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Abstract. We present a framework that we are currently developing,
that allows one to extract knowledge from natural language sentences
using a deep analysis technique based on linguistic dependencies. The ex-
tracted knowledge is represented in OOLOT, an intermediate format that
we have introduced, inspired by the Language of Thought (LOT) and
based on Answer Set Programming (ASP). OOLOT uses an ontology-
oriented lexicon and syntax. Therefore, it is possible to export the ex-
tracted knowledge into OWL and native ASP.

1 INTRODUCTION

Many intelligent systems have to deal with knowledge expressed in natural lan-
guage, either extracted from books, web pages and documents in general, or ex-
pressed by human users. Knowledge acquisition from these sources is a challeng-
ing matter, and many attempts are presently under way towards automatically
translating natural language sentences into an appropriate knowledge representa-
tion formalism [1]. Although this task is a classic Artificial Intelligence challenge
(mainly related to Natural Language Processing and Knowledge Representation
[2]), with the Semantic Web growth new interesting scenarios are opening. The
Semantic Web aims at complementing the current text-based web with machine
interpretable semantics; however, the manual population of ontologies is very
tedious and time-consuming, and practically unrealistic at the web scale [3, 4].
Given the enormous amount of textual data that is available on the web, to
overcome the knowledge acquisition bottleneck, the ontology population task
must rely on the use of natural language processing techniques to extract rele-
vant information from the Web and transforming it into a machine-processable
representation.

In this paper we present a framework that we are currently developing. It
allows one to extract knowledge from natural language sentences using a deep
analysis technique based on linguistic dependencies and phrase syntactic struc-
ture. We also introduce OOLOT (Ontology-Oriented Language of Thought). It is



an intermediate language based on ASP, specifically designed for the representa-
tion of the distinctive features of the knowledge extracted from natural language.
Since OOLOT is based on an ontology-oriented lexicon, our framework can be
easily integrated in the context of the Semantic Web.

It is important to emphasize that the choice of ASP is a key point and
it is of fundamental relevance. In fact according to [5], this formalism is the
most appropriate one to deal with normative statements, default statements,
exceptions and many other characteristic aspects of knowledge encoded through
Natural Language.

Though this is an ongoing work, we believe to be able to argue in favour of
the usefulness and the potential of the proposed approach.

In particular, in Section 2 we introduce the framework architecture. In Sec-
tion 3 we analyze the state of the art for parsing and extraction of dependencies
taking into account our translation needs, taking into particular account three
kinds of parsers. Section 4 describes the context disambiguation and lexical item
resolution methods that we have devised. Section 5 introduces the intermediate
format OOLOT, while Section 6.3 describes the translation methodology with
the help of an example. Finally, Section 7 shows an exporting from OOLOT into
OWL example, and in Section 8 we conclude with a brief resume of achieved
goals and future works.

2 FRAMEWORK ARCHITECTURE

The proposed framework aims at allowing automatic knowledge extraction from
plain text, like a web page, producing a structured representation in OWL or
ASP as output. Thus, the framework can be seen as a standalone system, or can
be part of wider workflow, e.g. a component of complex semantic web applica-
tions.

Starting from plain text written in natural language, as first step we process
the sentence through a statistical parser (see Section 3). If we use a parser with
embedded dependency extractor, we can perform a single step and have as output
both the parse tree (constituents), and in the meantime the dependency graph.
Otherwise, if we use two different components, the workflow is that of Fig.1. In
this case, we use a simple algorithm for context disambiguation (see Section 4).
Then, each token is resolved w.r.t. popular ontologies including DBPedia and
OpenCYC and the context is used in case of multiple choices.

At this point we have enough information to translate the knowledge ex-
tracted from a natural language sentence into our intermediate OOLOT format.
OOLOT stands for “Ontological Oriented Language Of Though”, a language
mainly inspired by [6], that we have introduced as an intermediate represen-
tation language for the extracted knowledge in a way that is totally indepen-
dent from the original lexical items, and therefore, from the original language.
OOLOT is itself a language, but its lexicon is ontology-based; it uses Answer
Set Programming as basic host environment that allows us to compose a native,
high expressive knowledge representation and reasoning environment. For the



Fig. 1. The framework architecture

translation process described in Section 6, we employ a λ-calculus engine that
drives the translation into OOLOT, using information about the deep structure
of the sentence extracted in the previous steps.

From the ontology-based Language of Thought it is possible to directly trans-
late the encoded knowledge into OWL. In addition, it is also possible to export
the knowledge base in pure ASP.

3 PARSING

3.1 Background

In informatics and linguistics, parsing is the process that can determine the
morpho-syntactic structure of a sentence; parsing associates a sentence expressed
in a natural language with a structure (e.g. a parse tree structure), that analyses
the sentence by a certain point of view; thus there are morphological parsing,
syntactic parsing, semantic parsing, etc.

With regard to the syntactic parsing, analysis consists of a definition of the
phrases building up the sentence in their hierarchical order, likewise the con-
stituent analysis proposed by Chomsky [7]. In the 1950s Noam Chomsky said
natural language sentences can be generated by a formal grammar [8, 7]; this is
the so-called generative approach, motivated by the fact that people are able to
generate sentences that are syntactically correct and totally new (i.e., that have
never been heard before). Syntactic parser decomposes a text into a sequence of
tokens (for example, words), and attributes them their grammatical functions
and thematic or logical roles, with respect to a given formal grammar. The task
of syntactic parser is to say if the sentence can be generated by the grammar
and, if so, it gives the appropriate sentence syntactic representation (called parse
tree), showing also the relations between the various elements of the sentence [8,



7].
Most of today’s syntactic parsers are mainly statistical [9–12]. They are based

on a corpus of training data that have been previously annotated (parsed) by
hand. This approach allows the system to gather information on the frequency
with which the various constructs are needed in specific contexts. A statistical
parser can use a search procedure on the space of all candidates, and it would
provide the probability of each candidate and makes it possible to derive the
most probable parse of a sentence.

In the ’90, Collins proposes a conditional and generative model which de-
scribes a straightforward decomposition of a lexicalized parse tree [11, 12] based
on a Probabilistic Context Free Grammar (PCFG). Charniak and Johnson’s
parser [10, 13] is based on a parsing algorithm for PCFG, but it is a lexical-
ized N-Best PCFG parser: it is a generative and discriminative reranking parser
which uses the MaxEnt reranker to select the best among the possible parses.
The Berkeley parser uses an automatically induced PCFG, parsing sentences
with a hierarchical state-splitting. Only statistics is not enough to determine
when to split each symbol in sub-symbols [14]; thus [14, 15] present an auto-
matic approach for obtaining annotation trees through a split-merge method.
At a first stage, this parser considers a simple PCFG derived from a treebank,
but then it iteratively refines this grammar, in order to sub-categorize basic
symbols (like NP and VP) into sub-symbols. So non-terminal basic symbols are
split and merged in order to maximize the training treebank and to add a larger
number of annotations to the previous grammar. This parser can learn auto-
matically the type of linguistic distinction showed in the manually annotated
treebank and then it can create annotation trees thanks to a more complex and
complete grammar.

Statistical parsing is useful to solve problems like ambiguity and efficiency,
but with this kind of parsing we lose part of the semantic information; this as-
pect is recovered thanks to dependency representation [16].

Dependency grammars (DGs) were proposed by the French linguist Tesnière
[17] and have recently received renewed attention (cfr. [18] and the references
therein). In Dependency Grammars, words in a sentence are connected by means
of binary, asymmetrical governor-dependent relationships. In fact, Tesnière as-
sumes that each syntactic connection corresponds to a semantic relation. In a
sentence, the verb is seen as the highest level word, governing a set of comple-
ments, which govern their own complements themselves. Opposed to the notion
of the sentence division into a subject and predicate, the grammatical subject in
Tesnière’s work is also considered subordinate to the verb. The valence of a verb
(its property of requiring certain elements in a sentence) determines the struc-
ture of the sentence it occurs in. Tesnière distinguishes between actants, which
are required by the valence of the verb, and circonstants which are optional.

3.2 Parser analysis

It is difficult to evaluate parsers; we can compare them in many ways, such as
the speed with which they examine a sentence or their accuracy in the analysis



(e.g. [23]). The task based evaluation seems to be the best one [16, ?]: we must
choose whether to use a parser rather than another simply basing on our needs.
At this stage of our ongoing research, we use the Stanford parser because it is
more suited to our requirements, both for the analysis of the constituents and
for that of the dependencies.

Stanford parser performs a dependency and constituent analysis [19, 20]. This
parser provides us with different types of parsing. In fact, it can be used as an
unlexicalized PCFG parser [19] to analyse sentences, or it can be used as a lexi-
calized probabilistic parser [20]. Thanks to an A* algorithm, the second version
combines the PCFG analysis with the lexical dependency analysis. At the mo-
ment the Stanford parser provides us a typed dependency and a phrase structure
tree. The Stanford typed dependencies (cfr. [16]) describe the grammatical rela-
tions in a sentence. The relations are binary and are arranged hierarchically; as
Tesnière suggested, Stanford dependency relations have a head and its depen-
dent but, unlike Tesnière, the head of a dependency can be any content words,
not only verbs. Thanks to rules [21] applied on phrase structure trees (also cre-
ated by the Stanford parser), typed dependencies are generated.
In particular, for constituent analysis, we choose to analyse the sentence ”Many
girls eat apples.”. Seeing Fig.2, we can notice that the parser attributes to each
token its syntactic roles, and it provides us also the grammatical function of each
word. In order to better understand the hierarchy of the syntactic structure is
useful to represent it as a tree (Fig.3).

(ROOT

  (S

    (NP (JJ Many) (NNS girls))

    (VP (VBP eat)

      (NP (NNS apples)))

    (. .)))

Fig. 2. Phrase structure produced by the Stanford parser for the sentence ”Many girls
eat apples”.

With regard to dependency analysis, the Stanford parser gives us two versions
of this analysis: the typed dependency structure (Fig.4) and the collapsed typed
dependency structure (Fig.5). In the first, each node of the sentence is a node
connected with a binary relation to another node; in the second, prepositions
are turned into relations (unfortunately, in this example, you may not notice the
difference). Thus, Fig.4 and Fig.5 show us that girls and many are connected
with an amod relation, that means an adjective phrase modifies the meaning of
the noun phrase; eat is connected to girls with a nsubj relation, where the noun
phrase is the syntactical subject of the verb; eat and apple are connected with
a dobj relation because the direct object of the verb phrase is the object of the
verb [16].

As reference for the following steps, we use the Stanford syntactic phrase
structure (Fig.2) and the Stanford collapsed typed dependencies structure (Fig.5).



S

NP VP

JJ NNS

Many girls

VBP NP

NNS

appleseat

Fig. 3. Parse tree of the sentence ”Many girls eat apples.” for the analysis done by the
Stanford parser.

amod(girls-2, Many-1)

nsubj(eat-3, girls-2)

dobj(eat-3, apples-4)

Fig. 4. Typed dependency structure produced by the Stanford parser for the sentence
”Many girls eat apples.”.

amod(girls-2, Many-1)

nsubj(eat-3, girls-2)

dobj(eat-3, apples-4)

Fig. 5. Collapsed typed dependency structure produced by the Stanford parser for the
sentence ”Many girls eat apples.”.

4 CONTEXT DISAMBIGUATION AND LEXICAL
ITEM RESOLUTION

The context disambiguation task is a very important step in our work flow, as we
need to assign each lexical unit to the correct meaning, and this is particularly
hard due to the polysemy. For this task, we use a simple algorithm: we have a
finite set of contexts (political, technology, sport, ...), and as first step we built
a corpus of web pages for each context, and then we used each set as a training
set to build a simple lexical model. Basically we build a matrix where for each
row we have a lexical item, and for each column we have a context. The relation
(lexical item, context) is the normalized frequency of each lexical item into the
given context. The model is then used to assign the correct context to a given
sentence. We use a n × m matrix, where n is the number of lexical tokens
(or items), and m is the number of contexts. In other words, we give a score
for each lexical token in relation to each context. To obtain the final score we
perform a simple sum of the local values to obtain the global score, and thus
assign the final context to the sentence. Our method for context disambiguation



can certainly be improved, in particular [25], seems to be a good development
direction.

The context is crucial to choose the correct reference when a lexical item
has multiple meanings, and thus, in an ontology can be resolved in multiple
references. The context becomes the key factor for the resolution of each lexical
item to the relative reference.

We perform a lookup in the ontology for each token, or a set of them (using a
sliding window of length k). For example, using DBPedia, for each token (or a set
of tokens of length k), we perform a SPARQL query, assuming the existence of a
reference to the lexical item: if this is true, we’ve found the reference, otherwise
we go forward. If we found multiple references, we use the context to choose the
most appropriate one.

Given the sentence Many girls eat apples and it’s syntactic phrase structure
(Fig.2) and dependencies structure (Fig.5), as first step we tokenize the sentence,
obtaining:

Many, girls, eat, apples.

Before the lookup, we use the part of speech tagging from the parse tree to
group the consecutive tokens that belong to the same class. In this case, such
peculiar aspect of natural language is not present and thus the result is simply
the following:

(Many), (girls), (eat), (apples).

Excluding the lexicon for which we have a direct form, for each other lexicon
the reference ontology is resolved through a full text lookup; thus we obtain the
lexical item resolution in Table 1.

Table 1. Lexical item resolution example

Lexicon Ontology URI

girls DBPedia http://dbpedia.org/resource/Girl

eat DBPedia http://dbpedia.org/class/Eating

apples DBPedia http://dbpedia.org/resource/Apple

5 FROM THE LANGUAGE OF THOUGHT TO
OOLOT

The Language of Thought (LOT) is an intermediate format mainly inspired by
[6]. It has been introduced to represent the extracted knowledge in a way that



is totally independent from original lexical items and, therefore, from original
language.

Our LOT is itself a language, but its lexicon is ontology oriented, so we
adopted the acronym OOLOT (Ontology-Oriented Language Of Thought). This
is a very important aspect: OOLOT is used to represent the knowledge extracted
from natural language sentences, so basically the bricks of OOLOT (lexicons)
are ontological identifier related to concepts (in the ontology), and they are not
a translation at lexical level.

In [26] a translation methodology from natural language sentences into ASP
that takes into accounts all words of the sentence is presented. In this method,
the final representation is itself dependent from the original lexical structure,
and this is sub-optimal if we want to export our knowledge base into a more
general formalism like, e.g., OWL.

In the next section we present the translation process.

6 TRANSLATING INTO OOLOT

6.1 Background

[26] describes a technique for extracting knowledge from natural language and
automatically translate it into ASP. To achieve this result we built an extension
of λ-calculus and we have introduced meta expressions to fully automate the
translation process, originally inspired by [5].

This is a key point in the process of representing knowledge extracted from
natural language, and thus for using it into other contexts, e.g. the Semantic
Web. The selection of a suitable formalism plays an important role: in fact,
though under many aspects first-order logic would represent a natural choice,
it is actually not appropriate for expressing various kinds of knowledge, i.e.
for dealing with default statements, normative statements with exceptions, etc.
Recent work has investigated the usability of non-monotonic logics, like ASP
[5] with encouraging results in terms of dealing with the kind of knowledge
represented through natural language.

OOLOT allows us to have native reasoning capabilities (using ASP) to sup-
port the syntactic and semantic analysis tasks. Embedded reasoning is of fun-
damental importance for the correct analysis of complex sentences, as shown in
[27]. The advantages of adopting an ASP-based host language is not limited to
the previous aspects: in fact, the integration of ASP and the Semantic Web is not
limited to the Natural Language Processing side. Answer Set Programming fits
very well with Semantic Web as demonstrated by the recent research efforts of
integrating rule-based inference methods with current knowledge representation
formalisms in the Semantic Web [28, 29].

Ontology languages such as OWL and RDF Schema are widely accepted and
successfully used for semantically enriching knowledge on the Web. However,
these languages have a restricted expressivity if we have to infer new knowledge
from existing one. Semantic Web needs a powerful rule language complementing



its ontology formalisms in order to facilitate sophisticated reasoning tasks. To
overcome this gap, different approaches have been presented on how to combine
Description Logics with rules, like in [29].

6.2 Lambda Calculus

λ-calculus is a formal system designed to investigate function definition, func-
tion application and recursion. Any computable function can be expressed and
evaluated via this formalism [30]. In [26] we extended the λ-calculus introduc-
ing the λ-ASP -ExpressionT that allows a native support for ASP, and, at the
same time, permits to formally instantiated to λ-ASP-Expression [5, 26]. For the
purpose of our running example, the set of λ-ASP -ExpressionT is available in
Table 2.

In the following subsection, we illustrate the translation process based on
λ-calculus. It is important to note that the choice of the lambda calculus was
made because it fully matches the specifications of the formal tool we need to
drive the execution of the steps in the right way.

6.3 Lambda-based translation

According to the workflow in Fig.1, the translation from plain text to the
OOLOT intermediate format makes use of the information extracted in several
steps. The information on the deep structure of the sentence is now used to drive
the translation using the λ-calculus according to the λ- expression definitions in
Table2.

Table 2. The λ-ASP-expression template

Lexicon SemClass λ−ASP − expression T

- noun λx.⟨noun⟩(x)

- verb λy.⟨verb⟩(y)

- transVerb λy.λw.⟨verb⟩(y, w)

many det λuλv.(
v@X ← u@X,
not ¬v@X,
possible(v@X,u@X),
usual(v@X,u@X)
)



For each lexicon, we use the phrase structure in Fig.2 to determine the se-
mantic class to which it belongs. In this way, we are able to fetch the correct
lambda-ASP-expression template from the Table 2.

For the running example, as result we have the λ-ASP-expressions of Table
3.

Table 3. The λ-ASP-expressions

Lexicon λ−ASP − expression

apples λx.dbpedia : Apple(x)

eat λyλw.dbpedia : Eating(y, w)

girls λz.dbpedia : Girl(x)

many λuλv.(
v@X ← u@X,
not ¬v@X,
possible(v@X,u@X),
usual(v@X,u@X)
)

Now, differently from [26], we use the dependencies, that is, we use the deep
structure information, to drive the translation.

According to the dependency in Fig.5, the first relation that we use is amod(girls−
2, many−1). Thus, for the λ-calculus definition, we apply the λ-ASP-expression
for girls to the λ-ASP-expression for many:

λuλv.(
v@X ← u@X,
not ¬v@X,
possible(v@X,u@X),
usual(v@X,u@X)

)@@(λx.(dbpedia : Girl(x))

obtaining:

λv.(
v@X ← dbpedia : Girl(X),
not ¬v@X,
possible(v@X, dbpedia : Girl(X)),
usual(v@X, dbpedia : Girl(X))

)



The second relation, nsubj(eat− 3, girls− 2), drives the application of the
λ-expression for eat to the expression for girls that we obtained in the previous
step:

λv.(
v@X ← dbpedia : Girl(X),
not ¬v@X,
possible(v@X, dbpedia : Girl(X)),
usual(v@X, dbpedia : Girl(X))

)@@(λzλw.(dbpedia : Eating(z, w))

that reduces to:

dbpedia : Eating(X,W )← dbpedia : Girl(X),
not ¬dbpedia : Eating(X,W ),
possible(dbpedia : Eating(X,W ), dbpedia : Girl(X)),
usual(dbpedia : Eating(X,W ), dbpedia : Girl(X))

Then, we apply apple to the expression we have seen, obtaining the final
result:

dbpedia : Eating(X, dbpedia : Apple)← dbpedia : Girl(X),
not ¬dbpedia : Eating(X, dbpedia : Apple),
possible(dbpedia : Eating(X, dbpedia : Apple), dbpedia : Girl(X)),
usual(dbpedia : Eating(X, dbpedia : Apple), dbpedia : Girl(X))

7 EXPORTING INTO OWL

Our framework has been designed to export the knowledge base from OOLOT
into a target formalism. For now, we are working on a pure ASP and OWL
exporter.

Exporting into OWL is a very important feature, because it allows endless
possibilities due to its native Semantic Web integration. In this way, the frame-
work as a whole becomes a power tool that starting from plain text produces
the RDF/OWL representation of the sentences; through ASP it takes care of
special reasoning and representation features of natural language.

To complete the example, the resulting RDF representation is:

Fig. 6. RDF



The export into OWL has, at the present stage, some drawbacks, including
loosing of some aspects of natural language that instead are perfectly managed
in OOLOT. The export procedure is ongoing work, so there is room for improve-
ment. Due to the nature of the problem, that is very complex, these aspects will
be the subject of a future work.

8 CONCLUSION

In this paper, we have proposed a comprehensive framework for extracting knowl-
edge from natural language and representing the extracted knowledge in suitable
formalisms so as to be able to reason about it and to enrich existing knowledge
bases. The proposed framework is being developed and an implementation is
under way and will be fully available in short time. The proposed approach
incorporates the best aspects and results from previous related works and, al-
though in the early stages, it exhibits a good potential and its prospects for
future development are in our opinion really interesting.

Future improvements concern many aspects of the framework. First of all, we
have to choose the best parser or establish how to combine the best aspects of
all them. On the OOLOT side, there is the need to better formalize the language
itself, and better investigate the reasoning capabilities that it allows, and how
to take the best advantage from them.

The ontology-oriented integration is at a very early stage, and there is room
for substantial improvements, including a better usage of the current reference
ontologies, and the evaluation study about using an upper level ontology, in
order to have a more homogeneous translation.
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