
Controlling Polyvariance for

Specialization-Based Verification

Fabio Fioravanti1, Alberto Pettorossi2, Maurizio Proietti3, and Valerio Senni2,4

1 Dipartimento di Scienze, University ‘G. D’Annunzio’, Pescara, Italy
fioravanti@sci.unich.it

2 DISP, University of Rome Tor Vergata, Rome, Italy
{pettorossi,senni}@disp.uniroma2.it

3 CNR-IASI, Rome, Italy
maurizio.proietti@iasi.cnr.it

4 LORIA-INRIA, Villers-les-Nancy, France
valerio.senni@loria.fr

Abstract. We present some extensions of a method for verifying safety
properties of infinite state reactive systems. Safety properties are speci-
fied by constraint logic programs encoding (backward or forward) reach-
ability algorithms. These programs are transformed, before their use for
checking safety, by specializing them with respect to the initial states (in
the case of backward reachability) or with respect to the unsafe states (in
the case of forward reachability). In particular, we present a specializa-
tion strategy which is more general than previous proposals and we show,
through some experiments performed on several infinite state reactive
systems, that by using the specialized reachability programs obtained
by our new strategy, we considerably increase the number of successful
verifications. Then we show that the specialization time, the size of the
specialized program, and the number of successful verifications may vary,
depending on the polyvariance introduced by the specialization, that is,
the set of specialized predicates which have been introduced. Finally,
we propose a general framework for controlling polyvariance and we use
our set of examples of infinite state reactive systems to compare in an
experimental way various control strategies one may apply in practice.

1 Introduction

Program specialization is a program transformation technique that, given a pro-
gram and a specific context of use, derives a specialized program that is more
effective in the given context [19]. Program specialization techniques have been
proposed for several programming languages and, in particular, for (constraint)
logic languages (see, for instance [7,11,16,17,21,22,24,27]).

Program specialization may generate polyvariant procedures, that is, it may
derive, starting from a single procedure, multiple specialized versions of that
procedure. In the case of (constraint) logic programming, program specialization
may introduce several new predicates corresponding to specialized versions of
a predicate occurring in the original program. The application of specialized

procedures to specific input values often results in a very efficient computation.
However, if the number of new predicate definitions and, hence, the size of the
specialized program, is overly large, we may have difficulties during program
compilation and execution.

In order to find an optimal balance between the degree of specialization and
the size of the specialized program, several papers have addressed the issue of
controlling polyvariance (see [22,26], in the case of logic programming). This
issue is related to the one of controlling generalization during program special-
ization, because a way of reducing unnecessary polyvariance is to replace several
specialized procedures by a single, more general one.

In this paper we address the issue of controlling polyvariance in the context
of specialization-based techniques for the automatic verification of properties of
reactive systems [12,13,23].

One of the present challenges in the verification field is the extension of
model checking techniques [5] to systems with an infinite number of states. For
these systems exhaustive state exploration is impossible and, even for restricted
classes, simple properties such as safety (or reachability) properties are undecid-
able (see [9] for a survey of relevant results).

In order to overcome this limitation, several authors have advocated the use
of constraints to represent infinite sets of states and constraint logic programs
to encode temporal properties (see, for instance, [8,15]). By using constraint-
based methods, a temporal property can be verified by computing the least
or the greatest models of programs, represented as finite sets of constraints.
Since, in general, the computation of these models may not terminate, various
techniques have been proposed based on abstract interpretation [2,3,6,8] and
program specialization [12,13,23].

The techniques based on abstract interpretation compute a conservative ap-
proximation of the program model, which is sometimes sufficient to prove that
the property of interest actually holds. However, in the case where the property
does not hold in the approximated model, one cannot conclude that the property
does not hold.

The techniques based on program specialization transform the program that
encodes the property of interest by taking into account the property to be proved
and the initial states of the system, so that the construction of the model of the
transformed program may terminate more often than the one of the original
program, that is, the so-called verification precision is improved.

In this paper we show that the control of polyvariance plays a very rele-
vant role in verification techniques based on program specialization. Indeed, the
specialization time, the size of the specialized program, and the precision of
verification may vary depending on the set of specialized predicates introduced
by different specialization strategies. We also propose a general framework for
controlling polyvariance during specialization and, through several examples of
infinite state reactive systems taken from the verification literature, we com-
pare in an experimental way various control strategies that may be applied in
practice.

Our paper is structured as follows. In Section 2 we present a method based
on constraint logic programming for specifying and verifying safety properties of
infinite state reactive systems. In Sections 3 and 4 we present a general framework
for specializing constraint logic programs that encode safety properties of infinite
state reactive systems and, in particular, for controlling polyvariance during
specialization. In Section 5 we present some experimental results. Finally, in
Section 6 we compare our method with related approaches in the field of program
specialization and verification.

2 Specialization-Based Reachability Analysis of Infinite
State Reactive Systems

An infinite state reactive system is specified as follows. A state is an n-tuple
〈a1, . . . , an〉 where each ai is either an element of a finite domain D or an element
of the set R of the real numbers. By X we denote a variable ranging over states,
that is, an n-tuple of variables 〈X1, . . . , Xn〉 where each Xi ranges over either D
or R. Every constraint c is a (possibly empty) conjunction fd(c) of equations on
a finite domain D and a (possibly empty) conjunction re(c) of linear inequations
on R. An equation on R is considered as a conjunction of two inequations. Given
a constraint c, every equation in fd(c) and every linear inequation in re(c) is said
to be an atomic constraint.

The set I of the initial states is represented by a disjunction init1(X) ∨∨ . . . ∨∨
initk(X) of constraints on X . The transition relation is a disjunction t1(X,X ′) ∨∨
. . . ∨∨ tm(X,X ′) of constraints onX andX ′, whereX ′ is the n-tuple 〈X ′

1, . . . , X
′
n〉

of primed variables.
A constraint c is also denoted by c(X), when we want indicate that the

variable X occurs in it. Similarly, for constraints denoted by c(X ′) or c(X,X ′).
Given a constraint c and a tuple V of variables, we define the projection c|V to
be the constraint d such that: (i) the variables of d are among the variables in V ,
and (ii) D ∪ R |= d↔ ∃Z c, where Z is the tuple of the variables occurring in c
and not in V . We assume that the set of constraints is closed under projection.

Given a clause C of the form H ← c ∧∧ G, by con(C) we denote the con-
straint c. A clause of the form H ← c, where c is a constraint, is said to be
a constrained fact . We say that a constrained fact H ← c subsumes a clause
H ← d∧∧G, where d is a constraint and G is a goal, iff d entails c, written d � c,
that is, D ∪ R |= ∀(d→ c).

In this paper we will focus on the verification of safety properties. A safety
property holds iff an unsafe state cannot be reached from an initial state of the
system. The set U of the unsafe states is represented by a disjunction u1(X) ∨∨ . . .
∨∨ un(X) of constraints.

One can verify a safety property by one of the following two strategies:
(i) the Backward Strategy : one applies a backward reachability algorithm, thereby
computing the set BR of states from which it is possible to reach an unsafe state,
and then one checks whether or not BR has an empty intersection with the set I
of the initial states;

(ii) the Forward Strategy: one applies a forward reachability algorithm, thereby
computing the set FR of states reachable from an initial state, and then one
checks whether or not FR has an empty intersection with the set U of the unsafe
states.

Variants of these two strategies have been proposed and implemented in
various automatic verification tools [1,4,14,20,28].

The Backward and Forward Strategies can easily be encoded into constraint
logic programming. In particular, we can encode the backward reachability al-
gorithm by means of the following constraint logic program Bw :

I1: unsafe← init1(X) ∧∧ bwReach(X)
· · ·

Ik: unsafe← initk(X) ∧∧ bwReach(X)
T1: bwReach(X)← t1(X,X ′) ∧∧ bwReach(X ′)
· · ·

Tm: bwReach(X)← tm(X,X ′) ∧∧ bwReach(X ′)
U1: bwReach(X)← u1(X)
· · ·

Un: bwReach(X)← un(X)

We have that: (i) bwReach(X) holds iff an unsafe state can be reached from the
state X in zero or more applications of the transition relation, and (ii) unsafe
holds iff there exists an initial state of the system from which an unsafe state
can be reached.

The semantics of program Bw is given by the least model, denoted M(Bw),
that is, the set of ground atoms derived by using: (i) the theory of equations
over the finite domain D and the theory of linear inequations over the reals R

for the evaluation of the constraints, and (ii) the usual least model construction
(see [18] for more details).

The system is safe if and only if unsafe
∈M(Bw).

Example 1. Let us consider an infinite state reactive system where each state is
a pair of real numbers and the following holds:
(i) the set of initial states is the set of pairs 〈X1, X2〉 such that the constraint
X1 ≥ 1 ∧∧ X2 = 0 holds;
(ii) the transition relation is the set of pairs of states 〈〈X1, X2〉, 〈X ′

1, X
′
2〉〉 such

that the constraint X ′
1=X1+X2 ∧∧ X ′

2=X2+1 holds; and
(iii) the set of unsafe states is the set of pairs 〈X1, X2〉 such that the constraint
X2>X1 holds.
For the above system the predicate unsafe is defined by the following CLP
program Bw1:

1. unsafe← X1≥1 ∧∧ X2=0 ∧∧ bwReach(X1, X2)
2. bwReach(X1, X2)← X ′

1=X1+X2 ∧∧ X ′
2 = X2+1 ∧∧ bwReach(X ′

1, X
′
2)

3. bwReach(X1, X2)← X2>X1 �

The Backward Strategy can be implemented by the bottom-up construction
of the least fixpoint of the immediate consequence operator SBw, that is, by
computing SBw ↑ω [18]. The operator SBw is analogous to the usual immediate
consequence operator associated with logic programs, but constructs a set of

constrained facts, instead of a set of ground atoms. We have that M(Bw) is the
set of ground atoms of the form Aϑ such that there exists a constrained fact
A← c in SBw ↑ω and the constraint cϑ is satisfiable. BR is the set of all states s
such that there exists a constrained fact of the form bwReach(X) ← c(X) in
SBw ↑ω and c(s) holds. Thus, by using clauses I1, . . . , Ik, we have that the atom
unsafe holds iff BR ∩ I
= ∅.

One weakness of the Backward Strategy is that, when computing BR, it does
not take into account the constraints holding on the initial states. This may lead
to a failure of the verification process, even if the system is safe, because the
computation of SBw ↑ω may not terminate. A similar weakness is also present
in the Forward Strategy as it does not take into account the properties holding
on the unsafe states when computing FR.

In this paper we present a method, based upon the program specialization
technique introduced in [13], for overcoming these weaknesses. For reasons of
space we will present the details of our method for the Backward Strategy only.
The application of our method in the case of the Forward Strategy is similar, and
we will briefly describe it when presenting our experimental results in Section 5.

The objective of program specialization is to transform the constraint logic
program Bw into a new program SpBw such that: (i) unsafe ∈ M(Bw) iff
unsafe ∈ M(SpBw), and (ii) the computation of SSpBw ↑ ω terminates more
often than SBw ↑ ω because it exploits the constraints holding on the initial
states.

Let us show how our method based program specialization works on the
infinite state reactive system of Example 1.

Example 2. Let us consider the program Bw1 of Example 1. The computation of
SBw1 ↑ω does not terminate, because it does not take into account the informa-
tion about the set of initial states, represented by the constraintX1≥1 ∧∧ X2=0.
(One can also check that the top-down evaluation of the query unsafe does not
terminate either.)

This difficulty can be overcome by specializing the program Bw1 with respect
to the constraint X1 ≥ 1 ∧∧ X2 = 0. Similarly to [13], we apply a specialization
technique based on the unfolding and folding transformation rules for constraint
logic programs (see, for instance, [10]). We introduce a new predicate new1
defined as follows:

4. new1(X1, X2)← X1≥1 ∧∧ X2=0 ∧∧ bwReach(X1, X2)

We fold clause 1 using clause 4, that is, we replace the atom bwReach(X1, X2)
by new1(X1, X2) in the body of clause 1, and we get:

5. unsafe← X1≥1 ∧∧ X2=0 ∧∧ new1(X1, X2)

Now we continue the transformation from the definition of the newly intro-
duced predicate new1. We unfold clause 4, that is, we replace the occurrence of
bwReach(X1, X2) by the bodies of the clauses 2 and 3 defining bwReach(X1, X2)
in Bw1, and we derive:

6. new1(X1, X2)← X1≥1 ∧∧ X2=0 ∧∧ X ′
1=X1 ∧∧ X ′

2=1 ∧∧ bwReach(X ′
1, X

′
2)

In order to fold clause 6 we may use the following definition, whose body consists
(modulo variable renaming) of the atom bwReach(X ′

1, X
′
2) and the constraint

X1≥1 ∧∧ X2=0 ∧∧ X ′
1=X1 ∧∧ X ′

2=1 projected w.r.t. the variables 〈X ′
1, X

′
2〉:

7. newp(X1, X2)← X1≥1 ∧∧ X2=1 ∧∧ bwReach(X1, X2)

However, if we repeat the process of unfolding and, in order to fold, we introduce
new predicate definitions whose bodies consist of the atom bwReach(X ′

1, X
′
2) and

projected constraints w.r.t. 〈X ′
1, X

′
2〉, then we will introduce, in fact, an infinite

sequence of new predicate definitions of the form:

newq(X1, X2)← X1≥1 ∧∧ X2=k ∧∧ bwReach(X1, X2)

where k gets the values 1, 2, . . . In order to terminate the specialization pro-
cess we apply a generalization strategy and we introduce the following predicate
definition which is a generalization of both clauses 4 and 7:

8. new2(X1, X2)← X1≥1 ∧∧ X2≥0 ∧∧ bwReach(X1, X2)

We fold clause 6 using clause 8 and we get:

9. new1(X1, X2)← X1≥1 ∧∧ X2=0 ∧∧ X ′
1=X1 ∧∧ X ′

2=1 ∧∧ new2(X ′
1, X

′
2)

Now we continue the transformation from the definition of the newly introduced
predicate new2. By unfolding clause 8 and then folding using again clause 8 we
derive:

10. new2(X1, X2)← X1≥1 ∧∧X2≥0 ∧∧ X ′
1=X1+X2 ∧∧X ′

2=X2+1 ∧∧new2(X ′
1, X

′
2)

11. new2(X1, X2)← X1≥1 ∧∧ X2>X1

The final specialized program, called SpBw1, is made out of clauses 5, 9, 10,
and 11. Now the computation of SSpBw1 ↑ω terminates due to the presence of
the constraint X1≥1 which holds on the initial states and occurs in all clauses
of SpBw1. �

The form of the specialized program strongly depends on the strategy used
for introduction of new predicates corresponding to the specialized versions of the
predicate bwReach. For instance, in Example 1 we have introduced the two new
predicates new1 and new2, and then we have obtained the specialized program
by deriving mutually recursive clauses defining those predicates. Note, however,
that the definition of new2 is more general than the definition of new1, because
the constraint occurring in the body of the clause defining new1 implies the
constraint occurring in the body of the clause defining new1. Thus, by applying
an alternative strategy we could introduce new2 only and derive a program
SpBw2 where clauses 5 and 9 are replaced by the following clause:

12. unsafe← X1≥1 ∧∧ X2=0 ∧∧ new2(X1, X2)

Program SpBw2 is smaller than SpBw1 and the computation of SSpBw2 ↑ ω
terminates in fewer steps than the one of SSpBw1 ↑ω.

In general, when applying our specialization-based verification method there
is an issue of controlling polyvariance, that is, of introducing a set of new predi-
cate definitions that perform well with respect to the following objectives:
(i) ensuring the termination and the efficiency of the specialization strategy,
(ii) minimizing the size of the specialized program, and

(iii) ensuring the termination and the efficiency of the fixpoint computation of
the least models.

The objective of ensuring the termination of the fixpoint computation (and,
thus, the precision of the verification\) can be in contrast with the other objec-
tives, because it may need the introduction of less general predicates, while the
achievement of other objectives is favoured by the introduction of more general
predicates. In the next section we will present a framework for controlling poly-
variance and achieving a good balance between the requirements we have listed
above.

3 A Generic Algorithm for Controlling Polyvariance
During Specialization

The core of our technique for controlling polyvariance is an algorithm for spe-
cializing the CLP program Bw with respect to the constraints characterizing the
set of initial states. Our algorithm is generic, in the sense that it depends on
three unspecified procedures: (1) Partition, (2) Generalize, and (3) Fold. Various
definitions of the Partition, Generalize, and Fold procedures will be given in the
next section, thereby providing concrete specialization algorithms. These defini-
tions encode techniques already proposed in the specialization and verification
fields (see, for instance, [6,13,22,27]) and also new techniques proposed in this
paper.

Our generic specialization algorithm (see Figure 1) constructs a tree, called
DefsTree, where: (i) each node is labelled by a clause of the form newp(X) ←
d(X) ∧∧ bwReach(X), called a definition, defining a new predicate introduced
during specialization, and (ii) each arc from node Di to node Dj is labelled by
a subset of the clauses obtained by unfolding the definition of node Di. When
no confusion arises, we will identify a node with its labelling definition. An arc
from definition Di to definition Dj labelled by the set Cs of clauses is denoted

by Di
Cs−→ Dj.

The definition at the root of DefsTree is denoted by the special symbol T.

Initially, DefsTree is {T {I1}−→ D1, . . . ,T
{Ik}−→ Dk}, where (i) I1, . . . , Ik are the

clauses defining the predicate unsafe in program Bw (see Section 2), and (ii) for
j = 1, . . . , k, Dj is the clause new j(X) ← initj(X) ∧∧ bwReach(X), such that
new j is a new predicate symbol and the body of Dj is equal to the body of Ij .

A definition D in DefsTree is said to be recurrent iff D labels both a leaf
node and a non-leaf node of DefsTree.

We construct the children of a non-recurrent definition D in the definition
tree DefsTree constructed so far, as follows. We unfold D with respect to the
atom bwReach(X) occurring in its body, that is, we replace bwReach(X) by the
bodies of the clauses T1, . . . , Tm, U1, . . . , Un that define bwReach in Bw, thereby
deriving a set UnfD of m+n clauses. Then, from UnfD we remove all clauses
whose body contains an unsatisfiable constraint and all clauses that are subsumed
by a (distinct) constrained fact in UnfD.

Next we apply the Partition procedure and we compute a set {B1, . . . , Bh}
of pairwise disjoint sets of clauses, called blocks, such that UnfD = B1∪ . . .∪Bh.

Finally, we apply the Generalize procedure to each block of the partition.
This generalization step is often useful because, as it has been argued in [27],
it allows us to derive more efficient programs. Our Generalize procedure takes
as input the clause D, a block Bi of the partition of UnfD , and the whole
definition tree constructed so far. As we will indicate below, this third argument
of the Generalize procedure allows us to express the various techniques presented
in [6,13,22,27] for controlling generalization and polyvariance.

The output of the Generalize procedure is, for each block Bi, a definition Gi

such that the constraint occurring in the body of Gi is entailed by every con-
straint occurring in the body of a non-unit clause (that is, a clause different from
a constrained fact) in Bi and, hence, every non-unit clause in Bi can be folded
using Gi. If all clauses in Bi are constrained facts (and thus, no folding step is
required), then Gi is the special definition denoted by the symbol �. If a clause
in Bi has the form h(X) ← c(X,X ′) ∧∧ bwReach(X ′), then Gi has the form
newp(X) ← d(X) ∧∧ bwReach(X) and c(X,X ′) � d(X ′). However, we postpone
the folding steps until the end of the construction of the whole tree DefsTree.

For i = 1, . . . , h, we add to DefsTree the arc D
Bi−→ Gi.

The construction of DefsTree terminates when all leaf clauses of the current
DefsTree are recurrent. In general, termination of this construction is not guar-
anteed and it depends on the particular Generalize procedure one considers. All
Generalize procedures presented in the next section guarantee termination (see
also [13,22,27]).

When the construction of DefsTree terminates we construct the specialized
program SpBw by applying the Fold procedure which consists in: (i) collecting
all clauses occurring in the blocks that label the arcs of DefsTree, and then
(ii) folding every non-unit clause by using a definition that labels a node of
DefsTree. Recall that, by construction, every non-unit clause occurring in a block
that labels an arc of DefsTree can be folded by a definition that labels a node
of DefsTree.

In the following Section, we will show how the specialization technique of
Example 2 can be regarded as an instance of our generic specialization algorithm.

By using the correctness results for the unfolding, folding, and clause re-
moval rules (see, for instance, [10]), we can prove the correctness of our generic
specialization algorithm, as stated by the following theorem.

Theorem 1 (Correctness of the Specialization Algorithm). Let programs
Bw and SpBw be the input and the output programs, respectively, of the special-
ization algorithm that uses any given Partition, Generalize, and Fold procedures.
Then unsafe∈M(Bw) iff unsafe∈M(SpBw).

Input : Program Bw.
Output : Program SpBw such that unsafe ∈M(Bw) iff unsafe ∈M(SpBw).

Initialization:

DefsTree := {T {I1}−→ D1, . . . ,T
{Ik}−→ Dk};

while there exists a non-recurrent definition D: newp(X) ← c(X) ∧∧ bwReach(X) in
DefsTree do

Unfolding: UnfD := {newp(X)← c(X) ∧∧ t1(X,X ′) ∧∧ bwReach(X ′), . . . ,
newp(X)← c(X) ∧∧ tm(X,X ′) ∧∧ bwReach(X ′),
newp(X)← c(X) ∧∧ u1(X), . . . ,
newp(X)← c(X) ∧∧ un(X) };

Clause Removal:
while in UnfD there exist two distinct clauses E and F such that E is a constrained

fact that subsumes F or there exists a clause F whose body has a constraint
which is not satisfiable do UnfD := UnfD− {F} end-while;

Definition Introduction:
Partition(UnfD, {B1, . . . , Bh});
for i = 1, . . . , h do

Generalize(D,Bi,DefsTree, Gi);

DefsTree := DefsTree ∪ {D Bi−→ Gi}
end-for ;

end-while;

Folding: Fold(DefsTree,SpBw)

Fig. 1. The generic specialization algorithm.

4 Partition, Generalize, and Fold Procedures

In this section we provide several definitions of the Partition, Generalize, and
Fold procedures used by the generic specialization algorithm. Let us start by
introducing the following notions.

First, note that the set of all conjunctions of equations on D can be viewed as
a finite lattice whose partial order is defined by the entailment relation �. Given
the constraints c1, . . . , cn, we define their most specific generalization, denoted
γ(c1, . . . , cn), the conjunction of: (i) the least upper bound of the conjunctions
fd(c1), . . . , fd(cn) of equations on D, and (ii) the convex hull [6] of the constraints
re(c1), . . . , re(cn) on R, which is the least (w.r.t. the � ordering) constraint h in R

such that re(ci) � h, for i = 1, . . . , n. (Note that this notion of generalization is
different from the one that is commonly used in logic programming.)

Note that, for i = 1, . . . , n, ci � γ(c1, . . . , cn). Given a set of constraints Cs =
{c1, . . . , cn}, we define the equivalence relation �fd on Cs such that, for ev-
ery c1, c2 ∈Cs, c1 �fd c2 iff fd(c1) is equivalent to fd(c2) in D. We also define
the equivalence relation �re on Cs as the reflexive, transitive closure of the re-
lation ↓R on Cs such that, for every c1, c2 ∈ Cs, c1 ↓R c2 iff re(c1) ∧∧ re(c2) is
satisfiable in R.

For example, let us consider an element a ∈ D. Let c1 be the constraint
X1 > 0 ∧∧ X2 = a and c2 be the constraint X1 < 0 ∧∧ X2 = a. Then we have that

c1 �fd c2 on {c1, c2}. Now, let c3 be the constraint X1 > 0 ∧∧ X1 < 2, c4 be the
constraint X1 > 1 ∧∧ X1 < 3, and c5 be the constraint X1 > 2 ∧∧ X1 < 4. Since
c3 ↓R c4 and c4 ↓R c5, we have c3 �re c5 on {c3, c4, c5}. Note that c3
�re c5 on
{c3, c5} because c3 ∧∧ c5 is not satisfiable in R.

Partition. The Partition procedure takes as input the following set of n (≥ 1)
clauses:

UnfD := {C1 : newp(X)← c1(X,X ′) ∧∧ bwReach(X ′),
· · ·

Cm : newp(X)← cm(X,X ′) ∧∧ bwReach(X ′),
Cm+1 : newp(X)← cm+1(X,X ′),

· · ·
Cn : newp(X)← cn(X,X ′) }

where, for some m, with 0≤m≤ n, C1, . . . , Cm are not constrained facts, and
Cm+1, . . . , Cn are constrained facts. The Partition procedure returns as output a
partition {B1, . . . , Bh} of UnfD, such that Bh = {Cm+1, . . . , Cn}. The integer h
and the blocks B1, . . . , Bh−1 are computed by using one of the following partition
operators. For the operators FiniteDomain, Constraint, and FDC, the integer h
to be computed is obtained as a result of the computation of the blocks Bi’s.

(i) Singleton: h = m+1 and, for 1≤ i≤h−1, Bi={Ci}, which means that every
non-constrained fact is in a distinct block;

(ii) FiniteDomain: for 1≤ i≤ h−1, for j, k = 1, . . . ,m, two clauses Cj and Ck

belong to the same block Bi iff their finite domain constraints on the primed
variables are equivalent, that is, iff cj |X′ �fd ck|X′ on {c1|X′ , . . . , cm|X′};

(iii) Constraint : for 1≤ i≤h−1, for i, j=1, . . . ,m, two clauses Cj and Ck belong
to the same block Bi iff there exists a sequence of clauses in UnfD starting
with Cj and ending with Ck such that for any two consecutive clauses in the
sequence, the conjunction of the real constraints on the primed variables is
satisfiable, that is, iff cj|X′ �re ck|X′ on {c1|X′ , . . . , cm|X′};

(iv) FDC : for 1≤ i≤h−1, for i, j=1, . . . ,m, two clauses Cj and Ck belong to
the same block Bi iff they belong to the same block according to both the
FiniteDomain and the Constraint partition operator, that is, iff cj |X′ �fd

ck|X′ and cj |X′ �re ck|X′ on {c1|X′ , . . . , cm|X′};
(v) All : h = 2 and B1 = {C1, . . . , Cm}, which means that all non-constrained

facts are in a single block.

Generalize. The Generalize procedure takes as input a definition D, a block B
of clauses computed by the Partition procedure, and the tree DefsTree of def-
initions introduced so far, and returns a definition clause G. If B is a set of
constrained facts then G is the special definition denoted by the symbol �. Oth-
erwise, if B is the set {E1, . . . , Ek} of clauses and none of which is a constrained
fact, then clause G is obtained as follows.

Step 1. Let b(X ′) denote the most specific generalization γ(con(E1)|X′ , . . . ,
con(Ek)|X′).
if there exists a nearest ancestor A1 of D (possibly D itself) in DefsTree
such that A1 is of the form: newq(X ′) ← a1(X

′) ∧∧ bwReach(X ′) (modulo

variable renaming) and a1(X
′)�fd con(D)

then banc(X
′)=γ(a1(X

′), b(X ′)) else banc(X
′)=b(X ′);

Step 2. Let us consider a generalization operator � (see [13] and the operators
Widen and WidenSum defined below).
if in DefsTree there exists a clause H : newt(X ′) ← d(X ′) ∧∧ bwReach(X ′)
(modulo variable renaming) such that banc(X

′) � d(X ′)
then G is H
else let newu be a new predicate symbol

if there exists a nearest ancestorA2 ofD (possiblyD itself) in DefsTree
such that A2 is a definition of the form:
newr(X ′)← a2(X

′), bwReach(X ′) and a2(X
′) �fd banc(X

′)
then G is newu(X ′)← (a2(X

′)� banc(X
′)) ∧∧ bwReach(X ′)

else G is newu(X ′)← banc(X
′) ∧∧ bwReach(X ′).

In [13] we have defined and compared several generalization operators. Among
those, now we consider the following two operators which we have used in the
experiments we have reported in the next section. Indeed, as indicated in [13],
these two operators perform better than all other operators.

Widen. Given any two constraints c and d such that c is a1 ∧∧ . . . ∧∧ am, where the
ai’s are atomic constraints, the operator Widen, denoted �W , returns the
constraint c�W dwhich is the conjunction of the atomic constraints of c which
are entailed by d, that is, which are in the set {ah | 1≤ h≤m and d� ah}
(see [6] for a similar widening operator used in static analysis). Note that, in
the case of our Generalize procedure, we have that fd(d) is a subconjunction
of c�W d.

WidenSum. Let us first define the thin well-quasi ordering �S . For any atomic
constraint a on R of the form q0+q1X1+. . .+qkXk�0, where � is either < or
≤, we define sumcoeff(a) to be

∑k
j=0 |qj |. Given the two atomic constraints a1

of the form p1 < 0 and a2 of the form p2 < 0, we have that a1 �S a2 iff
sumcoeff(a1)≤sumcoeff(a2). Similarly, if we are given the atomic constraints
a1 of the form p1≤0 and a2 of the form p2≤0. Given any two constraints c =
a1 ∧∧ . . . ∧∧ am and d= b1 ∧∧ . . . ∧∧ bn, where the ai’s and the bi’s are atomic
constraints, the operator WidenSum, denoted �WS, returns the constraint
c�WS d which is the conjunction of the constraints in the set {ah | 1≤h≤m
and d � ah} ∪ {bk | bk occurs in re(d) and ∃ ai occuring in re(c), bk �S ai},
which is the set of atomic constraints which either occur in c and are entailed
by d, or occur in d and are less than or equal to some atomic constraint in c,
according to the thin well-quasi ordering �S . Note that, in the case of our
Generalize procedure, we have that fd(d) is a subconjunction of c�WS d.

Our generic Partition and Generalize procedures can be instantiated to get
known specialization algorithms and abstract interpretation algorithms. In par-
ticular, (i) the technique proposed by Cousot and Halbwachs [6] can be obtained
by using the operators FiniteDomain and Widen, (ii) the specialization algo-
rithm by Peralta and Gallagher [27] can be obtained by using the operators All
and Widen, and (iii) our technique presented in [13] can be obtained by using the

partition operator Singleton together with the generalization operators Widen
or WidenSum.

Fold. Let us first introduce the following definition. Given the two clauses
C : newp(X) ← c(X) ∧∧ bwReach(X) and D : newq(X) ← d(X) ∧∧ bwReach(X),
we say that C ismore general thanD, and by abuse of language, we writeD � C,
iff d(X) � c(X). A clause C is said to be maximally general in a set S of clauses
iff for all clauses D∈S, if C � D then D � C. (Recall that the relation � is not
antisymmetric.) For the Fold procedure we have the following two options.

Immediate Fold (Im, for short): (Step 1) all clauses occurring in the labels of
the arcs of DefsTree are collected in a set F , and then (Step 2) for every
non-unit clause E in F such that E occurs in the block Bi labelling an arc

of the form D
Bi−→Di, for some clause D, E is folded using Di.

Maximally General Fold (MG, for short): (Step 1) is equal to that of Immediate
Fold procedure, and (Step 2) every non-unit clause in F is folded using a
maximally general clause in DefsTree.

Immediate Fold is simpler than Maximally General Fold, because it does not
require any comparison between definitions in DefsTree to compute a maximally
general one. Note also that a unique, most general definition for folding a clause
may not exist, that is, there exist clauses that can be folded by using two def-
initions which are incomparable with respect to the � ordering. However, the
Maximally General Fold procedure allows us to use a subset of the definitions
introduced by the specialization algorithm, thereby reducing polyvariance and
deriving specialized programs of smaller size.

As already mentioned in the previous section, the specialization technique
which we have applied in Example 2 can be obtained by instantiating our generic
specialization algorithm using the following operators: Singleton for partitioning,
Widen for generalization, and Immediate Fold for folding.

5 Experimental Evaluation

We have implemented the generic specialization algorithm presented in Section 3
using MAP [25], an experimental system for transforming constraint logic pro-
grams. The MAP system is implemented in SICStus Prolog 3.12.8 and uses the
clpr library to operate on constraints. All experiments have been performed on
an Intel Core 2 Duo E7300 2.66GHz under the Linux operating system.

We have performed the backward and forward reachability analyses of sev-
eral infinite state reactive systems taken from the literature [1,2,4,8,20,28], en-
coding, among others, mutual exclusion protocols, cache coherence protocols,
client-server systems, producer-consumer systems, array bound checking, and
Reset Petri nets.

For backward reachability we have applied the method presented in Sec-
tion 2. For forward reachability we have applied a variant of that method and
in particular, first, (i) we have encoded the forward reachability algorithm by a
constraint logic program Fw and we have specialized Fw with respect to the set

of the unsafe states, thereby deriving a new program SpFw, and then, (ii) we
have computed the least fixpoint of the immediate consequence operator SSpFw

(associated with program SpFw).

In Tables 1 and 2 we have reported the results of our verification experiments
for backward reachability (that is, programBw) and forward reachability (that is,
program Fw), respectively. For each example of infinite state reactive system, we
have indicated the total verification time (in milliseconds) of the non-specialized
system and of the various specialized systems obtained by applying our strategy.

The symbol ‘∞’ means that either the program specialization or the least
fixpoint construction did not terminate within 200 seconds. If the time taken is
less than 10 milliseconds, we have written the value ‘0’. Between parentheses we
have also indicated the number of predicate symbols occurring in the specialized
program. This number is a measure of the degree of polyvariance determined by
our specialization algorithm.

In the column named Input , we have indicated the time taken for com-
puting the least fixpoint of the immediate consequence operator of the input,
non-specialized program (whose definition is based on program Bw for back-
ward reachability, and program Fw for forward reachability). In the six right-
most columns, we have shown the sum of the specialization time and the time
taken for computing the least fixpoint of the immediate consequence operator
of the specialized programs obtained by using the following six pairs of par-
tition operators and generalization operators: (i) 〈All, Widen〉, called AllW ,
(ii) 〈FDC, Widen〉, called FDCW , (iii) 〈Singleton, Widen〉, called SingleW ,
(iv) 〈All, WidenSum〉, called AllWS , (v) 〈FDC, WidenSum〉, called FDCWS ,
and (vi) 〈Singleton, WidenSum〉, called SingleWS . For each example the tables
have two rows corresponding, respectively, to the Immediate Fold procedure (Im)
and Maximally General Fold procedure (MG).

If we consider precision, that is, the number of successful verifications, we
have that the best combinations of the partition procedure and the generalization
operators are: (i) FDCWS and SingleWS for backward reachability, each of
which verified 54 properties out of 58 (in particular, 27 with Im and 27 withMG),
and (ii) SingleWS for forward reachability, which verified 36 properties out of 58
(in particular, 18 with Im and 18 with MG).

If we compare the Generalize procedures we have that WidenSum is strictly
more precise than Widen (up to 50%). Moreover, except for a few cases (back-
ward reachability of CSM, forward reachability of Kanban), if a property cannot
be proved by usingWidenSum then it cannot be proved usingWiden. WidenSum
is usually more polyvariant than Widen. If we consider the verification times,
they are generally favourable to WidenSum with respect to Widen, with some
exceptions.

If we compare the partition operators we have that All is strictly less pre-
cise than the other operators: it successfully terminates in 138 cases out of 232
tests obtained by varying: (i) the given example-program, (ii) the property to be
proved (either forward reachability or backward reachability), (iii) the general-
ization operator, and (iv) the Fold procedure. However, All is the only partition

operator which allows us to verify the McCarty91 examples. By using the Sin-
gleton operator, the verification terminates in 158 cases out of 232, and by using
the FDC operator, the verification successfully terminates in 159 cases out of
232. However, there are some properties (forward reachability of Peterson, In-
sertionSort and SelectionSort) which can only be proved using Singleton.

Note also that, if a property can be verified by using the FDC partition
operator, then it can be verified by using either the operator All or the operator
Singleton.

The two operators Singleton and FDC have similar polyvariance and veri-
fication times, while the operator All yields a specialized program with lower
polyvariance and requires shorter verification times than Singleton and FDC.

If we compare the two Fold procedures, we have that Maximally General
Fold for most of the examples has lower polyvariance and shorter verification
times than Immediate Fold, while the precision of the two procedures is almost
identical, except for a few cases where Maximally General Fold verifies the prop-
erty, while Immediate Fold does not (backward reachability of Bakery4, Peterson
and CSM).

6 Related Work and Conclusions

We have proposed a framework for controlling polyvariance during the special-
ization of constraint logic programs in the context of verification of infinite state
reactive systems. In our framework we can combine several techniques for intro-
ducing a set of specialized predicate definitions to be used when constructing
the specialized programs. In particular, we have considered new combinations of
techniques introduced in the area of constraint-based program analysis and pro-
gram specialization such as convex hull, widening, most specific generalization,
and well-quasi orderings (see, for instance, [6,13,22,27]).

We have performed an extensive experimentation by applying our special-
ization framework to the reachability analysis of infinite state systems. We have
considered constraint logic programs that encode both backward and forward
reachability algorithms and we have shown that program specialization improves
the termination of the computation of the least fixpoint needed for the analysis.
However, by applying different instances of our framework, we may get different
termination results and different verification times. In particular, we have pro-
vided an experimental evidence that the degree of polyvariance has an influence
on the effectiveness of our specialization-based verification method.

Our experiments confirm that, on one hand, a high degree of polyvariance
often corresponds to high precision of analysis (that is, high number of termi-
nating verifications) and, on the other hand, a low degree of polyvariance often
corresponds to short verification times. We have also determined a specific com-
bination of techniques for controlling polyvariance and provides, with respect to
our set of examples, a good balance between precision and verification time.

Other techniques for controlling polyvariance during the specialization of
logic programs have been proposed in the literature [7,13,22,26,27]. As already

Input Fold AllW FDCW Single W AllWS FDCWS Single WS

Bakery2 60 Im 140 (5) 130 (36) 130 (36) 80 (6) 20 (23) 20 (23)

MG 100 (3) 110 (14) 100 (14) 80 (6) 20 (15) 20 (15)

Bakery3 2710 Im 7240 (5) 3790 (144) 3870 (144) 1100 (6) 200 (77) 150 (77)

MG 3380 (3) 2620 (64) 2190 (61) 1110 (6) 200 (60) 190 (60)

Bakery4 129900 Im ∞ 112340 (535) 111540 (539) 19340 (6) 102140 (1745) 101300 (1745)

MG 129940 (3) 37760 (292) 37010 (296) 19340 (6) 78190 (1172) 76940 (1172)

MutAst 1220 Im 4370 (6) 350 (173) 330 (173) 7850 (7) 170 (112) 150 (112)

MG 1400 (3) 350 (59) 330 (59) 1980 (3) 190 (86) 150 (86)

Peterson N 166520 Im ∞ ∞ ∞ 620 (9) 260 (22) 220 (22)

MG ∞ ∞ 167650 (3) 650 (9) 260 (22) 230 (22)

Ticket ∞ Im ∞ 30 (11) 10 (11) ∞ 20 (11) 20 (11)

MG ∞ 20 (11) 20 (11) ∞ 20 (11) 20 (11)

Berke-RISC 20 Im 80 (5) 70 (6) 30 (6) 70 (5) 50 (8) 40 (8)

MG 80 (3) 70 (3) 30 (3) 70 (5) 50 (8) 30 (8)

DEC Firefly 50 Im 140 (5) 160 (7) 100 (7) 320 (7) 30 (6) 20 (6)

MG 140 (3) 160 (3) 90 (3) 300 (5) 20 (6) 10 (6)

Futurebus+ 14890 Im 16900 (6) 45240 (14) 44340 (14) 16910 (6) 2580 (19) 2410 (19)

MG 15150 (3) 15590 (3) 14990 (3) 15140 (3) 2560 (15) 2220 (15)

Illinois Univ 70 Im 210 (5) 150 (7) 60 (7) 110 (5) 30 (6) 20 (6)

MG 190 (3) 150 (5) 70 (5) 100 (3) 30 (6) 20 (6)

MESI 60 Im 120 (5) 50 (6) 50 (6) 90 (5) 40 (7) 20 (7)

MG 90 (3) 60 (4) 20 (4) 90 (5) 40 (7) 30 (7)

MOESI 50 Im 220 (6) 190 (7) 130 (7) 250 (6) 90 (7) 50 (7)

MG 200 (3) 140 (3) 90 (3) 210 (3) 90 (5) 50 (5)

Synapse N+1 10 Im 30 (4) 20 (5) 10 (5) 30 (4) 20 (5) 20 (5)

MG 20 (3) 20 (4) 20 (4) 20 (3) 30 (4) 10 (4)

Xerox Dragon 80 Im 230 (5) 180 (7) 80 (7) 470 (7) 60 (8) 30 (8)

MG 240 (3) 170 (5) 60 (5) 470 (5) 60 (8) 20 (8)

Barber 420 Im 290 (5) 5170 (31) 3210 (35) 750 (6) 900 (44) 300 (43)

MG 270 (3) 3080 (6) 690 (6) 750 (6) 930 (44) 290 (43)

B-Buffer 20 Im 170 (5) 400 (11) 280 (11) 210 (6) 4490 (75) 3230 (75)

MG 150 (3) 300 (3) 170 (3) 210 (6) 4550 (75) 3310 (75)

U-Buffer 20 Im 100 (6) 200 (12) 150 (12) 70 (6) 210 (12) 130 (12)

MG 100 (3) 150 (4) 100 (4) 60 (3) 140 (4) 110 (4)

CSM 188110 Im ∞ ∞ ∞ ∞ 9870 (146) 6920 (154)

MG 195700 (3) 203290 (3) 186980 (3) ∞ 10310 (146) 7010 (154)

Insert Sort 40 Im 90 (7) 60 (23) 60 (23) 130 (8) 90 (28) 80 (28)

MG 110 (7) 60 (9) 50 (9) 150 (8) 100 (14) 100 (14)

Select Sort ∞ Im ∞ ∞ ∞ ∞ 220 (35) 170 (32)

MG ∞ ∞ ∞ ∞ 250 (19) 200 (19)

Light Control 20 Im 60 (5) 20 (9) 10 (9) 50 (5) 20 (9) 20 (9)

MG 50 (3) 20 (7) 10 (7) 50 (3) 20 (7) 10 (7)

R-Petri Nets ∞ Im ∞ ∞ ∞ 20 (5) 10 (5) 20 (5)

MG ∞ ∞ ∞ 0 (3) 0 (3) 10 (3)

GB 1750 Im 4780 (6) 3300 (10) 3300 (10) 6520 (6) 2190 (10) 2190 (10)

MG 1870 (3) 1840 (4) 1840 (4) 1870 (3) 2070 (5) 2070 (5)

Kanban ∞ Im ∞ ∞ ∞ ∞ 8310 (162) 8170 (162)

MG ∞ ∞ ∞ ∞ 8390 (162) 8320 (162)

McCarthy 91 ∞ Im ∞ ∞ ∞ 4130 (104) ∞ ∞
MG ∞ ∞ ∞ 4120 (3) ∞ ∞

Scheduler ∞ Im 4020 (5) 5770 (20) 5700 (20) 17530 (7) 3220 (91) 3120 (91)

MG 2230 (3) 4730 (15) 4610 (15) 12420 (3) 3320 (83) 3220 (83)

Train ∞ Im 1710 (6) 1340 (14) 1330 (14) 3030 (8) 20250 (299) 19850 (299)

MG 1700 (5) 970 (6) 940 (6) 3020 (7) 15730 (166) 15270 (166)

TTP ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Consistency ∞ Im ∞ ∞ ∞ 350 (13) 160 (20) 160 (21)

MG ∞ ∞ ∞ 370 (13) 160 (20) 140 (21)

no. of successes 20 Im 19 21 21 24 27 27

MG 21 22 23 24 27 27

Table 1. Verification Results using Backward Reachability.

Input All W FDCW Single W AllWS FDCWS SingleWS

Bakery2 ∞ Im 20 (5) ∞ ∞ 30 (5) 20 (20) 20 (20)

MG 20 (5) ∞ ∞ 30 (5) 30 (16) 20 (16)

Bakery3 ∞ Im ∞ ∞ ∞ ∞ 1380 (223) 1190 (240)

MG ∞ ∞ ∞ ∞ 1450 (200) 1270 (213)

Bakery4 ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

MutAst 370 Im 420 (4) 1790 (190) 1720 (190) 410 (4) 280 (141) 280 (141)

MG 400 (3) 780 (51) 730 (51) 390 (3) 310 (135) 270 (135)

Peterson N 630 Im ∞ ∞ 1220 (6) ∞ ∞ 8000 (80)

MG ∞ ∞ 730 (3) ∞ ∞ 8040 (80)

Ticket 50 Im 60 (4) 240 (30) 210 (30) 60 (4) 210 (26) 180 (26)

MG 50 (3) 210 (11) 180 (11) 50 (3) 230 (17) 200 (17)

Berke-RISC ∞ Im 40 (3) 50 (3) 10 (4) 40 (3) 40 (3) 20 (4)

MG 40 (3) 40 (3) 10 (4) 40 (3) 40 (3) 10 (4)

DEC Firefly ∞ Im 110 (3) 130 (3) ∞ 110 (3) 100 (3) 60 (9)

MG 100 (3) 120 (3) ∞ 120 (3) 120 (3) 70 (9)

Futurebus+ ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Illinois Univ ∞ Im 150 (3) 150 (3) ∞ 140 (3) 150 (3) 70 (8)

MG 140 (3) 140 (3) ∞ 140 (3) 140 (3) 60 (8)

MESI ∞ Im 90 (3) 90 (3) ∞ 90 (3) 90 (3) ∞
MG 90 (3) 100 (3) ∞ 90 (3) 90 (3) ∞

MOESI ∞ Im 130 (3) 130 (3) ∞ 130 (3) 130 (3) ∞
MG 130 (3) 130 (3) ∞ 120 (3) 150 (3) ∞

Synapse N+1 ∞ Im 10 (3) 20 (3) 0 (4) 20 (3) 20 (3) 10 (4)

MG 20 (3) 20 (3) 0 (4) 20 (3) 20 (3) 10 (4)

Xerox Dragon ∞ Im 180 (3) 190 (3) ∞ 190 (3) 210 (3) 80 (8)

MG 180 (3) 190 (3) ∞ 180 (3) 190 (3) 70 (8)

Barber ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

B-Buffer ∞ Im ∞ 50 (4) 20 (4) ∞ 50 (4) 20 (4)

MG ∞ 50 (4) 20 (4) ∞ 50 (4) 20 (4)

U-Buffer ∞ Im ∞ 210 (8) 70 (8) ∞ 190 (8) 70 (8)

MG ∞ 230 (8) 80 (8) ∞ 230 (8) 80 (8)

CSM ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Insert Sort ∞ Im ∞ ∞ 10 (14) ∞ ∞ 20 (14)

MG ∞ ∞ 30 (14) ∞ ∞ 30 (14)

Select Sort ∞ Im ∞ ∞ 180 (37) ∞ ∞ 310 (47)

MG ∞ ∞ 180 (37) ∞ ∞ 320 (45)

Light Control ∞ Im ∞ 30 (18) 20 (18) ∞ 30 (18) 20 (18)

MG ∞ 30 (18) 30 (18) ∞ 30 (18) 20 (18)

R-Petri Nets ∞ Im ∞ ∞ ∞ 0 (6) 10 (6) 0 (6)

MG ∞ ∞ ∞ 0 (6) 0 (6) 0 (6)

GB ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Kanban 44860 Im 46840 (4) 46860 (4) 56100 (13) ∞ ∞ ∞
MG 45060 (3) 45210 (3) 44130 (3) ∞ ∞ ∞

McCarthy 91 ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

Scheduler 840 Im 910 (3) 910 (4) 1750 (32) 930 (3) 920 (4) 127370 (530)

MG 940 (3) 910 (4) 1110 (4) 940 (3) 900 (4) 127400 (530)

Train ∞ Im ∞ ∞ ∞ ∞ ∞ 410 (51)

MG ∞ ∞ ∞ ∞ ∞ 400 (51)

TTP ∞ Im ∞ ∞ ∞ 650 (4) 1140 (15) ∞
MG ∞ ∞ ∞ 660 (4) 1180 (14) ∞

Consistency ∞ Im ∞ ∞ ∞ ∞ ∞ ∞
MG ∞ ∞ ∞ ∞ ∞ ∞

no. of successes 5 Im 12 14 12 13 17 18

MG 12 14 12 13 17 18

Table 2. Verification Results using Forward Reachability.

mentioned, the techniques presented in [13,27] can be considered as instances of
our framework, while [22,26] do not consider constraints, which are of primary
concern in this paper. Our framework generalizes and improves the framework
of [13], by introducing partitioning and folding operators which, as shown in
Section 5, increase the precision and the performance of the verification process.
The offline specialization approach followed by [7] is based on a preliminary
binding time analysis to decide when to unfold a call and when to introduce a
new predicate definition. In the context of verification of infinite state reactive
systems considered here, due to the very simple structure of the program to be
specialized, deciding whether or not to unfold a call is not a relevant issue, and
in our approach the binding time analysis is not performed.

As a future work we plan to continue our experiments on a larger set of
infinite state reactive systems so as to enhance and better evaluate the spe-
cialization framework presented here. We also plan to extend our approach to a
framework for the specialization of constraint logic programs outside the context
of verification of infinite state reactive systems.

Acknowledgements

This work has been partially supported by PRIN-MIUR and by a joint project
between CNR (Italy) and CNRS (France). The last author has been supported by
an ERCIM grant during his stay at LORIA-INRIA. Thanks to Laurent Fribourg
and John Gallagher for many stimulating conversations.

References

1. A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A tool for reachability anal-
ysis of complex systems. In Proceedings of CAV 2001, Lecture Notes in Computer
Science 2102, pages 368–372. Springer, 2001.

2. G. Banda and J. P. Gallagher. Analysis of linear hybrid systems in CLP. In
Proceedings of LOPSTR 2008, Lecture Notes in Computer Science 5438, pages
55–70. Springer, 2009.

3. G. Banda and J. P. Gallagher. Constraint-based abstract semantics for temporal
logic: A direct approach to design and implementation. In Proceedings of LPAR
2010, Lecture Notes in Artificial Intelligence 6355, pages 27–45. Springer, 2010.

4. S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Acceleration from the-
ory to practice. International Journal on Software Tools for Technology Transfer,
10(5):401–424, 2008.

5. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

6. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Proceedings of the Fifth ACM Symposium on Principles
of Programming Languages (POPL’78), pages 84–96. ACM Press, 1978.

7. S.-J. Craig and M. Leuschel. A compiler generator for constraint logic programs.
In M. Broy and A. V. Zamulin, editors, 5th Ershov Memorial Conference on Per-
spectives of Systems Informatics, PSI 2003, Lecture Notes in Computer Science
2890, pages 148–161. Springer, 2003.

8. G. Delzanno and A. Podelski. Constraint-based deductive model checking. Inter-
national Journal on Software Tools for Technology Transfer, 3(3):250–270, 2001.

9. J. Esparza. Decidability of model checking for infinite-state concurrent systems.
Acta Informatica, 34(2):85–107, 1997.

10. S. Etalle and M. Gabbrielli. Transformations of CLP modules. Theoretical Com-
puter Science, 166:101–146, 1996.

11. F. Fioravanti, A. Pettorossi, and M. Proietti. Automated strategies for specializ-
ing constraint logic programs. In Proceedings of LOPSTR ’00, Lecture Notes in
Computer Science 2042, pages 125–146. Springer-Verlag, 2001.

12. F. Fioravanti, A. Pettorossi, and M. Proietti. Verifying CTL properties of infinite
state systems by specializing constraint logic programs. In Proceedings of VCL’01,
Technical Report DSSE-TR-2001-3, pages 85–96. University of Southampton, UK,
2001.

13. F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Program specialization
for verifying infinite state systems: An experimental evaluation. In Proceedings
of LOPSTR 2010, Lecture Notes in Computer Science Vol. 6564, pages 164–183.
Springer, 2011.

14. G. Frehse. PHAVer: Algorithmic verification of hybrid systems past HyTech. In
M. Morari and L. Thiele, editors, Hybrid Systems: Computation and Control, 8th
International Workshop, HSCC 2005, Lecture Notes in Computer Science 3414,
pages 258–273. Springer, 2005.

15. L. Fribourg. Constraint logic programming applied to model checking. In A. Bossi,
editor, Proceedings of the 9th International Workshop on Logic-based Program Syn-
thesis and Transformation (LOPSTR ’99), Venezia, Italy, Lecture Notes in Com-
puter Science 1817, pages 31–42. Springer-Verlag, 2000.

16. J. P. Gallagher. Tutorial on specialisation of logic programs. In Proceedings of the
1993 ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Pro-
gram Manipulation, PEPM ’93, Copenhagen, Denmark, pages 88–98. ACM Press,
1993.

17. T. J. Hickey and D. A. Smith. Towards the partial evaluation of CLP languages.
In Proceedings of the 1991 ACM Symposium on Partial Evaluation and Seman-
tics Based Program Manipulation, PEPM ’91, New Haven, CT, USA, SIGPLAN
Notices, 26, 9, pages 43–51. ACM Press, 1991.

18. J. Jaffar, M. Maher, K. Marriott, and P. Stuckey. The semantics of constraint logic
programming. Journal of Logic Programming, 37:1–46, 1998.

19. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

20. LASH. homepage: http://www.montefiore.ulg.ac.be/∼boigelot/research/lash.
21. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial

deduction: Control issues. Theory and Practice of Logic Programming, 2(4&5):461–
515, 2002.

22. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalization and poly-
variance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems, 20(1):208–258, 1998.

23. M. Leuschel and T. Massart. Infinite state model checking by abstract interpreta-
tion and program specialization. In Proceedings of LOPSTR ’99, Lecture Notes in
Computer Science 1817, pages 63–82. Springer, 2000.

24. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming.
Journal of Logic Programming, 11:217–242, 1991.

25. MAP. The MAP transformation system.
Available from http://www.iasi.cnr.it/∼proietti/system.html, 1995–2010.

26. C. Ochoa, G. Puebla, and M. V. Hermenegildo. Removing superfluous versions
in polyvariant specialization of prolog programs. In Proceedings of LOPSTR ’05,
Lecture Notes in Computer Science 3961, pages 80–97. Springer, 2006.

27. J. C. Peralta and J. P. Gallagher. Convex hull abstractions in specialization of CLP
programs. In Proceedings of LOPSTR ’02, Lecture Notes in Computer Science
2664, pages 90–108. Springer, 2003.

28. T. Yavuz-Kahveci and T. Bultan. Action Language Verifier: An infinite-state model
checker for reactive software specifications. Formal Methods in System Design,
35(3):325–367, 2009.

