the stories, monitoring the learners’ comprehension of the story flow, e.g., “Does the
big eggshell crack before Mummy Duck watches it?”. The game model represents the
data for the TERENCE games, which are divided into smart games and relaxing games.
Smart games are centered around inference-making questions that are built upon the
annotations of the stories. As such, smart games are taxing for poor comprehenders and
need to be paused by relaxing games (e.g., draw your favourite character), which keep
the learners’ attention and motivation alive. More details concerning their generation
and resolution are in the following section.

4 The Architecture of the TERENCE System

The current logical architecture of our ALS is divided into three layers, namely, the data
layer, the application layer, and the interaction layer. The data layer stores, for instance,
the stories and games according to the domain model, and the information specific to
each learner according to the learner model.

The application layer implements the adaptation engine, and the intelligent back-
bone responsible for the feedback on games (e.g., correct or incorrect answers to games).
Finally, the interaction layer contains the users’ interfaces.

The main modules of the adaptation engine of our ALS are a constraint-based auto-
mated reasoner and a natural language processing (NLP) module, consisting of a pro-
cessor for English stories and one for Italian stories, that lay at the core of the adaptation
engine and constitute its intelligent backbone, so to speak. The NLP modules serve pri-
marily to annotate stories with specific XML tags. The tags are used for classifying
stories as in the story sub-model, as well as for generating and giving feedback on the
TERENCE smart games. According to the assessment of the students’ performance on
a class of games, the adaption engine will attempt to guide the students to the most
adequate games and stories, following the adaptation model.

In the specific context of our ALS, tasks will be implemented through web services
and their composition. For instance, let us refer to the generation of a temporal question-
game centred around the question “Does the big eggshell crack before Mummy Duck
watches it?”. The composition will go as follows:

1. firstly, the system invokes an NLP web service operation, which takes the story as
input and returns the annotations in the novel annotation language;

2. secondly, these annotations are taken as input, and an operation of the Automated
Reasoner service deduces further temporal annotations as output, updating them;

3. finally, the updated annotations are taken as input and a further operation of the
NLP web service generates as output the grammatically correct question-game.

368 Tania Di Mascio, Rosella Gennari, Pierpaolo Vittorini

A first clear advantage of such an approach is that it allows for the reuse of our architec-
ture in other languages, by implementing the appropriate NLP services. Furthermore,
since web services are accessible through HTTP calls, they can be invoked directly in
their respective organisations, e.g. for keeping protected any eventual patent. Finally,
the high-level operations might also be implemented with a programming-in-the-large
paradigm, e.g. BPEL, thus allowing for an easy deploy of further operations, that be-
come web services, and therefore re-usable to build up more complex tasks.

5 Conclusions

TERENCE is European project for the design and evaluation of an ALS specific for
poor comprehenders and their educators. More in general, the project aims at offering
innovative usability and evaluation methodologies, pedagogical models, AI technolo-
gies, and an ALS for reasoning about stories through smart games, in Italian and in
English, all developed via a coordinated and cross-disciplinary effort of European ex-
perts in diverse and complementary fields (art and design, computer science, engineer-
ing, linguistics, psychology), and with the constant involvement of the end-users (poor
comprehenders, deaf children and their educators) from schools in the UK and in Italy.

Acknowledgments. The authors’ work was supported by TERENCE project. TER-
ENCE is funded by the European Commission through the Seventh Framework Pro-
gramme for RTD, Strategic Objective ICT-2009.4.2, ICT, Technology-enhanced learn-
ing. The contents of the paper reflects only the authors’ view and the European Com-
mission is not liable for it.

References

1. P. Brusilovsky. Adaptive Hypermedia. User Modeling and User-Adapted Interaction, 11:87–
110, March 2001.

2. K. Cain and J. Oakhill, editors. Children’s Comprehension Problems in Oral and Written
Language: A Cognitive Perspective. Guildford Press, 2007.

3. J. Gulliksen, B. Göransson, I. Boivie, S. Blomkvist, J. Persson, and A. Cajanger. Key Princi-
ples for User-centred Systems Design. 22(6):397–409, 2003.

4. National Reading Panel. Teaching Children to Read: An evidence-based Assessment of the
Scientific Research Literature on Reading and its Implications for Reading Instruction. Tech-
nical report, National Institute of Child Health and Human Development, 2000.

5. P. Spencer and M. Marschark. Evidence-based Practice in educating Deaf and Hard-of-
hearing Students. Oxford University Press, New York, NY, USA, 2010.

TERENCE: An Adaptive Learning System for Reasoning about Stories 369

Nested Weight Constraints in ASP?

Stefania Costantini1 and Andrea Formisano2

1 Università di L’Aquila, Via Vetoio, Loc. Coppito, I-67010 L’Aquila, Italy
stefania.costantini@univaq.it

2 Università di Perugia, via Vanvitelli, 1, I-06123 Perugia, Italy
formis@dmi.unipg.it

Abstract. Weight constraints are a powerful programming construct that has
proved very useful within the Answer Set Programming paradigm. In this pa-
per, we argue that practical Answer Set Programming might take profit from in-
troducing some forms of nested weight constraints. We define such empowered
constraints (that we call “Nested Weight Constraints”) and discuss their seman-
tics and their complexity.

1 Introduction

Answer Set Programming (ASP for short) [8], has evolved over more than two decades
as a paradigm that allows for very elegant solutions to many combinatorial problems:
in fact, ASP has been successfully applied to many forms of knowledge representation
and commonsense reasoning (cf. among others, [1, 7] and the references therein). The
paradigm is based upon describing a problem by a logic program in such a way that its
answer sets correspond to the solutions of the considered problem.

The ASP paradigm has become even more powerful by extending ASP programs by
means of weight constraints [11, 13]. Intuitively, weight constraints allow one to asso-
ciate weights to the literals occurring in specific subsets of a (candidate) model. Then,
bounds can be imposed on the overall weight of each subset. A model is accepted if all
these bounds are satisfied. Cardinality constraints are a special case where all weights
are equal to one. Weight constraints have proved to be a very useful programming tool
in many applications such as planning and configuration. For instance, in the product
configuration domain, we need to express cardinality, cost, and resource constraints,
which are very difficult to capture using logic programs without weights.

Weight constraints are nowadays adopted (in some form) by most of the ASP infer-
ence engines (usually called “ASP solvers”).

All common algorithmic tasks related to programs with weight constraints, such as
checking the consistency of a program (i.e., whether a program admits stable models),
are intractable [5]. Though, as shown in [12], tractability can be achieved by imposing
some restrictions on program structure.

We propose an improved form of constraints that admits nesting of weight con-
straints. Syntactically, nesting allows one to specify a set of weight constraints within a
? Research partially funded by GNCS-2011 and MIUR-PRIN-2008 projects, and grants

2009.010.0336 and 2010.011.0403. We are grateful to the anonymous referees for their helpful
advice and suggestions.

“container” weight constraint. In turn, such “contained” constraints may include other
constraints, and so on. Semantics is given by requiring that the satisfaction of the inter-
nal constraints has to be evaluated with respect to the context defined by the containing
constraints. Hence, the new construct introduces a form of locality in program rules:
two identical weight constraints might be differently evaluated depending on the con-
text in which they occur. We will see that nesting can be introduced without affecting
complexity.

We argue that practical ASP programming might take profit from the introduction of
nested weight constraints. In particular, our proposal is aimed at improving elaboration
tolerance where, [10]:

“A formalism is elaboration tolerant to the extent that it is convenient to modify a set of
facts expressed in the formalism to take into account new phenomena or changed cir-
cumstances. Representations of information in natural language have good elaboration
tolerance when used with human background knowledge. Human-level AI will require
representations with much more elaboration tolerance than those used by present AI
programs, because human-level AI needs to be able to take new phenomena into ac-
count. The simplest kind of elaboration is the addition of new formulas. We’ll call these
additive elaborations. Next comes changing the values of parameters. Adding new argu-
ments to functions and predicates represents more of a change. However, elaborations
not expressible as additions to the object language representation may be treatable as
additions at a meta-level expression of the facts . . . ”

One can say that elaboration tolerance implies the ability to cope with minor changes
to input problems without major revisions. The introduction of constructs involving
forms of locality, as well as modularity, goes in this direction. In what follows, we will
take a sample problem (which is however a representative of a wide class) and we will
show that the formalization in ASP benefits from the use of nested weight constraints.

The paper is structured as follows. In Section 2 we recall the notions of weight
(and cardinality) constraints. Section 3 introduces the enhancements we intend to pro-
pose, for the case of ground programs. In Section 4 we further extend the formalism
by introducing conditional literals [11] and the use of variables to denote collections
of literals. An example is exploited in Section 5 to illustrate nested weight constraints.
The complexity issue is addressed in Section 6. Finally, in Section 7 we conclude.

2 Weight and Cardinality Constraints in ASP

Weight and cardinality constraints were introduced in [11, 13], where their semantics is
also presented, as well as their implementation in the context of the ASP solver smod-
els. Deciding whether a program involving ground weight constraints has an answer
set is still NP-complete, and computing an answer set is still FNP-complete. Though
the computational complexity remains the same, the modeling power of the extended
language is higher, as proved by the wide application of this construct.

In what follows we recall the syntax and semantics of (ground) programs with
weight constraints by abstracting away from any particular concrete syntax. We assume
known the usual notions of constant, predicate, term, atom, literal, etc. Let us consider

372 Stefania Costantini, Andrea Formisano

as fixed an underlying language and consequently let B denote the corresponding Her-
brand base, namely the set of all ground atoms of the given language.

Atoms have the form p(t1, . . . , tk) where p is a predicate symbol and each ti is a
term. For a literal `, let π(`) denote the predicate symbol of ` (e.g., π(p(t1, . . . , tk) =
p). For a set of literals S, let π(S) = {π(`)|` ∈ S}.

A weight literal over is a pair (a, j) or (¬a, j) for a ∈ B and j ∈ N, the weight of
the literal and ¬ denotes default negation.3 A weight constraint is a triple (S, l, u) where
S is a set of weight literals and l ≤ u are non-negative integers, the lower and upper
bound. We will often use the symbol ∞ to denote an arbitrarily large upper bound.
(This will be useful in situations in which the upper bound is not specified.\) Moreover,
as a shorthand notation, we denote by a the weight constraint ({(a, 1)}, 1, 1).

For a given constraint c = (S, l, u), we indicate S with Cl(c), l with l(c) and u
with u(c). A weight constraint where for every weight literal (a, j) and (¬a, j) we have
j = 1 is called a cardinality constraint.

A rule r is a pair (h, b) where h (the head) is a weight constraint and b (the body) is
a set of weight constraints. We indicate h with H(r) and b with B(r).

A (ground) program with weight constraints (for short, PWC) is a set of rules.

Given a weight constraint c and a set of atoms I , we define the weight of c in I as
W (c, I) =

∑
(a,j)∈Cl(c)∧a∈I j +

∑
(¬a,j)∈Cl(c)∧a6∈I j.

A set of atoms I is a model of c (denoted by I |= c) iff l(c) ≤ W (c, I) ≤ u(c).
(Notice that the second inequality always holds if u(c) =∞.)

For a set of weight constraints C, I |= C iff I |= c for all c ∈ C. Moreover, I is a
model of a rule r (denoted by I |= r) iff I |= H(r) whenever it I |= c holds for each
c ∈ B(r). For a set of rules R, I |= R iff I |= r for all r ∈ R.

Stable models of a PWC are obtained by means of an extension to the GL-reduct [1]
that, instead of removing rules where some negative literals in the body are not mod-
eled in a given set of atoms (candidate stable model) I , it removes rules where the
upper bound of some weight constraints in the body are not satisfied. The upper bounds
of constraints are removed and the lower bounds are rearranged in order to eliminate
negative literals. Each rule r is then replaced by a set of rules each of them having as
head one of the positive literals in H(r) which belongs to I . In this manner, a positive
PWC is obtained where the heads of rules are atoms. Finally, I is a stable model if it is
the unique minimal model of this resulting program. Following [13], we have:

Definition 1 (PWC Semantics). Let P be a PWC and let I ⊆ B. The reduct cI of
a constraint c w.r.t. I is obtained from c by removing all negative literals, by setting
the upper bound to be ∞, and by replacing the lower bound with the value l′ =
max

(
0, l(c)−∑(¬a,j)∈Cl(c)∧a6∈I j

)
.

The reduct P I of the program P w.r.t. I is obtained by first removing each rule
whose body contains a constraint c with W (c, I) > u(c). Afterwards, each remaining
rule r is replaced by the set of all rules of the form (h, b), for (h, j) ∈ Cl(H(r)) such
that h ∈ I and b = {cI : c ∈ B(r)}.

3 For the sake of simplicity, in this paper we will deal with non-negative integer weights only.
Generalizations involving negative values, as well as real numbers, are possible [13].

Nested Weight Constraints in ASP 373

The set I is a stable model of P iff it is a model of P I and there exists no J (I
such that J is a model of P I .

3 Nested Weight Constraints

In this section we introduce an extension of ASP where weight constraints can be ar-
bitrarily nested. As we will see, in this extension one can specify within an “external”
weight constraint a collection of “internal” weight constraints. These represent con-
ditions on the satisfiability of the outer constraint. Conversely, the external constraint
affects the interpretation of internal weight literals and defines the local context where
these weights literals have to be evaluated.

Definition 2. A nested weight constraint (NWC) is a tuple (S,N, l, u) where
• S is a finite set of weight literals,
• l ≤ u are two non-negative integers (as before u can be∞),
• N is a (possibly empty) finite collection of nested weight constraints

The definitions of rule and program are given as one expects. We also extend to NWCs
the notation introduced earlier and, moreover, for any given NWC c = (S,N, l, u) we
denote N with N(c). The depth of a given NWC c, denoted by depth(c), is defined as:

depth(c) =
{

1 if N(c) = ∅
1 + maxc′∈N(c) depth(c′) otherwise

The depth of a given program P is the maximum value among the depths of its NWCs.
For the purposes of this paper, it is not restrictive to assume the finiteness of the

Herbrand universe of the underlying language. We will also consider only programs
with finite depth.

The notion of satisfaction for NWCs requires some preliminary definitions. In par-
ticular, let X,Y ⊆ B be two disjoint sets of atoms and c = (S,N, l, u) an NWC. Then,
we define the weight of the constraint c (w.r.t. X,Y) as follows:

W (c,X, Y) =
∑

(a,j)∈S∧a∈X
j +

∑

(¬a,j)∈S∧a∈Y
j (1)

We say that a pair of sets of atoms X,Y satisfies the NWC c = (S,N, l, u), and
write (X,Y) |= c, if the following two conditions hold:

1. l ≤W (c,X, Y) ≤ u;
2. for all c′ ∈ N it holds that (U, V) |= c′, where

U = {a | a ∈ X ∧ π(a) /∈ π(S)} ∪ {a | a ∈ X ∧ a ∈ S}
V = {a | a ∈ Y ∧ π(a) /∈ π(S)} ∪ {a | a ∈ Y ∧ ¬a ∈ S} (2)

Given a set of atoms I we say that I models an NWC c and write I |= c, iff
(I,B \ I) |= c. For a set Q of NWCs we write I |= Q iff I |= c for each c ∈ Q.

Notice that, in absence of nesting, namely, for an NWC c = (S,N, l, u) with
N = ∅, we obtain the notion introduced earlier for weight constraints. If N 6= ∅,
the satisfaction of c also depends on the satisfaction of the NWCs in N . In turn, the

374 Stefania Costantini, Andrea Formisano

satisfaction of each c′ ∈ N has to be evaluated within the context determined by S. In
particular, consider the above definition of satisfaction for an NWC c. The weight of a
nested constraint c′ ∈ N is evaluated by considering only those atoms belonging to the
subsets U ⊆ X and V ⊆ Y (recall that for the overall constraint c we have X = I and
Y = B \ X for a given set of atoms I). In this way, all weight literals in c′ having an
atom in B \ (U ∪ V) are assumed to have null weight. More precisely, in evaluating the
weight of c′ we ignore the weights of all literals ` with π(`) ∈ π(S) not occurring in S.
The same procedure is recursively applied in evaluating the weights of the constraints
c′′ ∈ N(c′), and so on.

Note that, the above definition of satisfaction implicitly exploits, in (2), a partition
of a Herbrand base B. Each block of this partition corresponds to a single predicate
symbol and consists of all the atoms having such leading symbol. Observe that the
approach can be generalized since any partition of B can be used.

As before, a set of atoms I is a model of a rule r (denoted by I |= r) iff I |= H(r)
whenever I |= B(r) holds. Given a program P , I |= P iff I |= r for all r ∈ P .

Now, we adapt the notion of reduct to deal with the nesting of constraints. Given an
NWC c = (S,N, l, u) and a pair of disjoint sets of atoms X,Y , the reduct of c w.r.t.
X,Y is so defined (a denotes an atom):

c(X,Y) =
(
{(a, j)|(a, j) ∈ S}, {d(U,V)|d ∈ N}, max(0, l −∑(¬a,j)∈S∧a∈Y j), ∞

)

where U and V are obtained from X , Y and S as explained earlier (cf., (2) of page 4).
For a set Q of NWCs we denote by Q(X,Y) the set {c(X,Y) | c ∈ Q}.
Given a program with NWCs, the reduct P I of P w.r.t. a set of atoms I is so defined:

P I =
{(
a, (B(r))(I,B\I)

)
| r ∈ P, (a, j) ∈ Cl(H(r)), a ∈ I,
W (c, I,B \ I)) ≤ u(c) for all c ∈ B(r)

} (3)

Notice that each rule r in P I has an head of the form ({(a, 1)}, 1, 1), for some atom a.
Moreover, no negative literal occurs in the body of r. Similarly to the case of ordinary
weight constraints, we introduce an operator TP I defined as follows:

TP I (J) = {a | ∃ r ∈ P I , a = H(r), J |= B(r)} (4)

Proposition 1. Given a program P I and two sets of atoms J1 and J2, if J1 ⊆ J2 then
TP I (J1) ⊆ TP I (J2).

Proof. (Sketch). Let a ∈ TP I (J1). There exists a rule r ∈ P I of the form (a, B(r)
such that J1 |= B(r). Hence, for each NWC c = (S,N, l,∞) ∈ B(r), we have that
l ≤ W (c, J1,B \ J1) and for each c′ ∈ N , (U1, V1) |= c′, with U1 = {a | a ∈
J1 ∧ π(a) /∈ π(S)} ∪ {a | a ∈ J1 ∧ a ∈ S} and V1 = {a | a ∈ (B \ J1) ∧ π(a) /∈
π(S)} ∪ {a | a ∈ (B \ J1) ∧ ¬a ∈ S}. If J1 ⊆ J2, then l ≤ W (c, J2,B \ J2) plainly
follows because there are no negative literals in S. Observe now that U2 = {a | a ∈
J2 ∧π(a) /∈ π(S)}∪ {a | a ∈ J2 ∧ a ∈ S} ⊇ U1 and V2 = {a | a ∈ (B \J2)∧π(a) /∈
π(S)} ∪ {a | a ∈ (B \ J2) ∧ ¬a ∈ S} ⊆ V1. The fact that (U2, V2) |= c′ holds for
each c′ ∈ N can be shown by induction on the maximum depth of nesting in N . In

Nested Weight Constraints in ASP 375

particular, in absence of nesting (namely, if N = ∅) the result is immediate. The proof
of inductive step relies on the fact that no negative literal occurs in N . This allows us to
conclude that J2 |= B(r), hence a ∈ TP I (J2). 2

Given a program P and a set of atoms I , by the previous result, the operator TP I is
monotone and has an unique least fix-point which is obtainable by iterated applications
of TP I starting from the empty set. Let us denote such a fix-point by TP I↑.

We have the following notion of stable model for programs with NWCs.

Definition 3. Given a program with NWCs P , a set I of atoms is a stable model for P
iff I |= P and I = TP I↑

4 Conditional literals and the use of variables

Similarly to the approach of [11], in this section we adapt the treatment described in
Section 3 to deal with conditional literals.

A conditional literal has the form `:s where ` is a weight literal and s is a (possibly
empty) set of atoms. The intended meaning is that the conjunction of the atoms in s
constitutes a precondition for the satisfiability of `. (Empty conditions, i.e., s = ∅, are
trivially satisfied. Conditional literals of the form `:∅ correspond to weight literals as
introduced in Section 3. We will often write ` in place of `:∅.)

All the notions introduced in Section 3 can be easily adapted to deal with conditional
literals. In what follows we outline the main steps of such an adaptation. For the sake
of readability, in doing this we will maintain the same notational conventions. The next
definition is the counterpart of Def. 2:

Definition 4. A nested weight constraint (NWC) is a tuple (S,N, l, u) where
• S is a finite set of conditional literals,
• l ≤ u are two non-negative integers (u can be∞),
• N is a (possibly empty) finite collection of nested weight constraints

Rules and programs are defined as one expects.
The notion of satisfaction for NWCs is slightly complicated w.r.t. the one in Sec-

tion 3. This is so because the initial set of atoms (i.e., the candidate model, Z in the
following) has to be considered in evaluating the preconditions of all conditional liter-
als. Let Z,X, Y ⊆ B be sets of atoms such that X ⊆ Z and Y ⊆ (Z \ B). We define
the weight of the NWC c = (S,N, l, u), w.r.t. Z,X, Y , as follows:

W (c, Z,X, Y) =
∑

(a,j):s∈S∧a∈X∧s⊆Z
j +

∑

(¬a,j):s∈S∧a∈Y ∧s⊆Z
j

We say that a the sets of atoms Z,X, Y satisfy the NWC c = (S,N, l, u), and write
(Z,X, Y) |= c, if the following two conditions hold:

1. l ≤W (c, Z,X, Y) ≤ u;

376 Stefania Costantini, Andrea Formisano

2. for all c′ ∈ N it holds that (Z,U, V) |= c′, where

U = {a | a ∈ X ∧ π(a) /∈ π(S)} ∪ {a | a ∈ X ∧ (a, j):s ∈ S ∧ s ⊆ Z}
V = {a | a ∈ Y ∧ π(a) /∈ π(S)} ∪ {a | a ∈ Y ∧ (¬a, j):s ∈ S ∧ s ⊆ Z} (5)

where, with abuse of notation, we denote by π(S) the set {π(`)|`:s ∈ S}.

Given a set I of atoms, we say that I models an NWC c and write I |= c, iff
(I, I,B \ I) |= c. For a set Q of NWCs we write I |= Q iff I |= c for each c ∈ Q.

Analogously to what seen in Section 3, the satisfaction of each c′ ∈ N has to be
evaluated within the context determined by S. The same recursive scheme outlined in
Section 3 applies here in evaluating the satisfiability of NWCs.

As before, a set I of atoms is a model of a rule r (denoted by I |= r) iff I |= H(r)
whenever I |= B(r) holds. Given a program P , I |= P iff I |= r for all r ∈ P .

In defining the notion of reduct we have to take into account all preconditions
of conditional literals. Let Z,X, Y be sets of atoms. The reduct of an NWC c =
(S,N, l, u), w.r.t. Z,X, Y , is so defined:

c(Z,X,Y) =
(
{(a, j):s | (a, j):s ∈ S}, {d(Z,U,V) | d ∈ N},

max(0, l −∑(¬a,j):s∈S∧a∈Y ∧s⊆Z j), ∞
)

where U and V are obtained from X , Y , Z, and S as explained earlier (cf., (5)).
In analogy with the cases of plain [11, Def. 2] and nested (Section 3) weight con-

straint, given a program P and a set of atoms I , the reduct P I is so defined:

P I =
{(
a, B(I, r, s)

)
| r ∈ P, (a, j):s ∈ Cl(H(r)), {a} ∪ s ⊆ I

W (c, I, I,B \ I)) ≤ u(c) for all c ∈ B(r)
}

where B(I, r, s) denotes the set

B(I, r, s) =
n

c(I,I,B\I) | c ∈ B(r)
o
∪

n
({(b, 1)}, ∅, 1,∞) | b ∈ s

o
∪ (6)[

c∈B(r)

n
({(a, 1)}, ∅, 1,∞) | (¬b, j):r ∈ Cl(c), a ∈ r s.t. b /∈ I, r ⊆ I

o
(7)

The definition of the reduct P I of a program is slightly more involute than the homol-
ogous definition given in Section 3. This is so because each negative literal (¬b, j):r,
with b /∈ I , occurring in an NWC of the body of a rule r, will give its contribution to
the weight of the NWC only if the precondition r holds in I . This requirement must be
reflected in the program P I by adding the set shown in (7). In this manner the body of
the resulting rule will be falsified whenever any of such preconditions is false.

Now, we can define an operator TP I exactly as done in (4). Such an operator is
monotone (an analogous to Proposition 1 can be stated) and has an unique least fix-
point. Def. 3 can be properly generalized to the case of NWCs with conditional literals:

Definition 5. Given a program P with NWCs involving conditional literals, a set of
atoms I is a stable model for P iff I |= P and I = TP I↑

Nested Weight Constraints in ASP 377

Variables can be exploited to denote collections of weight literals. This is done
by admitting non-ground conditional weight literals `:ϕ where ` has, in general,4 the
form (p(X1, . . . , Xn), j) (or the form (¬p(X1, . . . , Xn), j)) and each Xi is a variable
(for n ≥ 0). Similarly, ϕ is a set of not necessarily ground atoms. Let var(ϕ) =
{X1, . . . , Xn, Y1, . . . , Ym} be the set of all the variables occurring in ϕ (for n,m ≥ 0).
The variables X1, . . . , Xn are said to be local to the literal. The variables Y1, . . . , Ym
are said to be global.

Non-ground NWCs, rules, and programs, are then defined as one expects.
Given a program, it is not restrictive to impose that each local variable occurs in a

single conditional literal. We will make this assumption in what follows.
Considering a rule with non-ground NWC, all its global variables should be in-

tended as being universally quantified. The instantiation of a rule is defined as the set of
the ground rules each of them obtainable, first, by grounding all global variables (i.e.,
by uniformly substituting them by ground terms from the Herbrand universe of the un-
derlying language) and then by replacing each non-ground conditional weight literal
with the collection of all its ground instances that are obtainable by grounding the local
variables. Notice that, in a literal such as (a, j) (or (¬a, j)), we admit j to be a (global)
variable. In this manner, each instantiation of this literal may have a different weight,
determined through the grounding process. Analogously, the lower and upper bounds of
an NWC can be expressed using variables, provided that the grounding process suitably
instantiates them to non-negative integers. (In what follows we will adopt this option.)

The instantiation of a program P is defined as the set of all instantiations of rules
in P . Stable models of programs involving variables are easily defined as follows:

Definition 6. Given a (non-ground) program P , a set of ground atoms I is a stable
model for P iff it is a stable model for the instantiation of P .

Concrete syntax. In the following section, we describe a concrete encoding of a run-
ning example. In doing this we resort to the smodels-like notation, for programs, rules,
and literals. In particular, we indicate by p an NWC of the form ({p}, ∅, 1, 1). Also, we
denote a weight constraint

({(a1, wa1), . . . , (a1, wa1), (¬b1, wb1), . . . , (¬bm, wbm)}, l, u)
as l[a1 = wa1 , . . . , an = wan

, not b1 = wb1 , . . . , not bm = wbm
]u and, similarly, an

NWC ({(a1, wa1), . . . , (a1, wa1), (¬b1, wb1), . . . , (¬bm, wbm
)}, {W1, . . . ,Wk}, l, u)

as l[a1 = wa1 , . . . , an = wan
, not b1 = wb1 , . . . , not bm = wbm

| W1, . . . ,Wk]u. In
both cases, we omit u whenever u =∞.
For the special case of cardinality constraints, i.e., when wi = 1 for all i, we adopt
the shorthand notation l {a1, . . . , an, not b1, . . . , not bm}u . Conditional literals of the
form (a, j):{b1, . . . , bk} will be denoted as a : b1, . . . , bk = j. Moreover, in ex-
pressing weights and bounds of constraints we might use variables (intended to be
suitably instantiated by the grounding phase). Finally, we denote a program rule as
W0 :- W1, . . . ,Wn , where the Wis are (nested) weight constraints (for n ≥ 0).

4 Note that, in concrete encodings, constants are admissible in place of (some of) the Xis. For
simplicity, and without loss of generality, we assume that each Xi is a variable.

378 Stefania Costantini, Andrea Formisano

5 A Case-study

To motivate the introduction of NWC into ASP, we resort to a case-study. Our running
example is freely inspired by the Italian Computer Science undergraduate Program,
that we shortly describe here in its basic features. Then, we provide an encoding using
NWCs.

In order to get a bachelor degree in Computer Science, an Italian student is required
to obtain 180 credits. Most of them must be obtained by attending courses and passing
the corresponding exams. The remaining ones can be obtained by means of internships
and a short thesis. There is a certain flexibility, so usually the number of credits that
should be obtained from courses is allowed to vary within a range (say between 153
and 171, in the following encoding; actual ranges vary among different Universities
and tracks). There are different possible choices for the courses to attend, so students
are required to present what is called a “plan of studies”, that must be approved by
a Committee. Some courses must be taken at a certain year, for others there is some
flexibility. For simplicity, we assume that the latter can be taken at any year and we
neglect constraints related to the order in which certain courses should be taken.

Basically, the above (as described up to now) might be summarized by the following
rule that characterizes possible plans of studies. (The atom in_ps(c,j) means that
the course c is inserted into the plan of studies, at year j.)

Min [in_ps(X,Y):course(X,W),course_year(X,Y)} = W] Max :-
credits_bounds(Min,Max).

This knowledge base describes a possible problem instance:

year(1..3). credits_bounds(153,171).
course_desc(programming, comp_science, 12).
course_desc(computer_architectures, comp_science, 6).
course_desc(databases, comp_science, 12).
course_desc(algorithms, comp_science, 12).
course_desc(theoretical_cs, comp_science, 6).
...

course_desc(calculus, mathematics, 6).
course_desc(optimization, mathematics, 6).

course(Course,Creds) :- course_desc(Course,Area,Creds).

where each fact course_desc(c,a,n) specifies that the course c belongs to the
area a (see below) and corresponds to an amount of n credits. Moreover, we might
assume the presence of facts of the form course_year(c,y) specifying, for each
year y, the admissible courses c for that year.

Clearly, this simple encoding does not model all aspects of the problem at hand.
For instance, an aspect which is not represented is that a plan of study cannot include
the same course several times. This can be imposed by adding this NWC (actually a
cardinality constraint):

0 {in_ps(X,Y):in_ps(X,Y1),neq(Y,Y1)} 0.

In our case-study, it is always the case that some mandatory courses must be situated
at a certain course year. To model this requirement we add this NWC to the initial rule:

Nested Weight Constraints in ASP 379

0 {in_ps(X,Y):mandatory(X,Y1),neq(Y,Y1)} 0.

For courses that must be included in the solution, but can be situated at any year, we
add this extra rule to the encoding:

1{in_ps(C,Y):year(Y)}1 :- mandatory_course(C).

The specific instance might specify, for example, this piece of knowledge:

mandatory(programming, 1). mandatory(computer_architectures, 1).
mandatory(algorithms, 2). mandatory(theoretical_cs, 3).
mandatory_course(databases).

Finally, to avoid a student giving too many exams, there is a statement that enforces
at least a minimum number of courses of the first two years to weigh 12 credits each.
Also, courses are allowed to belong to certain scientific areas, namely Computer Sci-
ence, Mathematics, Physics, and other different though related topics (within a list).
However, there are directions stating that every subject should contribute to the plan of
studies for a quota ranging between a minimum and a maximum number of credits.

The next NWCs specify both the number of the 12 credit courses in the first years,
and range of credits that can be allowed to the different areas. Here, the constants
comp_science, mathematics, . . . , identify (through the facts course_desc
listed earlier), the area of each course.

Min12 {in_ps(X,Y):course(X,W),leq(Y,2),eq(W,12)}
L1 [in_ps(X,Y):course_desc(X,comp_science,W),course_year(X,Y)=W] U1
...
Ln [in_ps(X,Y):course_desc(X,mathematics,W),course_year(X,Y)=W] Un

where the variables Min12, L1, U1, . . . , Ln, and Un, (to be instantiated through atoms
in the rule body) express the bounds on the minimum number of courses worth 12
credits in the first two years, and the minimum/maximum amounts of credits in the
different areas.

Summing up, the encoding of our sample problem is as follows (to be joined with
a specific instance specifying, together with the pieces of knowledge seen earlier, the
predicate area_bounds):

Min [in_ps(X,Y):course(X,W),course_year(X,Y)}=W |
0 {in_ps(X,Y):in_ps(X,Y1),neq(Y,Y1)} 0,
0 {in_ps(X,Y):mandatory(X,Y1),neq(Y,Y1)} 0,
Min12 {in_ps(X,Y):course(X,W),leq(Y,2),eq(W,12)},
L1 [in_ps(X,Y):course_desc(X,comp_science,W),course_year(X,Y)=W] U1,

...
Ln [in_ps(X,Y):course_desc(X,mathematics,W),course_year(X,Y)=W] Un

] Max :- credits_bounds(Min,Max), min_12(Min12),
area_bounds(comp_science,L1,U1),

...
area_bounds(mathematics,Ln,Un).

1{in_ps(C,Y):year(Y)}1 :- mandatory_course(C).

380 Stefania Costantini, Andrea Formisano

We hope at this point to have convinced the reader that NWC can easily cope with
aspects that can be relevant in a number of applications. Our case-study, in fact, is a
simple example of a scheduling problem, where this kind of problems are an important
realm of application of ASP. We believe therefore that many kinds of ASP applications
might profit from programming constructs that allow for some degree of nesting. In
other words, we deem it appropriate to introduce some kind of contextual constructs.

6 On the Complexity of Nested Weight Constraints

In [13] it is proved that introducing weight constraints does not affect the complexity of
ASP. That is, for instance, the complexity of the problem of checking whether a program
has a stable model does not depend on the presence of weight constraints. Here, we are
more generally concerned with checking whether a program with NWCs admits stable
models.

In what follows we address the complexity issue for NWC programs by focusing on
the particular case of ground programs containing NWCs of bounded depth, as defined
in Section 3.

Let k-NWC be the class of programs with depth not greater then k, for k ≥ 0. For
k = 2 we have the following proposition.

Proposition 2. Deciding whether a ground 2-NWC program admits stable models is
NP-complete.

Proof. (Sketch) The problem of deciding whether a ground 2-NWC program admits a
stable model is NP-hard. This follows from the NP-completeness of ASP with weight
constraints in absence of nesting [13]. As regards inclusion in NP, this can be verified
by showing that, given a set M of atoms, it can be checked in polynomial time whether
M is a stable model of P . To do this we have to show that: (a) given a rule r ∈ P ,
checking if M |= r takes polynomial time; (b) the reduct PM of the program P has
polynomial size w.r.t. the size of P ; (c) TPM ↑ can be computed in polynomial time.

As regards (a), observe that checking whether M |= c for an NWC c involves the
evaluation of the weight of c (cf., (1)) and the computation of the sets U, V (cf., (2)).
Both the computations can be completed in polynomial time (recall that depth(c) ≤ 2).
Concerning (b), for each rule r in P a linear number of rules is introduced in PM
(cf., (3)). Moreover, for each NWC c occurring in r the computation of the reduct of
c takes polynomial time. Finally, (c) can be shown by observing that the computation
of the set I2 = TPM (I1), for a given I1, can proceed by processing, one-by-one, the
unsatisfied rules whose head is not in I1, and checking the satisfaction of their bodies.
By (b) we conclude that TPM ↑ can be computed in polynomial time. 2

The previous result generalizes to the case of k-NWC programs, for any fixed k.
From this result, it follows that NWCs might be rephrased in plain ASP. As shown

in [13, 6], for weight constraints this can be done at the expense of introducing a (poly-
nomial, but not insignificant\) number of new atoms and rules. Moreover, except for car-
dinality constraints, the translation is quite involved. Therefore, it turns out that weight
constraints are a quite substantial programming construct, rather than simple syntactic

Nested Weight Constraints in ASP 381

sugar. This is of course true also for NWCs. Notice that, how to represent NWCs in
plain ASP is far from easy to understand. Outlining a translation into plain ASP and
evaluating the necessary number of additional atoms and rules is a subject of future
work.

7 Concluding Remarks

In this paper, we have introduced an extension to the weight constraint construct, widely
used in ASP practical programming. We have illustrated by means of a significant ex-
ample the potential usefulness of the extension. We have formally defined the extension
involving arbitrary nesting of weight constraints and provided a semantics for the en-
hanced framework. In the case when the depth of nesting is bounded, we proved that
the new construct does not affect the complexity of ASP.

Much remains to be done. First of all, the complexity issue for NWC programs has
not been completely investigated in the general case (when no bound on the nesting
depth is assumed). Moreover, the proposed construct has not been implemented yet and
no translation in plain ASP has been designed (this, by Proposition 2, at least for the
bounded-depth case, should be achievable). When an implementation will be available,
practical use will help us explore the feasibility of further extensions and generaliza-
tions. Also, we intend to explore the enrichment of weight constraints by means of
complex preferences. In particular, the present work can be easily integrated with the
approach to preference handling devised in [2, 3] and extended to weight constraints in
[4]. In the resulting setting, referring to the above example one might enrich the formu-
lation with student’s preferences, stating for instance with kind of courses are preferred
and in which conditions.

We will have to explore both the usefulness in practical applications of nested-
constraints, as well as their feasibility in cases where both negative weights and circular
definitions are admitted.

From the formal point of view, we intend to extend the method of [6] so as to be
able to extend the concept of strong equivalence to ASP programs with NWC. Strong
equivalence [9] in fact, as widely recognized, provides an important conceptual and
practical tool for program simplification, transformation and optimization. In the case of
NWC programs, the form of locality implicitly present in NWCs might have interesting
consequences. A further issue for future research regards the relation between NWC
and (nested) aggregates.

References

[1] C. Baral. Knowledge representation, reasoning and declarative problem solving. Cam-
bridge University Press, 2003.

[2] S. Costantini and A. Formisano. Conditional preferences in P-RASP. In Proceedings of
LANMR’08, 2008.

[3] S. Costantini and A. Formisano. Modeling preferences and conditional preferences on re-
source consumption and production in ASP. Journal of of Algorithms in Cognition, Infor-
matics and Logic, 64(1), 2009.

382 Stefania Costantini, Andrea Formisano

[4] S. Costantini and A. Formisano. Weight constraints with preferences in ASP. In Proc. of
LPNMR’11, LNCS. Springer, 2011.

[5] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of
logic programming. ACM Computing Surveys, 33\(3\):374–425, 2001.

[6] P. Ferraris and V. Lifschitz. Weight constraints as nested expressions. TPLP, 5:45–74, 2005.
[7] M. Gelfond. Answer sets. In Handbook of Knowledge Representation. Elsevier, 2007.
[8] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In

R. Kowalski and K. Bowen, editors, Proc. of ICLP/SLP’88. The MIT Press, 1988.
[9] V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM TOCL,

2:526–541, 2001.
[10] J. McCarthy. Elaboration tolerance. In Proc. of Commonsense’98, 1998.
[11] I. Niemelä, P. Simons, and T. Soininen. Stable model semantics of weight constraint rules.

In Proc. of LPNMR’99, number 1730 in LNCS, pages 317–331. Springer, 1999.
[12] R. Pichler, S. Rümmele, S. Szeider, and S. Woltran. Tractable answer-set programming

with weight constraints: Bounded treewidth is not enough. In Proc. of KR’10. AAAI Press,
2010.

[13] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable model
semantics. Artificial Intelligence, 138\(1-2\):181–234, 2002.

Nested Weight Constraints in ASP 383

The temporal representation and reasoning

of complex events

Francesco Mele1, Antonio Sorgente1,

1 Istituto di Cibernetica, Consiglio Nazionale delle Ricerche,

Via Campi Flegrei, 34 Pozzuoli(Naples) Italy

{f.mele, a.sorgente}@cib.na.cnr.it

Abstract. This paper introduces a formalization of complex events. In

particular, a formalism is presented to represent intentional and causal events in

narrative contexts, and in their mechanisms of composition. Complex events

have been defined through classes of a formal ontology that has been called the

Ontology of Complex Events (OntoCE). This approach has allowed for the

applications (reuse) of existing axiomatizations belonging to a large repertoire

of temporal reasoning techniques and, the definition of new axiomatizations

presented and discussed in this work. The focus in this work has been placed on

three particular temporal aspects: the analysis of consistency, the discovery of

new temporal relations in a knowledge base of events, and the causal reasoning

in narrative contexts.

1 Introduction

The concept of event has been highly examined and much debated in philosophy

[CAS, DAV] and Artificial Intelligence. In this area, some well-founded formalisms,

like the Event Calculus [MIL], the Situation Calculus [LEV, LIN], and ALAN [BAR,

Gon] have been proposed. Recently, a new point of attention, that regards the concept

of the "complex event" [WIN], has been born (although this name is not explicitly

mentioned by all the research projects that deal with these issues).

This concept emerges, particularly in the context of the Internet, where the broad

set of information in unstructured form, hides a multitude of events that are connected

by relationships extremely difficult to detect, but where one feels that these events are

components of an implicit totality (suggested without being directly expressed).

The particular aim of this research was to build a model and a formalism to

represent three main types of complex events (intentional events, causal events, and

narrative events) and their mechanisms of composition.

The paper introduces a representation of complex events, in which an event is not

only an aggregation of simple events (how it would be in the case of a narrative of

events, consisting of a set of simple events and a set of relationships between those

events). The modeling of narratives that have as components other complex events

has been addressed. For example, casual events are considered such as: (the church of

Santa Chiara was built (e1) for desire (e2) of Roberto D'Angiò) (e0), where e0 is

composed by the events e1 and e2 and could also represent the component of a

narrative. A mechanism for determining the interval in which a complex event

(intensional, narrative or causal) occurs has also been proposed. Such intervals have

been calculated considering the intervals of happening of its component events (e0):

in the example the event e0 has an occurrence interval that is calculated as union of

occurrence intervals of events e1 and e2.

By inserting intentional events, in representation of a narrative, one can not only

annotate or discover causal connections between events, but with appropriate axioms

(eg (e1 cause e2) implies (e1 precedes e2)) one can convert the causal relations into

temporal order relations, thus eliminating the existing deficiencies of connectivity

among the events of a narrative.

A formalism has been constructed to represent the complex events in explicit form,

with the main motivation that such a representation can be used as an ontological

reference for various types of semantic annotations, in particular:

− to aggregate, as complex events, multimedia elements (photos, video or texts

whose contents represent events (historical events, news, cultural events, etc.) in

the same way as proposed in the Event-Centric in [GIU] and [MEL]; and,

− to annotate and aggregate complex events in natural language, starting from

annotations represented by TimeML [PUS03, PUS08] formalism.

An annotation process of natural language texts or media, especially if this is done

through a process of multiple annotation (by more than one operator), can easily

generate some inconsistencies or lack of connections between events in the bases of

annotations. For these reasons, it is necessary to identify inconsistencies and non-

connected events in order to remove such anomalies among the annotated events (see

Fig. 1).

Fig. 1. Phases to control the consistency and connectivity of a narrative

The formalism (OntoCE) that has been defined in this paper is represented by a

formal ontologies, where each entity has been defined as a class of an ontology. This

methodological approach was chosen to facilitate the building of modules

(algorithms) for the discovery of temporal relations, with the objective also, to reuse

existing axiomatizations and facilitate the creation of new ones (some of these

proposals are in this paper).

In this paper the logic programs have been used to represent the events (simple and

complex) and their relations, to analyse the temporal consistency of a complex event,

to discover new temporal relations between events, to apply causal reasoning to

events, and to integrate the latter with axioms of temporal reasoning.

Related work

In recent research [WIN] there are several proposals for representing events. The

basic motivation of this research stands from the claim that events can constitute an

386 Francesco Mele, Antonio Sorgente

excellent framework for aggregating knowledge. The large quantity of data and

(fragmented and unstructured) knowledge on the Internet, makes this research very

attractive. An emerging methodology for representing through events knowledge

distributed on the Internet has been named Event-Centric [WIN]. In this methodology,

an event is a structure of reference that is independent from the metadata of media

that one intends to annotate. An example of the Event-Centric approach, which uses

high-level ontology DOLCE, is the F model [SHE]. In the F model the

methodological choices are motivated by a number of functional and non-functional

requirements.

With respect to the functional requirements, the representation of an event must

have the attribute for the participants. It is also necessary to be able to define

relationships between parts and wholes of an event. It must be possible to define

cause-effect relationships between two events (no matter of the degree of difficulty of

the automatic process discovery), and, finally, it must be possible to represent

correlation relationships between events (two events that have a common cause).

The non-functional requirements of F, instead, include extensibility, formal

precision (axiomatization), modularity, and reusability.

Among the proposed Event-Centric is the one proposed in [GIU]. This

methodology adopts the slogan "Aggregation via Media Events". In this proposal, the

events are the reference structures for aggregating the media. In [GIU] an implicit

model of complex events (without explicit constructs of representation) and a simple

mechanism to determine the "where" a complex event happens, starting from the

"where" of the components’ events, are introduced.

To represent the events, some formalisms were inspired from a model that has its

roots in journalism. This model called "W's and one H" adopts six attributes for the

representation of events: Who, When, Where, What, Why, and How. The project

Eventory [WAN] adopts a model "W's and one H". Eventory has a particular structure

of the "When" attribute, having two references for time: the first referring to the

chronological time of "real events", the second, to the temporal attributes of some

metadata (such as the length of a movie or the time during which a picture must be

shown).

The decision to include the knowledge of the media in the attributes of the events,

violates the constraint that characterizes the Event-Centric models, whereby the

independency between the event representation and that of media is fixed. In fact, in

the case of Eventory, the description contains information about the execution time of

the media.

In this work, in relation to the representation of temporal intervals, the

classification given in [MAJ], where all the possible combinations that exist between

instants or time intervals are shown, when they represent a temporal relationship

between two events, has been taken into consideration.

2 The representation of the events

In this work, an ontology for complex events has been defined: OntoCE. OntoCE has

an abstract superclass (AnythingInTime) common to all entities that happen over

The temporal representation and reasoning of complex events 387

time. Two subclasses are specializations of AnythingInTime: Event, that

represents the class of simple events, and ComplexEvent, that represents the class

of complex events. In Fig. 2 a sketch representation is given.

Fig. 2. The taxonomy of simple and complex events

In Fig.2, in brackets, the attributes that are inherited from their respective

superclasses are reported. Formally, they are represented in Flora21[FLO](this

formalism combines the advantages of conceptual modeling with object-oriented,

owns a declarative syntax, allowing to build complex inferential apparatus in simple

manner):
Event::AnyThingInTime.

ComplexEvent::AnyThingInTime.

AnyThingInTime[

 hasWhen*=>When, hasWhere*=>Where,

 hasParticipants*=>Participant].

Event[hasWhat*=> Action_Property].

ComplexEvent[hasComplexWhat*=> AnyThingInTime,

 hasEventRelations*=>EventRelation].

AnyThingInTime is an abstract class (without instances) which is the superclass

of the concrete classes: Event and ComplexEvent. The latter classes are the key

concepts of the formalism OntoCE. The Event class has the descriptor hasWhat,

which is associated to the class What. Generally, this class describes the action (which

happens over time) that characterizes the event or describes a property that is true in a

specific time interval. The attribute hasComplexWhat is a specific descriptor of

ComplexEvent. The latter also has the attribute hasWhy that describes the causal

relations between events. hasWhy is a relation between two events, so it can only be

the attribute of a complex event. Attributes hasWhen, hasWhere,

hasParticipants, hasWhat (or hasComplexWhat), and hasWhy

correspond to the descriptors with which journalists describe their articles.

1 To make reading simpler, some key constructs of Flora2 language are here reported. X:: Y

(class X is a subclass of class Y), X: Y (X is an instance of class Y), X => Y (X is an

attribute of type Y), X-> Y (Y is the value of X), X *=> Y (as X => Y, but the attribute is

inherited by subclasses). In Flora2, chain of alphanumeric literal, starting with a capital letter

are variables. The symbols ":-", the comma (",") and semicolon (";") have the same

interpretation as the homologue constructs of Prolog language.

388 Francesco Mele, Antonio Sorgente

2.1 Instant and interval representations

The representation of time that has been adopted is mixed and based on points and

time intervals. In OntoCE all temporal entities are represented as classes. Time is the

main class and has several specializations: date or partial dates (DateValue), time

instants or combinations of them with date (TimeValue), symbolic times

(Symbolic), and time intervals (Interval). The definition is as follows:

DateCalendar[

 day*=>Integer, month*=>Integer, year*=>Integer].

DateWeek[week*=>Integer, year*=>Integer].

DateQualitative[value*=>String].

Clock[

 hour*=>Integer,minute*=>Integer,date*=>DateCalendar].

TimeQualitative[value*=>String].

Interval[

 hasBeginTime*=>(DateValue;TimeValue;SymbolicTime),

 hasEndTime*=>(DateValue; TimeValue; SymbolicTime)].

SymbolicHappenInterval[

 sti*=>SymbolicTime,stf*=> SymbolicTime].

2.2 The When class

In OntoCE there is a particular structure, the class When (see Fig. 2), which

describes when an event happens using the effective symbolic interval (ESI) in which

the event happens, and a temporal modality of happening, described by one (or more)

temporal order relations (before, after, during, etc.) between ESI and some temporal

interval of reference (or also another event). These relations have the objective of

anchoring an event on the chronological axis or with another event, through a

temporal order relation. The approach requires, therefore, that when an event (simple

or complex) is created, it automatically generates a type identifier ESI, represented by

two attributes: sti, the (effective) symbolic time in which the event starts (or in

which the property is true), and stf, the time in which the event ends. The choice of

having an effective time when an event happens and a temporal modality of

happening, for it is motivated by the fact that often the effective time in which an

event happens is not known, but one can easily know one or more relations (modality

of happening) for it (after a time tx, dtx before a certain range, etc.). Thus, even if one

does not exactly know the exact value of the start and end/or of an event, one can

annotate (or, automatically discover) relationships with other time intervals, as soon

as they become available. The class When has the following definition:

When[

 hasSymbolicHappenInterval*=>SymbolicHappenInterval,

 hasTemporalMode*=>TemporalRelation].

SymbolicHappenInterval[sti*=> SymbolicTime,

 stf*=> SymbolicTime].

The temporal representation and reasoning of complex events 389

2.3 Simple Events

In OntoCE, the class Event represents simple events. This class inherits the

attributes of the superclass AnyThingInTime and has the attribute hasWhat,

which describes an action that happens or a property that is true in a temporal interval.

Event[hasWhat*=>Action-Property].

The attribute hasWhat has values in the Property_Action domain and

describes exactly what happens (action) or what is true (property) in a temporal

interval.

2.4 Complex events

ComplexEvent is a class defined as a set of events (simple or complex) described

by ComplexWhat slot, and a set of relationships between events described by

hasEventRelations slot. Also, the class is described by the method

hasWhy(AnyThingInThing), a function that given an input event belonging to a

complex event, returns a set of causal relations that are the justification of why the

event occurred.

ComplexEvent[hasComplexWhat{2:*}*=>AnythingInTime,

 hasWhy(AnyThingInThing)*=> CausalRelation,

 hasEventRelations*=>EventRelation].

Complex events are defined by a temporal mode, described by the descriptor

hasWhen, the same attribute used for the description of simple events. Fig. 3 shows

the taxonomy of the complex events of the OntoCE ontology, where the narrative

events, the causal events, the intentional events, and the perceptual events have been

labeled and represented as complex events.

Narrative Events

The complex narrative events (NarrativeEvent) are represented as a set of events

and temporal relations between events. The components of NarrativeEvent are

simple events that describe actions that occur over time, or properties that are true in a

temporal interval, or other complex events such as causal events (CausalEvent) or

intentional events (MentalEvent).

NarrativeEvent, like all subclasses of AnyThingInTime inherits the

attributes When, Where, and Who, and like all the subclasses of ComplexEvent,

inherits the method hasWhy(AnyThingInThing). The characterization of

NarrativeEvent is given by the restriction of the slot hasEventRelations,

which can only have instances of temporal relations as a value.

390 Francesco Mele, Antonio Sorgente

Fig. 3 The taxonomy (subclasses) of complex events.

Mental events

The class MentalEvent represents mental events of an agent (participant at the

event), i.e., beliefs, desires, and intentions that occur over time. These entities allow

for the representation as a causal events such as "The church and monastery of Santa

Chiara was built between 1310 and 1340 for desire of Roberto d'Angiò and Queen

Sancha of Aragon". Mental events are defined, through to the attributes When, What,

Where, and Participants (inherited by AnyThingInTime) by a slot that describes a

relation (MentalRelation) between a mental event and a physical event.

Causal events

The complex event CausalEvent describes events that relate to a cause-effect

relation: the occurrence of an event (event cause) caused the occurrence of another

event (event effect). In OntoCE a classification of causal events has been defined in

accordance with the nature of the events involved, or that is, if the cause-effect

relationship is defined by physical and/or mental events. We report some examples of

the categories:

− “I think it's a good book, I’ll buy it”, and “I would like something hot, I'll take a

cup of tea”, are examples of causal relations of a mental event that causes a

physical event (classified in OntoCE as a causal PhysicalByMentalEvent);

− “He laughed and I thought he was joking” is an example of causal event where a

physical event (perception) caused a mental event (in OntoCE labeled as

MentalEventByPhysical);

− “He bumped the glass with his elbow and broke it”, “It’s raining and the road is

wet” (causal events labeled in OntoCE as PhysicalEventByPhysical); and,

− “I think it's the best team and I think it will win the championship” (causal events

labeled in OntoCE as MentalEventByMental).

Causal events are defined by a causal relationship between events and like all

events subclasses of AnyThingInTime inherit the attributes When, What, Where,

and Participant.

For causal events, a widely shared relation (axiom), that brings together the causal

relations with temporal relations, has been defined:

BeforeEE[Ex, Ey]:- CausalRelation[Ex, Ey]. (1)

The temporal representation and reasoning of complex events 391

If Ex is the cause of Ey, then the event Ex precedes temporally the event Ey.

2.5 The When Attribute of a complex event

For the simple event, the time of happening (hasSymbolicHappenInterval)

defines the temporal interval in which the action occurs, while the time interval of

occurrence of the complex event defines the minimum time interval in which all

events belong to the complex event occurring. Therefore, the occurrence interval of

complex events is not continuous, or that is, not in all temporal subintervals is there

an event that happens. In addition, the temporal mode of a complex event is

represented as the union of the temporal mode of event’s components. It is obvious

that, starting from the all temporal mode, one can define various algorithms that can

determine, for example, the entire period of a complex event or the frequency of a

particular action or category of action, etc.

The descriptor When can be calculated according to the descriptors of the

component events, or it is instantiated interactively. In the latter case the compatibility

checks (defined by constraints), with respect to the attributes When of the components

events, must be run .

Informally, the interval of occurrence of a complex event is made up of the

intervals of occurrence of the events’ components and a set of temporal relations

between these intervals. The rule for determining the minimum time of occurrence of

a complex event, in accordance with the event components is reported. Let Ec be a

complex event (a narrative), then its time of occurrence (defined as an instance of the

class When) is calculated using the following rule:

01. Ec:NarrativeEvent[hasComplexWhat->{E1, E2},

 hasWhen->Wx]:-

02. newId(Ec,E1,E2,Wx),

03. genSymbolicInterval(I,T1,T2),

04. insert{I:SymbolicHappenInterval[sti->T1,stf->T2]},

05. E1:AnythingInTime[hasWhen->W1],

06. E2:AnythingInTime[hasWhen->W2],

07. minimun(W1, W2,Tmin), maximum(W1, W2,Tmax),

08. tm_union(W1,W2,

 [EqualTT[T1,Tmin],EqualTT[T2,Tmax]], Tmx),

09. insert{Wx:When[hasSymbolicHappenInterval->I,

 hasTemporalMode->Tmx]}.

To establish the time of occurrence of the narrative event Ec (01), the rule

generates the structure Wx of the When attribute (02) and defines the symbolic

interval of occurrence of the complex event (03-04). Then, it identifies the time of

occurrence of the component events (05-06), and calculates the minimum and

maximum time of occurrence of these events (07). The minimum and maximum

calculated are correlated with the symbols’ times with relations

EqualTT[T1,Tmin] and EqualTT[T2,Tmax], which together with the

temporal mode of the components (08) define the temporal mode of the complex

event (09).

392 Francesco Mele, Antonio Sorgente

Others rules (not reported here) have been defined that consider the cases where

the minimum and/or maximum of events cannot be determined, for example, because

the annotation of the temporal mode is not complete.

In these cases, to overcome the inability to calculate the minimum and/or

maximum, the rule defines temporal relations between the component events, E1 and

E2, and the occurrence interval I of complex event. The relations are

DuringEI[E1,I] and DuringEI[E2,I], which, together with the temporal

mode pattern of the components, define the temporal mode of the complex event.

Similar rules relating to the When for all types of complex events have been

implemented.

3 Temporal reasoning for complex events

The classes of events that have been defined are appropriate for applying

axiomatizations (expressed in the form of Horn clauses) to temporal reasoning.

However, to apply these algorithms, one must follow a specific methodological

statute that is associated with the ontological approach implemented.

Let Ei be a knowledge base of events, the algorithms (to check consistency and

connectivity, and to discover new temporal relations) are applicable to all events that

are not related to mental events: beliefs, desires and goals. This is because a mental

event can be a component of a narrative, but the events that are among its arguments

should not be involved in the analysis of the consistency and connectivity of a

narrative.

Consider the following example: [during the summer of 2010 a fan (Px) wants

Inter to win the next season (2010-11)]. The mental event of Px belongs to a narrative

like this: 1.[in summer 2010, a fan Px wants Inter to win the league], 2.[in summer

2011, Milan won the championship]. Of course, there is no contradiction between the

two events, because the event "Inter won the league” is something that belongs to the

mind of a person, and does belong to events of real history. However, it is necessary

to ensure a consistency in the set of events believed by a person. It is clear that the

events to which we apply the algorithms to check consistency must belong to

appropriate categories, and it’s believed that this approach (to define events as

classes) is appropriate for this purpose.

3.1 How to check the consistency of events

For consistency checks of temporal relations, axioms of Russell and Kramp [LAM]

(RK) have been adopted, which allows for performance of reasoning about the events

through the relations between the events precev(E1,E2) and overev(E1,E2),

where precev(E1,E2) means that the event E1 precedes the event E2, and

overev(E1,E2) means that the event E1 overlaps event E2.

The RK language, with the primitive precev(E1,E2) and overev(E1,E2), is

not expressive enough to represent the temporal relations in our ontological

representation (DuringEE[E1,E2], StartEE[E1,E2], etc.). In fact, the

The temporal representation and reasoning of complex events 393

relations like DuringEE[E1, E2] cannot be defined only through the primitive

precev and overev, because they also require the conditions between time instants.

For this reason, a core with relations between time instants using the primitive

prect(T1,T2) (the time instant T1 precedes the time instant T2) and

eqt(T1,T2) (the time instant T1 is equal to the time instant T2) has been defined.

Through such primitives all temporal relations of OntoCE (between events, between

events and time instant, etc.) have beeen defined and applied to the consistency

analysis redefining the relations RK. Therefore, a set of axioms have been defined,

that allow one to discover inconsistencies, not in order relations between events, but

in order relations between time instants: prect(T1,T2) and eqt(T1,T2). The

following axioms for the verification of the inconsistencies is provided2:

Fig. 4: Axiom schema and relative implementation for inconsistency checking

Axioms 1-4 define the properties of order relations: the transitivity of relation

prect(T1,T2) and eqt(T1,T2), the reflexivity and symmetry of the relation

eqt(T1,T2). As one can see, axioms 1-7 at the heads of the clauses are negated, so

it is not possbile to implement them through monotonic logic programs and then

through the traditional Horn clauses. For this reason a logic program for the axioms 1-

7, through stable model semantics [GEL] by using the SModels system [SYR], has

been implemented (in section 4 we report a running example of Stable Model

Program of Fig. 4). In addition, there is the axiom:

prect(T1,T2) ∨ prect(T2,T1) ∨ eqt(T1,T2)

which translates the timeline by forcing every time point to have a relation of

precedence or equality with another time. This axiom has not been implemented

because it is not a useful consistency check. The axiom, however, would be useful to

ensure the full connection of the time points of a narrative. For this purpose, an

algorithm (shown in [MEL]) for controlling the connection has been defined. The

definition of temporal relations between events in terms of primitive prect(T1,T2)

and eqt(T1,T2) is shown:

2 In this paper we will use the symbols "!" and "<-" to denote the conjunction and implication

in generic expressions of Horn Clauses, we will use instead the symbols "," and ":-" in the

corresponding expressions Prolog and Flora2.

394 Francesco Mele, Antonio Sorgente

BeforeEE3[E1,E2] <-> dt(E1,T1,T2), dt(E2,T3,T4),

 prect(T2,T3).

AfterEE[E1,E2] <-> BeforeEE[E2,E1].

MeetsEE[E1,E2] <-> dt(E1,T1,T2), dt(E2,T3,T4),

 eqt(T2,T3).

Meet_byEE[E1,E2] <-> MeetsEE[E2,E1].

EqualsEE[E1,E2] <-> dt(E1,T1,T2), dt(E2,T3,T4),

 eqt(T1,T3), eqt(T2,T4).

OverlapsEE[E1,E2] <-> dt(E1,T1,T2), dt(E2,T3,T4),

 prect(T1,T3), prect(T3,T2),

 prect(T2,T4).

Overlapped_byEE[E1,E2] <-> OverlapsEE[E2,E1].

DuringEE[E1,E2] <-> dt(E1,T1,T2), dt(E2,T3,T4),

 prect(T2,T4), prect(T3,T1).

ContainsEE[E1,E2] <-> DuringEE[E2,E1].

StartsEE[E1,E2] <-> dt(E1,T1,T2), dt(E2,T3,T4),

 eqt(T1,T3), prect(T2,T4).

Started_byEE[E1,E2] <-> StartsEE[E2,E1].

FinishesEE[E1,E2] <-> dt(E1,T1,T2), dt(E2,T3,T4),

 eqt(T2,T4), prect(T3,T1).

Finished_byEE[E1,E2] <-> FinishesEE[E2,E1].

dt(E,T1,T2) provides the value of the start time T1 and end time T2 of the

event E. In addition, for each occurrence interval of event E there is the following

relation:

prect(T1, T2) <- dt(E,T1,T2).

Similary, all temporal relations have been defined.

Once the temporal relations through the primitive prect(T1,T2) and

eqt(T1,T2) have been redefined, one can check the inconsistencies of a set of

temporal relations expressed by the relationship between time points, by using the

axioms 1-7.

The program, given a knowledge base defined through the relations between time

points (the input of the program), calculates the stable models, or rather, groups of

consistent sets of relations (satisfying the axioms 1-7). If the program returns more

than one stable model, then the relations are inconsistent.

In addition, among the events causal relation can be annotated and this produces

new temporal relation between events.

Thus, to have a consistency check for all the relations annotated in a narrative, the

temporal relation derived/obtained from the causal relations must be definend through

the relations prect(T1,T2) and eqt(T1,T2). In this way, it is possible to check

3 In order to ease reading (so there is no ambiguity), simplified Flora2 notation, omitting the

names of attributes, i.e., instead of the notation of instances id:ClassName[attr1-

>val1,attr2->val2, ..,attrn->valn], the following notation

id:ClassName[val1,val2,..,valn] has been adopted.

The temporal representation and reasoning of complex events 395

the consistency of a narrative, according to the methodological approach represented

in Fig. 5.

Fig. 5: Transformation of temporal relations in the primitive prect, eqt.

3.2 How to discover new temporal relations between events

Through the formalism defined for the representation of annotations, a new technique

to discover new temporal relations between events has been developed. The

methodology uses the results of the process of the consistency check. The

axiomatization checks the consistency of the annotations and for the same model,

provides all consistent derivations of set relations. Then, once the consistency of

temporal relationships has been evaluated and (under the assumption of consistency)

the only possible stable model (SM) has been identified, the SM can be used to identify

temporal relations between events, using the equivalence relation between the

temporal relations and order relations defined on time points showed in section 3. For

this purpose, a rule for each temporal relation among events (all subclasses of

TemporalRelationEE) has been defined. Each rule tries to find a particular

temporal relationship (before, after, meets, etc.). Each rule has in input two events

(E1 and E2) and the totality of relations between time points (stable model SM). The

rule for finding BeforeEE relations between two events is shown:

1 findRel(E1,E2,SM) :-

2 not BeforeEE[E1,E2],

3 dt(E1,T1,T2), dt(E2,T3,T4),

4 subset({prect(T1,T2),prect(T3,T4),prect(T2,T4)},SM),

5 insert{BeforeEE[E1,E2]}.

In this case, the rule checks if there already exists a BeforeEE relation between

two events E1 and E2 (2), then it reads the end points of occurrence intervals of

events E1 and E2 (3), and verify the existence of conditions to discover a BeforeEE

relation, or rather, if the relations on time points, which describe the condition, are a

subset of the stable SM (4). Finally, the rule asserts the relation discovered in the

knowledge base (5).

The above rules have been defined for all temporal relations between events:

AfterEE[E1,E2], MeetsEE [E1,E2], etc.

396 Francesco Mele, Antonio Sorgente

3.3 Causal reasoning

For causal reasoning, an axiomatization (a variant of axiomatization defined in

[BOC]) has been defined. The axioms that have been expressed (in a simplification of

Flora2, see note 2) are reported as follows:

Id1:CausalRelation[A, B]:- Strengthening

 Id2:BeforeEE[A, B], demo(A,B),

 Id3:CausalRelation[B,C], newId(Id1, Id2, Id3).

Id1:CausalRelation[A, C]:- Weakening

 Id2:CausalRelation[A,B], Id3:BeforeEE[B, C],

 demo(B,C), newId(Id1,Id2,Id3).

Id1:CausalRelation[A,B∧C]:- And

 Id2:CausalRelation[A,B], Id3:CausalRelation[A,C],

 newId(Id1,Id2,Id3).

Id1:CausalRelation[A∨B,C]:- Or

 Id2:CausalRelation[A,C], Id3:CausalRelation[B,C],

 newId(Id1,Id2,Id3).

Id1:CausalRelation[A, C]:- Cut

 Id2:CausalRelation[A,B], Id3:CausalRelation[A∧B,C],

 newId(Id1,Id2,Id3).

Id1:CausalRelation[A∧C,B]:- Left Monotonicity

 Id2:CausalRelation[A, B], C:Event,

 Id3:BeforeEE[C,B], newId(Id1, Id2, Id3).

Id1:CausalRelation[A,B∨C]:- Right Monotonicity

 Id2:CausalRelation[A,B], C:Event,

 Id3:BeforeEE[A,C], newId(Id1, Id2, Id3).

The predicate newId(Id1, Id2, Id3) generates a new id Id1 depending on

Id2 and Id32.

In the axiom Left Monotonicity the condition BeforeEE[C,B] has been included,

because C is an event that cause B, and for this reason, C must precede B; otherwise it

generates a contradiction.

For the axioms of Weakening and Strengthening, the meta-predicate demo(A,B)

(implements the relation "B is deducible from A" [BOC]) have been defined, which

was implemented as a variant of the meta-interpreter [BAT].

The axioms for causal relationships shown above have been defined for the class of

causal events and are applied to all subclasses of that class.

4 An example of the application of the axiomatization for

checking the temporal consistency

In this section, an example of the application of reasoning provided above is

presented. In particular, as an example, a generic consistent narrative (without

specifying in detail the actions of the events) has been defined.

The temporal representation and reasoning of complex events 397

Let e1, e2, e3 and e4 be four events and r1:DuringEI[e1,i1],

r2:AfterET[e3,t2], r3:MeetEE [e1,e2], r4:OverlapsEE[e4,e3],

and r5:BeforeET[e2,t2] be the temporal relations annotated.

t1 and t2 are the endpoints of interval i1; [st1, st2] is the symbolic interval

of occurrence of e1, [st3, st4] is the symbolic interval of occurrence of e2,

[st5, st6] is the symbolic interval of occurrence of e3, [st7, st8] is

symbolic interval of e4.

Before performing the consistency check, the temporal relations were translated

into temporal relations between time points as described in paragraph 3, obtaining the

following: e prect(t1,t2), prect(st1,st2), prect(st3,st4),

prect(st5,st6), prect(st7,st8), prect(st7,st5), prect(st5,st8),

prect(st8,st6), prect(st2,t2), prect(t1,st1), prect(st4,t2),

prect(t2,st5), prect(st2,st3).

In this set of relations the algorithm for checking consistency(paragraph 3) has

been applied. Because the relations are consistent, the program returns to output only

one stable model: stableModelSet([prect(st3,st4), prect(t2,st5),

…, eqt(st3,st2), eqt(st2,st2), eqt(st1,st1), eqt(t2,t2)]).

From this result, new temporal relations through the axioms for discovering new

temporal relations (paragraph 3.2) have been identified, in particular, the rules

identified the temporal relations beforeEE[e1,e3], and beforeEE[e2,e3].

If we add the relation beforeEI[e2,i1], intentionally making the knowledge

base inconsistent, applying the algorithm for the consistency check obtains a more

stable model. This response highlights the presence of inconsistencies.

Conclusions

In this paper a formalism for the representation of complex events has been proposed.

The formalism for the representation of events is based both on time points and

temporal intervals. Associated with this representation, temporal reasoning for

checking the consistency and discovering new temporal relations has been

constructed.

In this approach, unlike [MAN], the phase for checking the consistency is

processed separately from the process for discovering the temporal relations. For this

purpose, the axioms of Russell-Kamp [LAM] have been used to discover

inconsistencies, and then evaluate the possible extensions of temporal relations.

Furthermore, the algorithms must be applied separately, because they relate to

different stages of the process of annotation and its use. Consistency checking is

related to the content resulting from a process of semantic annotation, in which

temporal inconsistencies could arise, while the discovery of temporal relations is a

process that can be activated only after the consistency check.

In this approach, then, the process for checking the consistency of the annotation

and discovering temporal relations have been separated. The motivation for this

choice is so that one can apply different axiomatizations separately and divide

complex problems into simple problems.

398 Francesco Mele, Antonio Sorgente

References

[ALL] J. Allen, Maintaining knowledge about temporal intervals, Communications of the

ACM vol. 26 (11), p. 832-843, 1983.

[BAR] C. Baral, M. Gelfond, A. Provetti, Representing Actions: Laws, Observations and

Hypotheses. J. Log. Program. 31(1-3): 201-243. 1997

[BAT] R. Barták, P. Stepánek, Extendible Meta-Interpreters, in: Journal KYBERNETIKA,

Volume 33, Number 3, pages 291-310. 1977

[CAS] R. Casati, A. Varzi, "Events", The Stanford Encyclopedia of Philosophy (Spring 2010

Edition), E. N. Zalta (ed.),http://plato.stanford.edu/archives/spr2010/entries/events

[DAV] Davidson D., Essay on Actions and Events, New York, Oxford university Pers, 1980

[FLO] FLORA-2: An Object-Oriented Knowledge Base Language http://flora.sourceforge.net/

[GEL] M. Gelfond, Vladimir Lifschitz, The Stable Model Semantics For Logic Programming.

In Proceedings of the Fifth International Conference on Logic Programming, pages

1070-1080, Seattle USA, August 1988.

[GIU] F. Giunchiglia, P. Andrews, G. Trecarichi, and R. Chenu-Abente, Media Aggregation

via Events, Proceedings of the Workshop on Recognising and Tracking Events on the

Web and in Real Life, Athens, Greece. 2010.

[GON] G. Gonzalez, C. Baral, M. Gelfond, Alan: An Action Language For Modelling Non-

Markovian Domains. Studia Logica 79(1): 115-134 (2005)

[LAM] M.V. Lambalgen, F. Hamm. The Proper Treatment of Events. Blackwell, Oxford and

Boston, 2004.

[LEV] Levesque H. J. , Pirri F., Reiter R., Foundations for the Situation Calculus. Electron.

Trans. Artif. Intell. 2: 159-178 (1998)

[LIN] Lin F., Reiter R, Rules as Actions: A Situation Calculus Semantics for Logic Programs.

J. Log. Program. 31(1-3): 299-330 (1997)

[MAJ] J. Ma, Ontological considerations of time, meta-predicates and temporal propositions.

Applied Ontology, vol. 2, pp. 37-66, 2007.

[MAN] I. Mani, B. Wellner, M. Verhagen, and J. Pustejovsky, Three approaches to learning

Tlinks in timeml, Technical Report, 2007.

[MEL] Francesco Mele, Antonio Sorgente, Giuseppe Vettigli, Designing and Building

Multimedia Cultural Stories Using Concepts of Film Theories and Logic Programming.

In Proceedings of Cognitive and Metacognitive Educational Systems (MCES)

symposium. pag 57-63. ISSN 1613-0073 Vol-598. 2010.

[MIL] R., Miller, M. Shanahan, The event-calculus in classical logic – alternative

axiomatizations. In Electronic Transactions on AI 3(1): 77-105. 1999

[PUS03] Pustejovsky, J.; Castaño, J.; Ingria, R.; Saurí, R.; Gaizauskas, R.; Setzer, A; G. Katz,

TimeML: A Specification Language for Temporal and Event Expressions. Netherlands,

Kluwer Academic Publishers. 2003.

[PUS08] J. Pustejovsky, K. Lee, H.B. Harry, B. Boguraev, and N. Ide, Language Resource

Management—Semantic Annotation Framework (SemAF)—Part 1: Time and events,

International Organization, 2008.

[SHO] Shoham, Y. Artificial Intelligence Techniques in Prolog. Morgan Kaufmann Publishers.

[SHE] Scherp, A. Franz, T.Saathoff, C., Staab, S., F--a model of events based on the

foundational ontology dolce+DnS ultralight, Proceedings of the fifth international

conference on Knowledge capture - K-CAP '09

[SYR] T. Syrjänen, Lparse 1.0 User’s Manual, http://www.tcs.hut.fi/Software/smodels/

[WAN] H.S. X. Wang, S. Mamadgi, A.Thekdi, A. Kelliher, Eventory - An Event Based Media

Repository, International Conference on Semantic Computing, 2007, pp. 95-102.

[WIN] T. Winkler, A. Artikis, Y. Kompatsiaris, and P. Milonas, eds., Workshop Recognising

and Tracking Events on the Web and in Real Life, Athens, Greece: 2010.

The temporal representation and reasoning of complex events 399

Solving XCSP problems by using Gecode

Massimo Morara, Jacopo Mauro, and Maurizio Gabbrielli

University of Bologna.
morara | jmauro | gabbri@cs.unibo.it

Abstract. Gecode is one of the most efficient libraries that can be used
for constraint solving. However, using it requires dealing with C++ pro-
gramming details. On the other hand several formats for representing
constraint networks have been proposed. Among them, XCSP has been
proposed as a format based on XML which allows us to represent con-
straints defined either extensionally or intensionally, permits global con-
straints and has been the standard format of the international competi-
tion of constraint satisfaction problems solvers. In this paper we present a
plug-in for solving problems specified in XCSP by exploiting the Gecode
solver. This is done by dynamically translating constraints into Gecode
library calls, thus avoiding the need to interact with C++.

1 Introduction

Constraint Programming [13] has attracted high attention among experts from
many areas because of its potential for solving hard real life problems and be-
cause it is based on a strong theoretical foundation. The success of Constraint
Programming (CP) derives from the fact that on one hand it allows to model a
problem in a simple way and on the other hand it provides an efficient problem
solving algorithms. However, the CP community lacks a standardized represen-
tation of problem instances and this still limits the acceptance of CP by the
business world. One attempt to overcome this problem was taken by the As-
sociation for Constraint Programming with the proposal of Java Specification
Request JSR-331 “Constraint Programming API” [8, 5]. The goal of this spec-
ification is the creation of a powerful API for specifying CP problems. In the
last five years other approaches focusing on more low level languages emerged.
The aim of these approaches is to define a minimal domain dependent language
that supports all the major constraint features and requires, at the same time, a
minimal implementation effort to be supported by constraint solvers. Two lan-
guages following this goal are worth mentioning: FlatZinc [9] and XCSP [12].
The former was originally created to be the target language into which a higher
level CSP instance (e.g. a CSP modeled with MiniZinc [11]) is translated. Today
FlatZinc is also used as a low level “lingua franca” for solver evaluation and test-
ing. For instance, since 2008 FlatZinc has been used in the MiniZinc Challenge
[7, 14], a competition where different solvers are compared by using a benchmark
of MiniZinc instances that are compiled into FlatZinc.

XCSP is a language structurally very similar to FlatZinc. XCSP was defined
with the purpose of being a unique constraint model that could be used by all

the CP solvers. It was first proposed in 2005 for the solvers competing in the
International CSP Solver Competition [1], and has then been used in other con-
texts and extended. In this paper, we focus on XCSP. In particular, we consider
its current version, i.e. XCSP version 2.1.

The need of a standard is also caused by the huge number and diversity
of solvers. Today only few solvers support natively FlatZinc or XCSP. Unfortu-
nately, Gecode [3], one of the most well known and used solvers, support FlatZinc
only. For this reason we have created x4g, a plug-in that allows us to solve prob-
lems defined in XCSP by using the Gecode solver. The goal of x4g is twofold.
Firstly, we want to exploit Gecode for solving problems that are specified in
XCSP without considering low level implementation details or writing a single
line of code in C++. Secondly, we want to provide a tool that can be used to
evaluate the performances of the Gecode solver with respect to the other entries
of the International Solver Competition. This could be very interesting since,
to the best of our knowledge, the benchmark used in the International Solver
Competition is the biggest available to the CP community.1

In the reset of this paper, we present in Section 2 a brief overview of the
XCSP language and of the Gecode solver. In Section 3 we describe the idea
behind the x4g plug-in. Section 4 concludes by mentioning some directions for
future works.

2 Background

An extensive presentation of the XCSP format and the Gecode solver is beyond
the scope of this paper. Here we just give a short overview of XCSP and Gecode.

2.1 XCSP

XSCP is an extended format to represent constraint networks using XML. The
Extensible Markup Language (XML) is a simple and flexible text format playing
an increasingly important role in the exchange of a wide variety of data on the
Web. The objective of the XML representation (in XCSP) is to ease the effort
required to test and compare different algorithms by providing a common testbed
of constraint satisfaction instances. The proposed representation is low-level: for
each instance the domains, variables, relations (if any), predicates (if any) and
constraints are exhaustively defined. No control flow constructs like“for” cycles
or “if then else” statements can be used.

Roughly speaking, there exist two variants of this format: a fully-tagged
representation and an abridged representation. The first one is a full XML,
completely structured representation which is suitable for using generic XML
tools but is quite verbose and tedious to use for a human being. The second
representation is just a shorthand notation of the first one and it is easier to
read and to write for a human being, but less suitable for generic XML tools.
1 The MiniZinc Challenge has a smaller benchmark of instances and fewer participants

than the International Solver Competition.

402 Massimo Morara, Jacopo Mauro, Maurizio Gabbrielli

As an example of an XCSP program consider the following one where the
well known “all different” constraint is applied to two variables A1 and A2 which
can assume values only in the domain [1, 2].

<domains nbDomains="1">
<domain name="d0" nbValues="2">1..2</domain>

</domains>
<variables nbVariables="2">
<variable name="A1" domain="d0"/>
<variable name="A2" domain="d0"/>

</variables>
<constraint name="c0" arity="2"

scope="A1 A2"
reference="global:alldifferent"/>

2.2 Gecode

Gecode (Generic Constraint Development Environment) provides a constraint
solver with state-of-the-art performance while being modular and extensible. It
supports the programming of new propagators, branching strategies, and search
engines. New domains can be programmed at the same level of efficiency as
finite domain and integer set variables that are already predefined. Furthermore
Gecode is distributed under a very permissive license, it is portable and well
documented, and comes with a complete tutorial. All these features have made
Gecode one of the preferred choices for solving CSPs.

Gecode is written in C++ and supports the FlatZinc format through an
external plug-in that is able to parse a FlatZinc instance and solve it using
Gecode library calls. The use of this plug-in allowed Gecode to participate to
the 2010 MiniZinc challenge [7], where it won all the tracks of the competition.

3 x4g

In principle the translation of XCSP instances into Gecode is similar to the task
performed by the Gecode/FlatZinc plug-in [2] that parses a FlatZinc instance
and produces an internal data structure (Gecode Space Object) that can be later
used to retrieve the solution of the CSP problem.

To use Gecode in order to solve CSPs defined in XCSP, one could try im-
plement a XCSP to FlatZinc compiler. However, in order to avoid potential loss
of information, to be more flexible and less dependent on the Gecode/FlatZinc
plug-in, we chose to provide a direct translation from XCSP into Gecode. Hence
we have developed x4g; a plug-in that parses an XCSP instance and, for ev-
ery constraint defined within the XCSP file, generates an equivalent number of
Gecode constraints. When all the XCSP constraints are translated into Gecode
constraints, a Gecode Space Object is returned. This object can later be used to

Solving XCSP problems by using Gecode 403

get a solution to the CSP problem by using one of the many predefined search
strategies provided by Gecode or local search strategies following [10].2

To develop the x4g plug-in we used the XCSP parser provided by the In-
ternational CSP competition organizers. This parser, developed in particular
to support the abridged notation, is written in C++ by using the well known
libxml2 libraries [6]. Unfortunately, the parser supports only a limited number
of global constraints. Therefore, we modified it in order to support additional
ones.

The XCSP format is mainly used to specify CSPs but it also supports ex-
tensions to define weighted constraints or quantifiers over constraints. x4g was
designed to target only CSPs, hence it does not support these additional features.

XCSP supports only finite domains. Since Gecode supports finite domains
too, the domain encoding from XCSP to Gecode was straightforward. XCSP
provides a construct which allows one to define relations over variables. These
could be seen as constraints listing all the admissible values that some variables
can take. XCSP relations are mapped into Gecode by using extensional con-
straints. In XSCP the semantics of a relation can also be given by stating all
the non admissible values of the variables (i.e. conflicts between variables). We
used inequality constraints for translating these relations into Gecode. Another
construct of XCSP is predicate, a boolean parametric expression that is con-
sidered satisfied if and only if it evaluates to true. The number of parameters
in a predicate is fixed and, differently from relations, predicates allow integer
parameters. The mapping of the predicates was also straightforward because,
with only few exceptions, Gecode has for every predicate an API for posting an
equivalent constraint. As far as global constraints are concerned, XCSP supports
the majority of the global constraints defined in the Global Constraint Catalog
[4]. Since in this catalog there are hundreds of global constraints, a full XCSP
support means to provide an encoding for a huge number of global constraints.
This was out of the scope of the project, we have just chosen to support a
subset of the most used global constraints. Currently x4g supports the following
global constraints: alldifferent, among, atleast, atmost, cumulative, diffn,
disjunctive, element, global cardinality, lex less, lex lesseq,
not all equal, weightedSum.3

Finally, to give an example of how x4g could be used, we developed a program
that takes as input a XCSP instance and, by using x4g, allows us to find a
solution by using the deep first strategy natively implemented in Gecode. Since
the output of this program follows the output rules of the International Solver
Competition, it could be used to let Gecode enter the next International CSP
Competition.

2 Note that the XCSP format specifies only the constraints, the choice of the search
strategy is left to the user.

3 For a precise definition of these constraints see [4].

404 Massimo Morara, Jacopo Mauro, Maurizio Gabbrielli

4 Conclusion and Future Work

In this paper we described x4g, a plug-in that allows the use of Gecode for
solving a CSP instance defined using the XCSP format. The source code of x4g
and of the above mentioned program can be found at http://www.cs.unibo.
it/~jmauro/cilc_2011.html.

This work has to be considered as a first step in the direction of providing a
full translation of XCSP constraints into Gecode constraints. As a future work,
we would like to support more global constraints and to define efficient ways of
decomposing them by using Gecode constraints. We also would like to extend
our tool in order to use Gecode for solving the optimization problems that can
be defined in XCSP exploiting weighted constraints.

Moreover, we are interested in the development of a FlatZinc/XCSP conveyer
that will allow us to add FlatZinc instances into the benchmarks that could be
used for comparing Gecode with other constraint solvers. Furthermore, with
such a converter it could be also possible to compare the efficiency of our x4g
translation with the one of the Gecode/FlatZinc plug-in.

References

1. Fourth International CSP Solver Competition website: http://www.cril.

univ-artois.fr/CPAI09/.
2. Gecode/FlatZinc plugin website: http://www.gecode.org/flatzinc.html.
3. Generic constraint development environment website: http://www.gecode.org/.
4. Global Constraint Catalog website: http://www.emn.fr/x-info/sdemasse/gccat.
5. JSR 331: Constraint Programming API website: http://jcp.org/en/jsr/

summary?id=331.
6. libxml2 libraries. Available at: http://xmlsoft.org/.
7. MiniZinc Challenge 2011 website: http://www.g12.csse.unimelb.edu.au/

minizinc/challenge2011/challenge.html.
8. Standardization of Constraint Programming website: http://4c110.ucc.ie/

cpstandards/.
9. Ralph Becket. Specification of FlatZinc. version 1.3. Available at http://www.

g12.csse.unimelb.edu.au/minizinc/downloads/doc-1.3/flatzinc-spec.pdf.
10. Raffaele Cipriano, Luca Di Gaspero, and Agostino Dovier. A Hybrid Solver for

Large Neighborhood Search: Mixing Gecode and EasyLocal++. In Hybrid Meta-
heuristics, pages 141–155, 2009.

11. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a Standard CP Modelling Language.
In CP Proceeding, pages 529–543, 2007.

12. Organising Committee of the Third International Competition of CSP Solvers.
XML Representation of Constraint Networks Format XCSP 2.1, 2009. Available
at http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf.

13. Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming. Elsevier, 2006.

14. Peter J. Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the MiniZinc
challenge. Constraints, 15(3):307–316, 2010.

Solving XCSP problems by using Gecode 405

Formalization and Automated reasoning about a
Complex Signalling Network

Annamaria Basile1, Maria Rosa Felice2, Alessandro Provetti1

1 Dept. of Physics - Informatics section, Univ. of Messina. Messina, Italy.
2 Dept. of Life Sciencies, Univ. of Messina. Messina, Italy.

Abstract. Tran and Baral have proposed an action language (BioSigNet-RR)
that is specific for the modeling of signalling networks from Biology and for
answering queries relative to the expected response to a stimulus. Translation
of their action language to logic programs under Answer Set semantics yields
a reasoning mechanisms that gracefully handles incomplete/partial information,
updates etc. Those features are extremely important since existing regulatory net-
works often contain missing or suspected interaction links, or proven interactions
whose outputs are uncertain. We present our application experience in devel-
oping a BioSigNet-RR formalization of the Signalling network for Arabidopsis
Brassinosteroid, a complex interaction that is at the base of growth in some plant
species. Such modeling exercise has involved ’filling the gaps’ between the terse
graphical language of signalling networks literature and the precise specification
of the triggering conditions required by BioSigNet-RR. This application experi-
ence leads us to propose a new formalization style for action theories represent-
ing signaling networks that allows for the description of non-immediate effects of
actions. Empirical evaluation of our declarative model has involved formulating
and testing several ’what if’ queries and checking the quality of the answer with
domain experts.

1 Introduction

In Biology, signalling networks (also referred to as signalling pathways) are specific
collections of interactions with a common theme. They are used to provide a summary,
working model of the complex interactions that explain how a living cell receives and
responds to signals from its environment. Modeling signalling networks is sometimes
essential for understanding how cells function and it may lead to effective therapeutic
strategies that correct or alter abnormal cell behaviors.

From the point of view of Artificial Intelligence signalling networks represent an
interesting form of semi-formal knowledge representation: relevant cellular interactions
are to be explicitly described, in a simple graphical language. However, two main issues
make modeling signalling networks with action languages challenging:

1. inhibition, which we see as a special form of constraint, needs to be explicitly
represented and reasoned about,

2. several unspoken assumptions lie in the background as they are assumed to be
known by the (expert) reader. For instance, the time element, i.e., a description
of the delay between stimulus and reaction, is not explicitly represented yet it is an
essential element in reasoning about the long-term evolution of the cell.

This extended abstract reports the results of our work on formalization and auto-
mated reasoning with a signalling network that is considered3representative of the size,
level of detail and complexity of such networks in the Biology literature. The chosen
pathway, which is depicted in Figure 1, represents the current knowledge on the interac-
tion that makes the arabdiposis of Brassinosteroids (represented by the lone diamond-
shaped node in the pathway) stimulate growth in plants.

Fig. 1. Signalling network for BR, from the Web site of Science Signaling.

Chory et al. [3] presents the pathway and comments in detail each interaction; at
this level, we can identify each arc with one relevant interaction. The nodes of the
pathway represents disparate physical elements: extra-cellular signals, receptors on the
cell’s surface or intracellular elements able to trasduce signals to the nucleus. Color ans
shape of each node guide the expert reader on the actual nature of the element being
represented.

From the point of view of knowledge representation and reasoning, the following
scientific hypotheses motivate our work.

First, there is a question about the adequacy of BioSigNet-RR [2,8] to support the
formalization and reasoning about this specific signalling pathway. As we will see, some
specific aspect of the cellular organization is not easily described in terms of BioSigNet-
RR primitives.

Second, there is a question of adequacy of our action languages with respect to
reasoning about pathway interactions. We consider the following informal test: can we
apply BioSigNet-RR to formalize the type of ’what if’ questions that an examiner would
ask to check a student’s assimilation of the material. Hence, we proceed to formulate
some easy sample questions and see how the query language part of BioSigNet-RR
allows to formulate it.

3 Paccanaro and Bogre, personal communications.

408 Annamaria Basile, Maria Rosa Felice, Alessandro Provetti

Finally, our overall hypothesis is that, in the middle term, we should be able to
design and implement a vertical solution by which the domain knowledge synthesized
in a signalling pathway can be accessed and reasoned about automatically.

2 The representation language

Our modeling effort has adopted the BioSigNet-RR [2,8] language as it now considered
the language of reference for reasoning about actions in the Biological domain. Essen-
tially, BioSigNet-RR is an extension of the family of action languages developed by
Gelfond and Lifschitz in the 90s; we refer the interested reader to [7] for a survey of the
approach. Gelfond and Lifschitz proposed a sorted language, where sorts are actions
and fluents, where primitives are the well-known initially and causes statements. A set
of those statements is called an action theory. State is defined in terms of a set of fluents
that are deemed true thereof. A declarative semantics is assigned to action theories in
terms of trajectories, i.e., an iteration throughout states that the domain in undergoing.
At the same time, action languages receive a semantics thanks to translation of action
statements to logic programs under answer set semantics [6,1].

When the initial situation is only partially defined, or actions are unknown or even
may have non-deterministic effects, alternative answer sets account for the alternative
evolutions of the domain. The translation from action languages, including BioSigNet-
RR, to logic programs is modular, in the sense that it can be done line-by-line by a
parser and generator. The translation, which is described in detail in [] has been adopted
as is and implemented by a Python-language program derived from Gregory Gelfond’s
Al2ASP project [4] (see [5] for another application project on the same guidelines).

3 Formalizing the Background knowledge

Signalling pathways are a graphical, synthetic representation of knowledge. However,
to fully grasp the dynamics represented by the pathway one often needs to read atten-
tively a natural-language background description that comes with the network.

In our project we have spent a great amount of time to understand and organize the
background description of the Arabidopsis Brassinosteroid process given by Chory et
al. [3]. The following phrases have been singled out and analyzed separately.

1. In the absence of steroid, BKI1, a plasma membrane-associated protein, interacts
directly with the kinase domain of BRI1 to negatively regulate the signalling path-
way

2. Binding of BRs to preformed BRI1 homo-oligomers leads to the dissociation of
BKI1 from the plasma membrane.

3. It has been proposed that the physical interaction between BRI1 and BAK1 leads
to the formation of a signalling-competent hetero-oligomer.

4. The signals transmitted from the plasma membrane-localized BRI1-BAK1 hetero-
oligomer negatively regulate the activity of a glycogen synthase kinase 3 (GSK-3),
called BIN2.

Formalization and Automated reasoning about a Complex Signalling Network 409

5. Although the mechanism is as of yet uncharacterized, inactivation of BIN2 leads
to the dephosphorylation of BES1 and BZR1, members of a new family of plant-
specific transcription factors.

6. BES1, and likely other family members, are further dephosphorylated through the
activity of a nuclear-localized, kelch-containing protein phosphatase BSU1.

7. Current data suggest that dephosphorylated BES1 is then able to form homo or
heterodimers with the basic helix -loop-helix (bHLH) transcription factor BIM1, to
bind to E-box elements in the promoters of BR-regulated genes.

8. Dephosphorylated BZR1 binds to a novel element in the promoters of BR biosyn-
thetic genes to repress their expression.

9. Because BES1 is identical to BZR1, it is expected that BES1 and BZR1 will have
both activating and repressing activities.

10. Other proteins have been identified that interact genetically or physically with
BRI1, but their precise functions are currently unknown.

11. In vitro and in vivo, BRI1 associates with TTL, transthyretin-like protein.
12. Overexpression of TTL causes slight dwarfing, suggesting that it may play a nega-

tive role early in the BR signalling pathway.
13. A suppressor screen using a weak allele of bri1 identified a secreted and active

carboxypeptidase, called BRS1, although its molecular target in the BR signalling
pathway is unknown.

14. Biochemical studies identified TRIP-1 as a BRI1 interactor; however, the knock-
down in expression of TRIP family members yields a pleiotropic phenotype that is
slightly reminiscent of those observed for BR biosynthetic or signalling mutants.

It relatively easy to associate each phrase to one of the arcs represented by the
signalling pathway. Such association, however, is not always straightforward and will
be further commented upon.

It must be pointed out that in our analysis we have discovered that the interaction
which is represented by arc:

BR1
+/−
=⇒ BAK1

is not found in the pathway depicted in Chory et al. [3], from where our work started,
but is in Figure 1, which was later found on the Web site of the Science Signaling4

journal.

3.1 Formalization of the Signalling Pathway for BR

The formalization of the pathway proceeds as follows. For each named cellular com-
ponent, e.g., BR, we introduce two fluents5: high(br) e low(br). Then, we introduce
two activation actions: activate(br) and inactivate(br), where the latter is an inhibition
action that, in some sense, depresses BR.

4 http://www.sciencemag.org
5 The labels used in the signalling pathway are in lowercase, since they are constant names in

the domain description.

410 Annamaria Basile, Maria Rosa Felice, Alessandro Provetti

Next, the remaining arcs are formalized, by coupling each arc to the illustrative
phrase found in the description. For instance, the arc connecting BRI1 to BAK1 is
connected to the phrase:

“BRI1 interacts directly with BAK1 [through a phosphorylation process].”

activate(bak1) causes up(bri1) (1)

“BKI1 interacts directly with the kinase domain of BRI1 to negatively regulate the
signalling pathway.”

high(bki1) inhibits activate(bri1) (2)

“Binding of BR to preformed BRI1 homo-oligomers lead to the dissociation of
BKI1 from the plasma membrane.”

binding(br, bki1) causes dissociated(bki1) if high(bri1) (3)

Even though it looks like the description of a local, direct interaction, this formalization
may be the most effective in capturing the rationale of the pathway. An alternative
formulation, which has hitherto not been tested is the following:

high(br) high(bri1) triggers dissociated(bki1)

“A suppressor screen using a weak allele of BRI1 identified a secreted and active
carboxypeptidase, called BRS1, although its molecular target in the BR signaling path-
way is unknown. It has been proposed that the physical interaction between BRI1 and
BRS1 leads to the formation of a signaling-competent hetero-oligomer.”

high(brs1) triggers activate(bri1) (4)

“In vitro and in vivo, BRI1 associates with TTL, transthyretin-like protein. Over-
expression of TTL causes slight dwarfing, suggesting that it may play a negative role
early in the BR signaling pathway.”

high(bri1) triggers downregulate(ttl) (5)

“Biochemical studies identified TRIP-1 as a BRI1 interactor.”

high(bri1) triggers activate(trip1) (6)

“The signals transmitted from the plasma membrane-localized BRI1-BAK1 hetero-
oligomer negatively regulate the activity of a glycogen synthase kinase 3 (GSK-3),
called BIN2.”

high(bri1), high(bak1) inhibits activate(bin2) (7)

“Although the mechanism is as yet uncharacterized, inactivation of BIN2 leads to
the dephosphorylation of BES1 and BZR1, members of a new family of plant-specific
transcription factors.”

inactivate(bin2) causes low(bzr1) (8)

Formalization and Automated reasoning about a Complex Signalling Network 411

inactivate(bin2) causes low(bes1) (9)

“Dephosphorylated BZR1 binds to a novel element in the promoters of BR biosyn-
thetic genes to repress their expression.”

high(bzr1) triggers activate(br) (10)

“Current data suggest that dephosphorylated BES1 is then able to form homo-or
hetero-dimers with the basic helix-loop-helix (bHLH) transcription factor BIM1, to
bind to E-box elements in the promoters of br-regulated genes.”

high(bes1) triggers activate(bim1) (11)

high(bsu1) triggers activate(bes1) (12)

low(bsu1) inhibits activate(bes1) (13)

high(bri1) triggers activate(bsu1) (14)

high(serk1) triggers activate(bri1) (15)

It should be noticed again that in Chory et al. [3] the textual description seems not
aligned to the graphics of the pathway. As a result, we tentatively interpret the inhibition
from BRI1 to BIN2 with:

high(bri1) inhibits (bin2) (16)

3.2 Connecting actions to fluents

For each fluent we have had to introduce a couple of actions that represent the upregula-
tion and downregulation of the fluent itself. Hence, we need to introduce the following
two schematic rules, to be instantiated to each fluent:

activate(C) causes high(C) (17)

downregulate(C) causes low(C) (18)

In a sense, these axiom schemata naturally complement the action theory by capturing
the essence of the +/− labeling of the arcs. However, they introduce an extra level
of complexity in the representation, since new conditions must be devised to disallow
these definitions for specific values of C, e.g., activate(bak1), that do not have a direct
Biological interpretation.

412 Annamaria Basile, Maria Rosa Felice, Alessandro Provetti

4 Query Formulation and informal validation of the model

To assess the adequacy of the representation language and of our specific action theory
we have considered the following classroom scenario: questions about the Arabdiposis
brassinosteroid process that a teacher would use to check whether her students have
properly learn the material and are now able to reason about Brassinosteroids and their
effects. Such questions were formulated with the goal of stressing the connections be-
tween the several cellular components of the cell.
To illustrate how natural BioSigNet-RR queries are, we now list, for each question, the
expected answer in English, paired with BioSigNet-RR that captures, to some extent,
the question itself.

Q: Looking at the pathway, how does BR affect the cell?
A: BR causes the activation of BRI1 and BAK1, which, in turn, inhibit the activation

of BIN2.

Our formalization is based on three distinct queries:

?− high(bri1) after activate(br) (19)

?− high(bak1) after activate(br) (20)

?− low(bin2) after activate(br) (21)

Q: What are the effects of activation of BAK1?
A: BAK1 brings about activation of BR1 ; subsequently, BR1 shall affect the whole

cell network.

This question can be translated directly in the following formula (query):

?− high(bri1) after activate(bak1) (22)

Q: What are the effects of inactivation of BIN2?
A: inactivation of BIN2 shall cause the inhibition of BZR1 and BES1.

Again, me must resort to two separated queries:

?− low(bzr1) after activate(bin2) (23)

?− low(bes1) after activate(bin2) (24)

Formalization and Automated reasoning about a Complex Signalling Network 413

5 Conclusions

The formalization and deployment project described in this article can be considered
successful from the point of view of assessing what can be done with action languages
(and Logic Programming in general) in the context of Biological knowledge represen-
tation and automated reasoning. The overall Artificial intelligence goal, i.e. to have
computers process the meaning synthesized in a signalling pathway without human in-
tervention, is yet to be achieved, as our formalization had to deal with a time-consuming
human analysis of the accompanying textual explanation, often a heavy-going technical
explanation.

BioSigNet-RR has shown to be an ideal platform for formalization in this domain.
However, we believe that more research is needed in order to have the action theory
match the pathway. One problem that was, in our opinion, only partially solved here is
that action is understood in two ways. The first understanding, which is probably what
Gelfond-Lifschitz meant, is that of external intervention, i.e., alteration of the state of
affairs. The second understanding, which we suspect is more frequent in Biology, is
that an action may also be an alteration, called upregulation or downregulation, of a
component of the cell. For this second understanding, a specific action sort should be
devised and introduced to the formalization language.

Acknowledgments

We are grateful to Alberto Paccanaro and Laszlo Bogre at Royal Holloway, University
of London for providing us careful advice and guidance in the Biological and Bioinfor-
matics aspects of this work. Many thanks to Gregory Gelfond for providing us constant
advice and support on our work to extend his AL2ASP program.

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press (2003)

2. Baral, C., Chancellor, K., Tran, N., Joy, A.M., Berens, M.E.: A knowledge based approach
for representing and reasoning about signalling networks. In: ISMB/ECCB (Supplement of
Bioinformatics). pp. 15–22 (2004)

3. Chory, J., Belkhadir, Y., Wang, X.: Arabidopsis brassinosteroid signalling pathway. Science
Signaling 364, cm5 (2006)

4. Gelfold, G.: From AL to ASP - the system al2asp. Tech. rep., Arizona State University (2011)
5. Gelfold, M., Inclezan, D.: Yet another modular action language. In: Proc. of Int’l Workshp on

Software Engineering for Answer Set Programming. pp. 64–78. CEUR WS Proceedings, vol.
546. (2009)

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Comput. 9(3/4), 365–386 (1991)

7. Gelfond, M., Lifschitz, V.: Action languages. Electron. Trans. Artif. Intell. 2, 193–210 (1998)
8. Tran, N., Baral, C.: Hypothesizing about signalling networks. Journal of Applied Logic 7(3),

253–274 (2009)

414 Annamaria Basile, Maria Rosa Felice, Alessandro Provetti

