
Synthesizing Concurrent Programs using

Answer Set Programming

Emanuele De Angelis1, Alberto Pettorossi2, and Maurizio Proietti3

1 Dipartimento di Scienze, University ‘G. D’Annunzio’, Pescara, Italy
deangelis@sci.unich.it

2 DISP, University of Rome Tor Vergata, Italy
pettorossi@disp.uniroma2.it

3 CNR-IASI, Rome, Italy
proietti@iasi.cnr.it

Abstract. We address the problem of the automatic synthesis of con-
current programs within a framework based on Answer Set Programming
(ASP). The concurrent program to be synthesized is specified by provid-
ing both the behavioural and the structural properties it should satisfy.
Behavioural properties, such as safety and liveness properties, are speci-
fied by using formulas of the Computation Tree Logic, which are encoded
as a logic program. Structural properties, such as the symmetry of pro-
cesses, are also encoded as a logic program. Then, the program which is
the union of these two encodings, is given as input to an ASP system
which returns as output a set of answer sets. Finally, each answer set is
decoded into a synthesized program that, by construction, satisfies the
desired behavioural and structural properties.

1 Introduction

We consider concurrent programs consisting of finite sets of processes which
interact with each other through communication protocols. Such protocols are
based on a set of instructions, called synchronization instructions, operating on
shared variables ranging over finite domains. The communication protocols are
realized in a distributed manner, that is, every process includes one or more
regions of code consisting of synchronization instructions, responsible for the
interaction between processes.

Even for a small number of processes, communication protocols which guar-
antee a desired behaviour of the concurrent programs may be hard to design. In
this paper we propose a method for automatically synthesizing correct concur-
rent programs starting from the formal specification of their desired behaviour.

Methods for the automatic synthesis of concurrent programs from temporal

logic specifications have been proposed in the past by Clarke and Emerson [6],
Manna and Wolper [16], and Attie and Emerson [1,2]. All these authors reduce
the task of synthesizing a concurrent program to the task of synthesizing the
synchronization instructions of each process. We follow their approach and ev-
erything which is irrelevant to the synchronization among processes, is abstracted
away and each process is considered to be a finite state automaton.

We introduce a framework, based on logic programming, for the automatic
synthesis of concurrent programs. We assume that the behavioural properties of
the concurrent programs, such as safety and liveness properties, are specified
by using formulas of the Computation Tree Logic (CTL for short), which is a
very popular propositional temporal logic over branching time structures (see, for
instance, [5,6]). This temporal, behavioural specification ϕ is encoded as a set Πϕ

of clauses. We also assume that the processes to be synthesized satisfy suitable
structural properties, such as a symmetry property, and that those properties can
be encoded as a set ΠΣ of clauses. Structural properties cannot be easily specified
by using CTL formulas and we use, instead, a simple algebraic structure that
we will present in the paper. Thus, the specification of a concurrent program to
be synthesized consists of a logic program Π = Πϕ ∪ΠΣ which encodes both the
behavioural and the structural properties that the concurrent program should
satisfy.

We show that every answer set (that is, every stable model) of the program Π
represents a concurrent program satisfying the given specification. Thus, by using
an Answer Set Programming (ASP) system, such as DLV [9] or smodels [20],
which computes the answer sets of logic programs, we can synthesize concurrent
programs which enjoy some desired properties.

We have performed some synthesis experiments and, in particular, we have
synthesized some mutual exclusion protocols which are guaranteed to enjoy var-
ious properties, such as (i) bounded overtaking, (ii) absence of starvation, and
(iii) maximal reactivity (their formal definition will be given in the paper). We
finally compare our results with those presented in [1,2,12].

The paper is structured as follows. In Section 2 we recall some preliminary
notions and terminology. In Section 3 we present our framework for synthesizing
concurrent programs and we define the notion of a symmetric concurrent pro-
gram. In Section 4 we describe our synthesis procedure and the logic program
which we use for the synthesis. In Section 5 we present some examples of syn-
thesis of symmetric concurrent programs. Finally, in Section 6 we discuss the
related work and some topics that can be investigated in the future.

2 Preliminaries

Let us recall some basic notions and terminology we will use. We present: (i) the
syntax of (a variant of) the guarded commands [7] which are used for defining
concurrent programs, (ii) some basic notions of group theory which are required
for defining symmetric concurrent programs, (iii) the syntax and the semantics
of the Computation Tree Logic, and (iv) the syntax and the semantics of Answer
Set Programming, which is the framework we use for our synthesis method.

Guarded commands. In our variant of the guarded commands we consider two
basic sets: (i) variables, v in Var , each ranging over a finite domain Dv, and
(ii) guards, g in Guard , of the form: g ::= true | false | v = d | ¬ g | g1 ∧∧ g2,
with v ∈ Var and d ∈ Dv. We also have the following derived sets whose def-
initions are mutually recursive: (iii) commands, c in Command , of the form:

c ::= skip | v := d | c1 ; c2 | if gc fi | do gc od , where ‘;’ denotes the sequential

composition of commands, and (iv) guarded commands, gc in GCommand , of
the form: gc ::= g→ c | gc1 8 gc2 , where ‘8’ denotes the parallel composition of
guarded commands.

The execution of if gc1 8 . . . 8 gcn fi is performed as follows: one of the
guarded commands g→ c in {gc1, . . . , gcn} whose guard g evaluates to true is
chosen, then c is executed; otherwise, if no guard in {gc1, . . . , gcn} evaluates to
true then the whole command if . . . fi terminates with failure.

The execution of do gc1 8 . . . 8 gcn od is performed as follows: one of the
guarded commands g → c in {gc1, . . . , gcn} whose guard g evaluates to true is
chosen, then c is executed and the whole command do . . . od is executed again;
otherwise, if no guard in {gc1, . . . , gcn} evaluates to true then the execution
proceeds with the next command.

Symmetric Groups. A group G is a pair 〈S , ◦〉, where S is given a set and ◦ is
a binary operation on S satisfying the following axioms: (i) ∀x, y ∈ S. x ◦ y ∈
S (closure), (ii) ∀x , y, z ∈ S . (x ◦ y) ◦ z=x ◦ (y ◦ z) (associativity), (iii) ∃e ∈
S. ∀x ∈ S.e ◦ x= x ◦ e= x (identity element), and (iv) ∀x ∈ S. ∃y ∈ S. x ◦ y=
y ◦ x = e (inverse element). The order of a group G is the cardinality of S. For
any x ∈ S, for any n ≥ 0, we write xn to denote the term x ◦ . . . ◦ x with n

occurrences of x. We stipulate that x0 is e.
A group G is said to be cyclic iff there exists an element x ∈ S, called a

generator, such that S = {xn | n ≥ 0}. We write Gx to denote the cyclic group
generated by x.

We denote by Perm(S) the set of all permutations (that is, bijections) on
the set S. Perm(S) is a group whose operation ◦ is function composition and the
identity e is the identity permutation, denoted id. The order of a permutation p

on a finite set S is the smallest natural number n such that pn = id .

Computation Tree Logic. Computation Tree Logic (CTL) is a propositional
branching time temporal logic [5].

Let Elem be a finite set of elementary propositions ranged over by b. The
syntax of a CTL formula ϕ is as follows:

ϕ ::= b | ϕ1 ∧∧ ϕ2 | ¬ϕ | EXϕ | EGϕ | E[ϕ1 Uϕ2]

Let us introduce the following abbreviations: (i) ϕ1 ∨∨ ϕ2 for ¬(¬ϕ1 ∧∧ ¬ϕ2),
(ii) EFϕ for E[true U f] (iii) AGϕ for ¬EF¬ϕ, (iv) AFϕ for ¬EG¬ϕ, (v) A[ϕ1 Uϕ2]
for ¬E[¬ϕ2 U (¬ϕ1 ∧∧ ¬ϕ2)] ∧∧ ¬EG¬ϕ2, (vi) AXϕ for ¬EX¬ϕ, (vii) A[ϕ1 Rϕ2]
for ¬E[¬ϕ1 U¬ϕ2], and (viii) E[ϕ1 Rϕ2] for ¬A[¬ϕ1 U¬ϕ2].

We define the semantics of CTL by giving a Kripke structureK = 〈S, S0, λ, R〉,
where: (i) S is a finite set of states, (ii) S0 ⊆ S is a set of initial states,
(iii) R ⊆ S × S is a total transition relation (thus, ∀u ∈ S, ∃v∈S, 〈u, v〉 ∈R),
and (iv) λ :S→P(Elem) is a total, labelling function that assigns to every state
s ∈ S a subset λ(s) of the set Elem .

For reasons of simplicity, when the set of the initial states is a singleton {u},
we will feel free to identify {u} with u.

A path π in K from a state is an infinite sequence 〈s0, s1, . . .〉 of states such
that, for all i ≥ 0, 〈si, si+1〉 ∈ R. For i≥ 0, we denote by πi the i-th element

of π. The fact that a CTL formula ϕ holds in a state s of a Kripke structure K
will be denoted by K, s � ϕ. For any CTL formula ϕ and state s, we define the
relation K, s � ϕ as follows:

K, s � b iff b ∈ λ(s)
K, s � ¬ϕ iff K, s � ϕ does not hold
K, s � ϕ1 ∧∧ ϕ2 iff K, s � ϕ1 and K, s � ϕ2

K, s � EXϕ iff there exists 〈s, t〉 ∈ R such that K, t � ϕ

K, s � E[ϕ1 U ϕ2] iff there exists a path π = 〈s, s1, . . .〉 in K and i≥0
such that K, πi � ϕ2 and for all 0≤j<i, K, πj � ϕ1

K, s � EGϕ iff there exists a path π such that
π0=s and for all i≥0, K, πi � ϕ

2.1 Answer Set Programming

Answer set programming (ASP) is a declarative programming paradigm based
on the answer set semantics of logic programs [10,14]. We assume the version of
ASP with function symbols [3]. Now let us recall some basic definitions of ASP.
For those not recalled here we refer to [3,10,14,15]. A rule r is an implication of
the form:

a1 ∨∨ . . . ∨∨ ak ← ak+1 ∧∧ . . . ∧∧ am ∧∧ notam+1 ∧∧ . . . ∧∧ notan

where a1, . . . , ak, . . . , an (for k≥0, n≥k) are atoms and ‘not’ denotes negation as
failure [11]. Given a rule r, we define the following sets: head(r) = {a1, . . . , ak},
pos(r) = {ak+1, . . . , am}, and neg(r) = {am+1, . . . , an}. An integrity constraint

is a rule r such that head(r) = ∅. A logic program is a set of rules. When we
write a rule with variables, we actually mean all the ground instances of that
rule.

An interpretation I of a program Π is a subset of the Herbrand base. The
Gelfond-Lifschitz transformation of a program Π with respect to an interpreta-
tion I is the program ΠI = {head(r)← pos(r) | r ∈ Π ∧∧ neg(r) ∩ I = ∅}. An
interpretation M is said to be an answer set of Π iff M is the least Herbrand
model of ΠM . The answer set semantics of Π assigns to Π a set of answer sets,
denoted ans(Π). Given an answer set M ∈ ans(Π) and an atom a, we write
M |= a to denote that a ∈M .

3 Specifying Concurrent Programs

Let P = {P1, . . . , Pk} be a finite set of processes. With every process Pi ∈ P
we associate a variable si, called the local state, ranging over a finite domain L,
which is the same for all processes. The variable si can be tested and modified
by Pi only. All processes may test and modify also a shared variable x, which
ranges over a finite domain D.

A concurrent program consists of a finite set P of processes that are executed
in parallel and interact with each other through a communication protocol re-
alized by a set of commands acting on the shared variable x. Here is the formal
definition of a concurrent program.

Definition 1 (k-Process Concurrent Program). Let L be a set of local
states and D be a domain of the shared variable x. For any k > 1, a k -process
concurrent program C is a command of the form:

C : s1 := l1; . . . ; sk := lk; x :=d0; do P1 8 . . . 8 Pk od

where s1, . . . , sk, x ∈Var , l1, . . . , lk ∈L, and d0∈D.
Every process Pi in P1 8 . . . 8 Pk is a guarded command of the form:

Pi : true → if gc1 8 . . . 8 gcn fi

Every guarded command gc in gc1 8 . . . 8 gcn is of the form:

gc : si= l ∧∧ x=d → si := l′; x :=d′;

where l, l′ ∈ L and d, d′ ∈ D. �

We shall use the guarded command si = l ∧∧ x= d → skip as a shorthand for
si = l ∧∧ x= d → si := l; x := d. The command s1 := l1; . . . ; sk := lk; x := d0; is
called initialization of C.

Example 1. Let L be the set {t, u} and D be the set {0, 1}. A 2-process concur-
rent program C is:

s1 := t; s2 := t; x := 0 ; do P1 8 P2 od

where P1 and P2 are defined as follows:

P1 : true → if P2 : true → if

s1=t ∧∧ x=0→ s1 :=u; x :=0; s2=t ∧∧ x=1→ s2 :=u; x :=1;
8 s1=t ∧∧ x=1→ skip; 8 s2=t ∧∧ x=0→ skip;
8 s1=u ∧∧ x=0→ s1 :=t; x :=1; 8 s2=u ∧∧ x=1→ s2 :=t; x :=0;

fi fi

This program is the familiar program for two processes, each of which either
‘thinks’ in its noncritical section (si=t) or ‘uses a resource’ in its critical section
(si = u). The shared variable x gives each process its turn to enter the critical
section: if x=0, process P1 is in its critical section, and if x=1, process P2 is in
its critical section. �

Now we introduce the semantics of concurrent programs by using Kripke
structures. We model a state u of a k-process concurrent program C by a
(k+1)-tuple 〈l1, . . . , lk, d〉, where: (i) the first k components are the values of
the local state variables s1, . . . , sk, and (ii) d is the value of the shared vari-
able x.

Definition 2 (Kripke Structure Associated with a k-Process Concur-
rent Program). Let C be a k -process concurrent program of the form

C : s1 := l1; . . . ; sk := lk; x :=d0; do P1 8 . . . 8 Pk od

where the li’s belong to L and d0 belongs toD. The Kripke structure K associated

with C is the 4-tuple 〈S, S0, R, λ〉, where:
(i) the set S of states is Lk ×D,
(ii) the set S0 of initial states is the singleton {〈l1, . . . , lk, d0〉},

(iii) the set R ⊆ S×S of transitions
{〈u, v〉 | i, j∈{1, . . . , k} ∧∧ si= l ∧∧ x=d→ si := l′; x :=d′ in Pi ∧∧

u(si)= l ∧∧ u(x)=d ∧∧ v(si)= l′ ∧∧ v(x)=d′ ∧∧ u 6= v ∧∧

∀j 6= i, u(sj)=v(sj)},
where for all states t∈S, for all variables x∈Var , t(x) denotes the value of
the variable x in t, and

(iv) for all states t of the form 〈l1, . . . , lk, d〉, the value λ(t) is defined to be
{s1= l1, . . . , sk= lk, x=d}.
The set Elem of the elementary propositions is the set

⋃

t∈S λ(t). �

We make the following assumptions about k -process concurrent programs.
(i) Since, by definition, the transition relation R of any Kripke structure is total,
we have that every concurrent program C we consider, is nonterminating, in the
sense that, in every state there exists a process Pi of C and a guarded command
g→c of Pi such that: (i.1) g evaluates to true, and (i.2) c cannot be abbreviated
to skip. This assumption restricts the class of concurrent programs we consider.
(ii) Every k-process concurrent program consists of deterministic processes, that
is, for i=1, . . . , k, in every state, at most one guard of the guarded commands
of process Pi evaluates to true (a similar assumption is made in [17]).

Note that the usual assumption that every guarded command is executed
atomically (in the sense that only one process at a time among the processes of a
concurrent program is selected and executed) is taken into account in an implicit
way when constructing the transition relation R of the Kripke structure.

Example 2. Given the 2-process symmetric concurrent program C of Example 1,
the associated Kripke structure 〈S, {s0}, R, λ〉 is depicted in Figure 1. We depict
it as a graph whose nodes are the states in S and whose edges represent the
transitions in R. The set S of states includes the four state depicted in Figure 1
and also the states 〈t, u, 0〉, 〈u, t, 1〉, 〈u, u, 0〉, and 〈u, u, 1〉, which have not been
depicted because they are not reachable from the initial state 〈t, t, 0〉. Each
transition from state u to state v is associated with the guarded command g → c

whose guard g evaluates to true in u. For the labelling function λ, we have that
λ(〈t, t, 0〉) is {s1=t, s2=t, x=0} and, similarly, for the other states. �

Having defined the Kripke structure associated with a given program, now
we can define the notion of a program satisfying a given behavioural property.

Definition 3 (Satisfaction relation for a Concurrent Program). Let C

be a k -process concurrent program, K be the Kripke structure associated with C,
s0 be the initial state of K, and ϕ be a CTL formula. We say that C satisfies ϕ,
denoted C |= ϕ, iff K, s0 |= ϕ. �

Example 3. Let us consider the 2-process concurrent program C defined in Ex-
ample 1. We associate with the local states t (short for ‘think’) and u (short for
‘use’) two regions of code, called the noncritical section and the critical section,
respectively. We require that the region of code associated with state u should
be executed in a mutually exclusive way. This is formalized by the CTL formula

〈u, t, 0〉

〈t, t, 0〉 〈t, t, 1〉

〈t, u, 1〉

s1 =t ∧∧ x=0 → s1 :=u; x :=0 s1 =u ∧∧ x=0 → s1 :=t; x :=1

s2 =t ∧∧ x=1 → s2 :=u; x :=1s2 =u ∧∧ x=1 → s2 :=t; x :=0

Fig. 1. The transition relation R of the Kripke structure K = 〈S, {s0}, R, λ〉 associated
with the concurrent program C of Example 1. The initial state s0 is 〈t, t, 0〉. The arcs
are labelled by the guarded commands which are responsible for the transition.

ϕ =def AG[¬(s1 = u ∧∧ s2 = u)], and we have that C |= ϕ holds because for
the Kripke structure K of Example 2 (see Figure 1), we have that K, s0 |= ϕ

(indeed, there is no path starting from the initial state s0 = 〈t, t, 0〉 which leads
the system to either the state 〈u, u, 0〉 or the state 〈u, u, 1〉). �

Often, in our setting a k -concurrent program consists of symmetric processes,
the symmetry being determined by the fact that, for any two processes Pi and Pj ,
for i 6=j, we have that Pj can be obtained from Pi by permuting the values of the
shared variable x in the guarded commands. Indeed, as shown in Example 1, the
guarded commands in P2 can be obtained from those in P1 by interchanging 0

and 1. In practice, the property of symmetry is very common in many concur-
rent programs, and our task is precisely the one of automatically synthesizing
symmetric processes. This observation motivates a notion of symmetry which we
now introduce by using cyclic groups. A similar approach has been followed for
the automated verification of concurrent systems in [8].

Definition 4 (k-Generating Function). Given an integer k>1, and a finite
domain D, we say that f ∈Perm(D) is a k-generating function iff either f = id

or f is a generator of a cyclic group Gf = {id , f, f2, . . . , fk−1} of order k. �

Let us introduce the following notation. Given a guarded command gc of the
form:

si= l ∧∧ x=d → si := l′; x :=d′;

and a k-generating function f , we denote by f(gc) the guarded command:

s(imodk)+1= l ∧∧ x=f(d) → s(imod k)+1 := l′; x :=f(d′);

Definition 5 (k-Process Symmetric Concurrent Program). Given a
k-generating function f, a k-process symmetric concurrent program C is a com-
mand of the form:

C : s1 := l0; . . . ; sk := l0; x :=d0; do P1 8 . . . 8 Pk od

where, for all processes Pi, for all guarded commands gc, gc is in Pi iff f(gc) is
in P(imodk)+1 . �

Example 4. Let us consider the 2-process concurrent program C of Example 1.
The group Perm(D) of permutations over D = {0, 1} is made out of the fol-
lowing two permutations only: f1 = {〈0, 0〉, 〈1, 1〉} and f2 = {〈0, 1〉, 〈1, 0〉}. The
2-generating function f2 shows that the concurrent program C is symmetric.

P1 : true → if P2 : true → if

s1=t ∧∧ x=0→ s1:=u; x :=0; s2=t ∧∧ x=f2(0)→ s2:=u; x:=f2(0);
8 s1=t ∧∧ x=1→ skip; 8 s2=t ∧∧ x=f2(1)→ skip;
8 s1=u ∧∧ x=0→ s1:=t; x :=1; 8 s2=u ∧∧ x=f2(0)→ s2:=t; x:=f2(1);

fi fi �

By definition, one can generate a k-process symmetric concurrent program C

from one of the processes in C by applying the generating function f . Moreover,
it is often the case that all processes of a given program C also share additional
structural properties, besides those determined by f . For instance, in the case
of Example 4, we have that both process P1 and P2 may move from the local
state t to the local state u, or from t to t, or from u to t. These additional
structural properties define a local transition relation T ⊆ L×L which together
with the k -generating function f , defines a so called symmetric program structure

Σ = 〈f, T 〉. A pair 〈l, l′〉 in T will also be denoted by l 7→ l′.
Our synthesis problem can be defined as follows.

Definition 6 (Synthesis Problem of a k-Process Symmetric Concur-
rent Program). The synthesis problem of a k-process symmetric concurrent

program C starting from: (i) a CTL formula ϕ, and (ii) a symmetric program
structure Σ = 〈f, T 〉, where f is a k-generating function and T is a local tran-
sition relation, consists in finding C such that C |= ϕ holds. �

Note that there exists a CTL formula that characterizes the set of initial
states. In particular, the initial state 〈l1, . . . , lk, d0〉 can be characterized by the
CTL formula s1 = l1 ∧∧ . . . ∧∧ sk = lk ∧∧ x = d0, where we assume that each
conjunct belongs to Elem. However, for reasons of simplicity, we assume that
the initial state s0 is given to our synthesis procedure as an additional input (see
clause 1 of the logic program Πϕ of Definition 7).

4 Synthesising Concurrent Programs

In this section we present our synthesis procedure based on ASP. We encode
the desired behavioural property ϕ of our k -process concurrent program to be
synthesized as a logic programs Πϕ, and the desired structural property Σ as a
logic programs ΠΣ . Programs Πϕ and ΠΣ are defined in the following Definition 7
and 8, respectively.

Definition 7 (Logic program encoding a behavioural property). Let ϕ
be a CTL formula expressing a behavioural property. The logic program Πϕ

encoding ϕ is as follows:

1. ← not sat(s0, ϕ)

2. sat(U, F)← elem(F,U)

3. sat(U, not(F))← not sat(U, F)
4. sat(U, and(F1, F2))← sat(U, F1) ∧∧ sat(U, F2)
5. sat(U, ex(F))← tr(U, V) ∧∧ sat(V, F)
6. sat(U, eu(F1, F2))← sat(U, F2)

7. sat(U, eu(F1, F2))← sat(U, F1) ∧∧ tr(U, V) ∧∧ sat(V, eu(F1, F2))
8. sat(U, eg(F))← satpath(U, V, F) ∧∧ satpath(V, V, F)
9. satpath(U, V, F)← sat(U, F) ∧∧ tr(U, V) ∧∧ sat(V, F)

10. satpath(U,Z, F)← sat(U, F) ∧∧ tr(U, V) ∧∧ satpath(V, Z, F)

11.1 tr(s(S1, . . . , Sk, X), s(S′
1, . . . , S

′
k, X

′))← reachable(s(S1, . . . , Sk, X)) ∧∧

gc(1, S1, X, S′
1, X

′) ∧∧ 〈S1, X〉 6=〈S′
1, X

′〉
· · ·

11.k tr(s(S1, . . . , Sk, X), s(S′
1, . . . , S

′
k, X

′))← reachable(s(S1, . . . , Sk, X)) ∧∧

gc(k, Sk, X, S′
k, X

′) ∧∧ 〈Sk, X〉 6=〈S′
k, X

′〉
12. ← not out(S) ∧∧ reachable(S)
13. out(S)← tr(S,Z)

14. reachable(s0)←
15. reachable(S)← tr(Z, S)

where the predicates are defined as follows: (i) sat(U, F) holds iff the formula F

holds in state U , (ii) elem(b, u) holds iff b∈λ(u), that is, the elementary propo-
sition b holds in state u, (iii) satpath(U, V, F) holds iff there exists a path
from state U to state V such that every state in that path satisfies the for-
mula F , (iv) tr(s(S1, . . . , Sk, X), s(S′

1, . . . , S
′
k, X

′)) holds iff the pair of states
〈〈S1, . . . , Sk, X〉, 〈S′

1, . . . , S
′
k, X

′〉〉 belongs to the transition relation R of the
Kripke structure associated with the program C to be synthesized, and (v) the
predicates out and reachable force the relation R to be total (in particular, out(S)
holds iff from state S there is an outgoing edge, and reachable(S) holds iff there
is a path from the initial state s0 to state S.) �

Rule 1 is required for ensuring that ϕ holds in the initial state s0 representing the
initialization s1 := l0; . . . ; sk := l0; x :=d0 of the k -process symmetric concurrent
program to be synthesized. Rule 11.i defines the interleaved execution of the
guarded commands, that is, for all states U and V, tr(U, V) holds iff U is a
reachable state, and there exists a guarded command gc of process Pi whose
guard evaluates to true in U and whose execution leads from state U to state V .

Definition 8 (Logic program encoding a structural property). Let L be
the set of local states and D be the domain of the shared variable. Let Σ = 〈f, T 〉
be a symmetric program structure of a k -process symmetric concurrent program.
The logic program ΠΣ is defined as follows:

1.1
∨

〈S′,X′〉∈Next(〈S1,X〉) gc(1, S1, X, S′, X ′)← reachable(S1, S2, . . . , Sk, X)

1.2 ← gc(1, S,X, S′, X ′) ∧∧ gc(1, S,X, S′′, X ′′) ∧∧ 〈S′, X ′〉 6=〈S′′, X ′′〉

2.1 gc(2, S, f(X), S′, f(X ′))← gc(1, S,X, S′, X ′)

2.2 ← gc(2, S,X, S′, X ′) ∧∧ not ps(2, S,X)

2.3 ps(2, S2, X)← reachable(S1, S2, . . . , Sk, X)
. . .

k.1 gc(k, S, f(X), S′, f(X ′))← gc(k−1, S,X, S′, X ′)

k.2 ← gc(k, S,X, S′, X ′) ∧∧ not ps(k, S,X)

k.3 ps(k, Sk, X)← reachable(S1, S2, . . . , Sk, X)

where: (i) gc(i, S,X, S′, X ′) holds iff si = l ∧∧ x= d → si := l′; x := d′ is in Pi,
(ii) f is a k -generating function, (iii) ps(i, S,X) holds iff there exists a reachable
state of the form 〈S1, . . . , Si−1, S, Si+1, . . . , Sk, X〉, and (iv) for all l∈L, d∈D,
Next(l, d) = {〈l′, d′〉 | l 7→ l′ ∈ T ∧∧ d′ ∈ D}. �

Rules 1.1 and 1.2 generate a set of guarded commands for process P1. The
disjunction in the head of Rule 1.1 is over all possible guarded commands that P1

may execute. The set of those guarded commands is defined using the sets
Next(l, d), one for each l ∈ L and d ∈ D. The integrity constraint 1.2 enforces
the generation of a set of guarded commands in which any two guards of the
guarded commands in P1 are mutually exclusive (recall that we consider only
deterministic processes).

For j=2, . . . , k, Rules j.1, j.2 and j.3 realize Definition 5. We use Rule j.1 to
derive a guarded command in Pj from a guarded command of the process Pj−1.
Rule j.2 ensures that for every guarded command g→ c derived by j.1, there
exists a reachable state U such that in U the guard g evaluates to true.

Now we present a theorem establishing the correctness of our synthesis pro-
cedure. It relates the k-process symmetric concurrent programs satisfying ϕ with
the answer sets of the logic program Πϕ ∪ΠΣ. Obviously, the correctness of the
synthesis procedure implies also the correctness of the programs Πϕ and ΠΣ

encoding the behavioural properties and the structural properties, as specified
in Definition 7 and 8, respectively.

Theorem 1 (Correctness of Synthesis). Let Π = Πϕ ∪ ΠΣ be the logic

program obtained, as specified by Definitions 7 and 8, from: (i) a CTL formula ϕ

and (ii) a symmetric program structure Σ = 〈f, T 〉. Then,
(

s1 := l0; . . . ; sk := l0; x :=d0; do P1 8 . . . 8 Pk od
)

|= ϕ

iff there exists an answer set M in ans(Π) such that

∀i ∈ {1, . . . , k}, ∀l, l′ ∈ L, ∀d, d′ ∈ D,
(

si= l ∧∧ x=d→ si := l′; x :=d′
)

is in Pi iff M |= gc(i, l, d, l′, d′).

5 Experimental Results

In this section we present some experimental results obtained by applying our
synthesis procedure to mutual exclusion protocols. All experiments have been
performed on an Intel Core 2 Duo E7300 2.66GHz under the Linux operating
system.

The first synthesis we did is the one of a simple program, called 2-mutex -1, for
two processes enjoying the mutual exclusion property only, and then we progres-
sively increased the number of properties that the synthesized program should

satisfy (see Table 1). In that table the program k-mutex -p denotes a synthesized
program for k processes satisfying p behavioural properties. For instance, pro-
gram 2-mutex -4 is the synthesized program that works for 2 processes and enjoys
the four behavioural properties: (i) ME (mutual exclusion), (ii) SF (starvation
freedom), (iii) BO (bounded overtaking), and (iv) MR (maximal reactivity),
defined by CTL formulas as follows.

(i) Mutual Exclusion, that is, it is not the case that process Pi is in its critical
section (si=u), and process Pj is in its critical section (sj=u) at the same time:
for all i, j in {1, . . . , k}, with i 6= j,

AG¬(si=u ∧∧ sj=u) (ME)

(ii) Starvation Freedom, that is, if a process is waiting to enter the critical section
(si = w), then after a finite amount of time, process Pi will execute its critical
section (si=u): for all i in {1, . . . , k},

AG (si=w→ AF si=u) (SF)

(iii) Bounded Overtaking, that is, while process Pi is in its waiting section,
any other process Pj exits from its critical section at most once: for all i, j
in {1, . . . , k},

AG ((si = w ∧∧ sj=u)→ AF (sj = t ∧∧ A[¬(sj = u)U si = u])) (BO)

(iv) Maximal Reactivity, that is, if process Pi is waiting to execute the critical
section and all other processes are executing their noncritical sections, then in
the next state Pi will enter its critical section: for all i in {1, . . . , k},

AG ((si=w ∧∧
∧

j∈{1,...,k}\{i} sj=t)→ EX si=u) (MR)

In our synthesis experiments we have made the following choices for s0, L, D,
f , and T .

The initial state s0 is 〈t, t, 0〉 and 〈t, t, t, 0〉 for the 2- and 3-process sym-
metric concurrent programs, respectively.

The set L of the local states for the variables si’s is {t, w, u}, where t repre-
sents the noncritical section, w represents the waiting section, and u represents
the critical section.

The domainD of the shared variable x is a finite set of natural numbers whose
cardinality |D| depends on: (i) the number k of the processes to be synthesized,
and (ii) the properties that the concurrent program should satisfy. The value
of |D| is not known a priori, and we guess it at the beginning of our synthesis
task. If the synthesis fails, we increase the value of |D|, hoping for a successful
synthesis with a larger value of |D|.

The k -generating function f is chosen among the following ones: (i) id is the
identity function, (ii) f1 = {〈0, 1〉, 〈1, 0〉}, (iii) f2 = {〈0, 1〉, 〈1, 0〉, 〈2, 2〉}, and
(iv) f3 = {〈0, 1〉, 〈1, 2〉, 〈2, 0〉}.

The local transition relation T is {t 7→w, w 7→w, w 7→u, u 7→t}. The pair t 7→w

denotes that, once the noncritical section has been executed, a process enters
the waiting section. The pairs w 7→w and w 7→u denote that a process may repeat
(possibly an unbounded number of times) the execution of its waiting section
and then may enter its critical section. The pair u 7→ t denotes that, once the
critical section has been executed, a process enters its noncritical section.

Program Satisfied Properties |D| f |ans(Π)| Time

2-mutex -1 ME 2 id 6 0.07

2-mutex -1 ME 2 f1 7 0.70

2-mutex -2 ME, SF 2 f1 3 0.71

2-mutex -3 ME, SF, BO 2 f1 3 1.44

2-mutex -4 ME, SF, BO, MR 3 f2 2 11.7

3-mutex -1 ME 2 id 5 0.95

3-mutex -1 ME 2 f1 10 0.87

3-mutex -2 ME, SF 3 f3 8 152

3-mutex -3 ME, SF, BO 3 f3 8 1700

Table 1. Column named Program gives the names of the synthesized programs.
k-mutex -p denotes the mutual exclusion program for k processes and p behavioural
properties that are indicated in the column named Satisfied Properties. ME, SF, BO
and MR stand for ‘mutual exclusion’, ‘starvation freedom’, ‘bounded overtaking’, and
‘maximal reactivity’, respectively. Column named |D| gives the cardinality of the do-
main of the shared variable x. Column named f gives the k -generating functions (they
are defined in the text). Column named |ans(Π)| gives the cardinality of ans(Π), that
is, the number of answer sets of program Π = Πϕ ∪ ΠΣ. In column named Time we
indicate the times (in seconds) taken for the synthesis using the smodels [20].

In Figures 2 and 3 we present the syntax and the semantics of the synthesized
program, called 2-mutex -4, for the 2-process mutual exclusion problem described
in Example 3. (Program 2-mutex -4 is essentially the same as the Peterson algo-
rithm [18], but it uses a single shared variable.)

6 Related Work and Concluding Remarks

Two well known, early works on synthesis of concurrent programs were those by
Emerson and Clark [6] and Manna and Wolper [16].

In [6] Emerson and Clark introduce the notion of a synchronization skeleton
as an abstraction of the actual processes in concurrent programs. They synthesize
programs for a shared-memory model of execution by extracting the synchro-
nization skeletons from the models of CTL specifications using a tableau-based
decision procedure for the satisfiability of CTL formulas. This extraction proce-
dure is not completely mechanized.

Similarly to [6] in [16] Manna and Wolper present a method for synthesizing
synchronization instructions for processes in a message-passing model of execu-
tion from a Propositional Temporal Logic (PTL) using a tableau-based decision
procedure for the satisfiability of PTL formulas. The instructions synthesized by
their method are written as Communicating Sequential Processes [13].

In [19] Piterman, Pnueli, and Sa’ar consider the problem of the design of
digital circuits from Linear Temporal Logic (LTL) specifications and give an

P1 : P2 :

true → if true → if

(1) s1=t ∧∧ x=0 → s1 :=w; x :=2; s2=t ∧∧ x=0 → s2 :=w; x :=2;
(2) 8 s1=t ∧∧ x=1 → s1 :=w; x :=2; 8 s2=t ∧∧ x=1 → s2 :=w; x :=2;
(3) 8 s1=t ∧∧ x=2 → s1 :=w; x :=1; 8 s2=t ∧∧ x=2 → s2 :=w; x :=0;
(4) 8 s1=w ∧∧ x=0 → s1 :=u; x :=0; 8 s2=w ∧∧ x=0 → skip;
(5) 8 s1=w ∧∧ x=1 → skip; 8 s2=w ∧∧ x=1 → s2 :=u; x :=1;
(6) 8 s1=w ∧∧ x=2 → s1 :=u; x :=2; 8 s2=w ∧∧ x=2 → s2 :=u; x :=2;
(7) 8 s1=u ∧∧ x=2 → s1 :=t; x :=1; 8 s2=u ∧∧ x=2 → s2 :=t; x :=0;
(8) 8 s1=u ∧∧ x=0 → s1 :=t; x :=2; 8 s2=u ∧∧ x=1 → s2 :=t; x :=2;

fi fi

Fig. 2. The two synthesized processes P1 and P2 of the program 2-mutex -4: s1 := t;
s2 := t; x := 0; do P1 8 P2 od. It enjoys the following properties: mutual exclusion,
starvation freedom, bounded overtaking, and maximal reactivity.

〈t, t, 0〉

〈w, t, 2〉 〈t, w, 2〉

〈u, t, 2〉 〈w, w, 0〉 〈w, w, 1〉 〈t, u, 2〉

〈t, t, 1〉 〈u, w, 0〉 〈w, u, 1〉

1.1 2.1

1.6 2.3 1.3 2.6

1.7 2.3
1.4 2.5 1.32.81.8

1.2

2.7

2.2

Fig. 3. The transition relation of the Kripke structure associated with the 2-process
concurrent program 2-mutex -4. The initial state is 〈t, t, 0〉. For i = 1, 2, an arc la-
belled i.n indicates that the guarded command n of process Pi is responsible for that
transition.

O(N3) algorithm to construct an automaton satisfying a formula of a particular
class of LTL specifications.

We closely follow the approaches of [6] and [16]. In particular we synthesize
concurrent processes that communicate with each other by means of shared vari-
ables starting from CTL specifications. The programs we synthesize are written
as guarded commands [7].

In order to reduce the search space of our synthesis problem, we have used
a notion of symmetric concurrent programs which is similar to the one which
was introduced in [1,8] to overcome the state explosion problem. Our notion
of symmetry is formalized using group theory, similarly to what has been done
in [8] for model checking.

Similarly to Attie and Emerson [2], we also propose a method for the synthesis
task and we separate the behavioural properties from the structural properties.

However, in our approach the structural properties, such as symmetry, are rep-
resented in the symmetric program structures, rather than an automata based
formalism.

We have implemented our synthesis method in Answer Set Programming
(ASP). One advantage of our method over [1,6,16] is its generality: besides
temporal properties, we can specify structural properties, such as the above
mentioned symmetry, and our ASP program will automatically synthesize con-
current programs satisfying the desired properties without the need for ad hoc
algorithms.

To the best of our knowledge, there is only one paper by Heymans, Nieuwen-
borgh and Vermeir [12] who use Answer Set Programming for the synthesis of
concurrent programs. They have extended the ASP paradigm by adding prefer-
ences among models and they have developed an answer set system, called OLPS.
Using OLPS they perform the synthesis of concurrent programs following the
approach proposed in [6]. The synthesis method is not completely automatic
and, in particular, the shared variables are manually introduced during the ex-
traction of the synchronization skeleton. We do not require any extension of the
ASP paradigm, we use the by now standard ASP systems, such as DLV [9] and
smodels [20], and every steps of our synthesis procedure is fully automatic.

As future work we plan to explore various techniques for reducing the search
space of the synthesis procedure and, thus, we hope to synthesize protocols
for a larger number of processes and more complex properties to be guaranteed.
Among these techniques we envisage to apply those used in compositional model
checking [4].

References

1. P. C. Attie and E. A. Emerson. Synthesis of Concurrent Programs with Many
Similar Processes ACM Trans. on Program. Lang. and Syst., 51–115, 1998.

2. P. C. Attie and E. A. Emerson. Synthesis of Concurrent Programs for an Atomic
Read/Write Model of Computation. ACM Trans. Program. Lang. Syst., 187–242,
2001.

3. F. Calimeri, S. Cozza, G. Ianni and N. Leone. Enhancing ASP by Functions: Deci-
dable Classes and Implementation Techniques. Proceedings of the 24-th AAAI

Conference on Artificial Intelligence 2010, 1666–1670, 2010.

4. E. M. Clarke Jr., D. E. Long, and K. L. McMillan. Compositional model checking.
Logic in Computer Science, LICS ’89, Proceedings, IEEE Computer Society, 353–
362, 1989.

5. E. M. Clarke Jr., O. Grumber and D. A. Peled. Model Checking. The MIT Press,
1999.

6. E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skele-
tons Using Branching Time Temporal Logic. Workshop on Logic of Programs,
London, UK, Springer-Verlag, 52–71, 1982.

7. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

8. E. A. Emerson and A. P. Sistla. Symmetry and Model Checking. Formal Methods

in System Design: 9, 1–2, 105–131, 1996.

9. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri and F. Scarcello.
The DLV system for knowledge representation and reasoning ACM Trans. Comput.

Logic: 7, 499–562, 2006.
http://www.dlvsystem.com/dlvsystem/index.php/DLV

10. M. Gelfond and V. Lifschitz. The Stable Model Semantics For Logic Programming.
Proc. of the Fifth Intern. Conf. and Symp. on Logic Programming, Seattle, MIT
Press, 1070–1080, 1988.

11. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing: 9, 365–385, 1991.

12. S. Heymans, D. Van Nieuwenborgh and D. Vermeir. Synthesis from Temporal Spec-
ifications using Preferred Answer Set Programming. Lecture Notes in Computer

Science no. 3701, Springer, 280–294, 2005.
13. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
14. V. Lifschitz. Answer Set Programming and Plan Generation. Artificial Intelligence

no. 138, 39-54, 2002.
15. V. Lifschitz. What Is Answer Set Programming? Proceedings of the AAAI Con-

ference on Artificial Intelligence, MIT Press, 1594–1597, 2008.
16. Z. Manna and P. Wolper: Synthesis of Communicating Processes from Temporal

Logic Specifications. ACM Trans. Program. Lang. Syst., 68–93, 1984.
17. Z. Manna and A. Pnueli. The Temporal Logic of Reactive Systems: Specification.

Springer-Verlag, 1991.
18. G. L. Peterson. Myths about the mutual exclusion problem. Information Processing

Letters, 12(3):115–116, 1981.
19. N. Piterman, A. Pnueli and Y. Sa’ar. Synthesis of Reactive(1) Designs. Lecture

Notes in Computer Science no. 3855, Springer, 364–380, 2006.
20. T. Syrjänen and I. Niemelä. The Smodels System. Lecture Notes in Computer

Science no. 2173, Springer, 434–438, 2001.
http://www.tcs.hut.fi/Software/smodels/

