
Solving XCSP problems by using Gecode

Massimo Morara, Jacopo Mauro, and Maurizio Gabbrielli

University of Bologna.
morara | jmauro | gabbri@cs.unibo.it

Abstract. Gecode is one of the most efficient libraries that can be used
for constraint solving. However, using it requires dealing with C++ pro-
gramming details. On the other hand several formats for representing
constraint networks have been proposed. Among them, XCSP has been
proposed as a format based on XML which allows us to represent con-
straints defined either extensionally or intensionally, permits global con-
straints and has been the standard format of the international competi-
tion of constraint satisfaction problems solvers. In this paper we present a
plug-in for solving problems specified in XCSP by exploiting the Gecode
solver. This is done by dynamically translating constraints into Gecode
library calls, thus avoiding the need to interact with C++.

1 Introduction

Constraint Programming [13] has attracted high attention among experts from
many areas because of its potential for solving hard real life problems and be-
cause it is based on a strong theoretical foundation. The success of Constraint
Programming (CP) derives from the fact that on one hand it allows to model a
problem in a simple way and on the other hand it provides an efficient problem
solving algorithms. However, the CP community lacks a standardized represen-
tation of problem instances and this still limits the acceptance of CP by the
business world. One attempt to overcome this problem was taken by the As-
sociation for Constraint Programming with the proposal of Java Specification
Request JSR-331 “Constraint Programming API” [8, 5]. The goal of this spec-
ification is the creation of a powerful API for specifying CP problems. In the
last five years other approaches focusing on more low level languages emerged.
The aim of these approaches is to define a minimal domain dependent language
that supports all the major constraint features and requires, at the same time, a
minimal implementation effort to be supported by constraint solvers. Two lan-
guages following this goal are worth mentioning: FlatZinc [9] and XCSP [12].
The former was originally created to be the target language into which a higher
level CSP instance (e.g. a CSP modeled with MiniZinc [11]) is translated. Today
FlatZinc is also used as a low level “lingua franca” for solver evaluation and test-
ing. For instance, since 2008 FlatZinc has been used in the MiniZinc Challenge
[7, 14], a competition where different solvers are compared by using a benchmark
of MiniZinc instances that are compiled into FlatZinc.

XCSP is a language structurally very similar to FlatZinc. XCSP was defined
with the purpose of being a unique constraint model that could be used by all

the CP solvers. It was first proposed in 2005 for the solvers competing in the
International CSP Solver Competition [1], and has then been used in other con-
texts and extended. In this paper, we focus on XCSP. In particular, we consider
its current version, i.e. XCSP version 2.1.

The need of a standard is also caused by the huge number and diversity
of solvers. Today only few solvers support natively FlatZinc or XCSP. Unfortu-
nately, Gecode [3], one of the most well known and used solvers, support FlatZinc
only. For this reason we have created x4g, a plug-in that allows us to solve prob-
lems defined in XCSP by using the Gecode solver. The goal of x4g is twofold.
Firstly, we want to exploit Gecode for solving problems that are specified in
XCSP without considering low level implementation details or writing a single
line of code in C++. Secondly, we want to provide a tool that can be used to
evaluate the performances of the Gecode solver with respect to the other entries
of the International Solver Competition. This could be very interesting since,
to the best of our knowledge, the benchmark used in the International Solver
Competition is the biggest available to the CP community.1

In the reset of this paper, we present in Section 2 a brief overview of the
XCSP language and of the Gecode solver. In Section 3 we describe the idea
behind the x4g plug-in. Section 4 concludes by mentioning some directions for
future works.

2 Background

An extensive presentation of the XCSP format and the Gecode solver is beyond
the scope of this paper. Here we just give a short overview of XCSP and Gecode.

2.1 XCSP

XSCP is an extended format to represent constraint networks using XML. The
Extensible Markup Language (XML) is a simple and flexible text format playing
an increasingly important role in the exchange of a wide variety of data on the
Web. The objective of the XML representation (in XCSP) is to ease the effort
required to test and compare different algorithms by providing a common testbed
of constraint satisfaction instances. The proposed representation is low-level: for
each instance the domains, variables, relations (if any), predicates (if any) and
constraints are exhaustively defined. No control flow constructs like“for” cycles
or “if then else” statements can be used.

Roughly speaking, there exist two variants of this format: a fully-tagged
representation and an abridged representation. The first one is a full XML,
completely structured representation which is suitable for using generic XML
tools but is quite verbose and tedious to use for a human being. The second
representation is just a shorthand notation of the first one and it is easier to
read and to write for a human being, but less suitable for generic XML tools.

1 The MiniZinc Challenge has a smaller benchmark of instances and fewer participants
than the International Solver Competition.

As an example of an XCSP program consider the following one where the
well known “all different” constraint is applied to two variables A1 and A2 which
can assume values only in the domain [1, 2].

<domains nbDomains="1">

<domain name="d0" nbValues="2">1..2</domain>

</domains>

<variables nbVariables="2">

<variable name="A1" domain="d0"/>

<variable name="A2" domain="d0"/>

</variables>

<constraint name="c0" arity="2"

scope="A1 A2"

reference="global:alldifferent"/>

2.2 Gecode

Gecode (Generic Constraint Development Environment) provides a constraint
solver with state-of-the-art performance while being modular and extensible. It
supports the programming of new propagators, branching strategies, and search
engines. New domains can be programmed at the same level of efficiency as
finite domain and integer set variables that are already predefined. Furthermore
Gecode is distributed under a very permissive license, it is portable and well
documented, and comes with a complete tutorial. All these features have made
Gecode one of the preferred choices for solving CSPs.

Gecode is written in C++ and supports the FlatZinc format through an
external plug-in that is able to parse a FlatZinc instance and solve it using
Gecode library calls. The use of this plug-in allowed Gecode to participate to
the 2010 MiniZinc challenge [7], where it won all the tracks of the competition.

3 x4g

In principle the translation of XCSP instances into Gecode is similar to the task
performed by the Gecode/FlatZinc plug-in [2] that parses a FlatZinc instance
and produces an internal data structure (Gecode Space Object) that can be later
used to retrieve the solution of the CSP problem.

To use Gecode in order to solve CSPs defined in XCSP, one could try im-
plement a XCSP to FlatZinc compiler. However, in order to avoid potential loss
of information, to be more flexible and less dependent on the Gecode/FlatZinc
plug-in, we chose to provide a direct translation from XCSP into Gecode. Hence
we have developed x4g; a plug-in that parses an XCSP instance and, for ev-
ery constraint defined within the XCSP file, generates an equivalent number of
Gecode constraints. When all the XCSP constraints are translated into Gecode
constraints, a Gecode Space Object is returned. This object can later be used to

get a solution to the CSP problem by using one of the many predefined search
strategies provided by Gecode or local search strategies following [10].2

To develop the x4g plug-in we used the XCSP parser provided by the In-
ternational CSP competition organizers. This parser, developed in particular
to support the abridged notation, is written in C++ by using the well known
libxml2 libraries [6]. Unfortunately, the parser supports only a limited number
of global constraints. Therefore, we modified it in order to support additional
ones.

The XCSP format is mainly used to specify CSPs but it also supports ex-
tensions to define weighted constraints or quantifiers over constraints. x4g was
designed to target only CSPs, hence it does not support these additional features.

XCSP supports only finite domains. Since Gecode supports finite domains
too, the domain encoding from XCSP to Gecode was straightforward. XCSP
provides a construct which allows one to define relations over variables. These
could be seen as constraints listing all the admissible values that some variables
can take. XCSP relations are mapped into Gecode by using extensional con-
straints. In XSCP the semantics of a relation can also be given by stating all
the non admissible values of the variables (i.e. conflicts between variables). We
used inequality constraints for translating these relations into Gecode. Another
construct of XCSP is predicate, a boolean parametric expression that is con-
sidered satisfied if and only if it evaluates to true. The number of parameters
in a predicate is fixed and, differently from relations, predicates allow integer
parameters. The mapping of the predicates was also straightforward because,
with only few exceptions, Gecode has for every predicate an API for posting an
equivalent constraint. As far as global constraints are concerned, XCSP supports
the majority of the global constraints defined in the Global Constraint Catalog
[4]. Since in this catalog there are hundreds of global constraints, a full XCSP
support means to provide an encoding for a huge number of global constraints.
This was out of the scope of the project, we have just chosen to support a
subset of the most used global constraints. Currently x4g supports the following
global constraints: alldifferent, among, atleast, atmost, cumulative, diffn,
disjunctive, element, global cardinality, lex less, lex lesseq,
not all equal, weightedSum.3

Finally, to give an example of how x4g could be used, we developed a program
that takes as input a XCSP instance and, by using x4g, allows us to find a
solution by using the deep first strategy natively implemented in Gecode. Since
the output of this program follows the output rules of the International Solver
Competition, it could be used to let Gecode enter the next International CSP
Competition.

2 Note that the XCSP format specifies only the constraints, the choice of the search
strategy is left to the user.

3 For a precise definition of these constraints see [4].

4 Conclusion and Future Work

In this paper we described x4g, a plug-in that allows the use of Gecode for
solving a CSP instance defined using the XCSP format. The source code of x4g
and of the above mentioned program can be found at http://www.cs.unibo.

it/~jmauro/cilc_2011.html.
This work has to be considered as a first step in the direction of providing a

full translation of XCSP constraints into Gecode constraints. As a future work,
we would like to support more global constraints and to define efficient ways of
decomposing them by using Gecode constraints. We also would like to extend
our tool in order to use Gecode for solving the optimization problems that can
be defined in XCSP exploiting weighted constraints.

Moreover, we are interested in the development of a FlatZinc/XCSP conveyer
that will allow us to add FlatZinc instances into the benchmarks that could be
used for comparing Gecode with other constraint solvers. Furthermore, with
such a converter it could be also possible to compare the efficiency of our x4g
translation with the one of the Gecode/FlatZinc plug-in.

References

1. Fourth International CSP Solver Competition website: http://www.cril.

univ-artois.fr/CPAI09/.
2. Gecode/FlatZinc plugin website: http://www.gecode.org/flatzinc.html.
3. Generic constraint development environment website: http://www.gecode.org/.
4. Global Constraint Catalog website: http://www.emn.fr/x-info/sdemasse/gccat.
5. JSR 331: Constraint Programming API website: http://jcp.org/en/jsr/

summary?id=331.
6. libxml2 libraries. Available at: http://xmlsoft.org/.
7. MiniZinc Challenge 2011 website: http://www.g12.csse.unimelb.edu.au/

minizinc/challenge2011/challenge.html.
8. Standardization of Constraint Programming website: http://4c110.ucc.ie/

cpstandards/.
9. Ralph Becket. Specification of FlatZinc. version 1.3. Available at http://www.

g12.csse.unimelb.edu.au/minizinc/downloads/doc-1.3/flatzinc-spec.pdf.
10. Raffaele Cipriano, Luca Di Gaspero, and Agostino Dovier. A Hybrid Solver for

Large Neighborhood Search: Mixing Gecode and EasyLocal++. In Hybrid Meta-
heuristics, pages 141–155, 2009.

11. Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J.
Duck, and Guido Tack. MiniZinc: Towards a Standard CP Modelling Language.
In CP Proceeding, pages 529–543, 2007.

12. Organising Committee of the Third International Competition of CSP Solvers.
XML Representation of Constraint Networks Format XCSP 2.1, 2009. Available
at http://www.cril.univ-artois.fr/CPAI08/XCSP2_1.pdf.

13. Francesca Rossi, Peter van Beek, and Toby Walsh, editors. Handbook of Constraint
Programming. Elsevier, 2006.

14. Peter J. Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the MiniZinc
challenge. Constraints, 15(3):307–316, 2010.

