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Abstract. Adapting techniques from database theory in order to optimize An-
swer Set Programming (ASP) systems, and in particular the grounding compo-
nents of ASP systems, is an important topic in ASP. In recent years, the Magic Set
method has received some interest in this setting, and a variant of it, calledDMS,
has been proposed for ASP. However, this technique has a caveat, because it is not
correct (in the sense of being query-equivalent) for all ASP programs. In recent
work, a large fragment of ASP programs, referred to assuper-coherent programs,
has been identified, for which DMS is correct. An open question remained: How
complex is it to determine whether a given program is super-coherent? This ques-
tion turned out to be quite difficult to answer precisely. In this paper, we formally
prove that deciding whether a propositional program is super-coherent is ΠP

3 -
complete in the disjunctive case, while it isΠP

2 -complete for normal programs.
The hardness proofs are the difficult part in this endeavor: We proceed by charac-
terizing the reductions by the models and reduct models which the ASP programs
should have, and then provide instantiations that meet the given specifications.

1 Introduction

Answer Set Programming (ASP) is a powerful formalism for knowledge representation
and common sense reasoning [5]. Allowing disjunction in rule heads and nonmono-
tonic negation in bodies,ASP can express every query belonging to the complexity
classΣP

2 (NPNP). Encouraged by the availability of efficient inference engines, such
as DLV [17], GnT [15], Cmodels [18], or ClaspD [8],ASP has found several prac-
tical applications in various domains, including data integration [16], semantic-based
information extraction [20, 21], e-tourism [24], workforce management [25], and many
more. As a matter of fact, theseASP systems are continuously enhanced to support
novel optimization strategies, enabling them to be effective over increasingly larger ap-
plication domains.

Frequently, optimization techniques are inspired by methods that had been proposed
in other fields, for example database theory, satisfiabilitysolving, or constraint satisfac-
tion. Among techniques adapted to ASP from database theory,Magic Sets [26, 4, 6]
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have recently achieved a lot of attention. Following some earlier work [14, 7], recently
an adapted method calledDMShas been proposed forASP in [3]. However, this tech-
nique has a caveat, because it is not correct (in the sense of being query-equivalent) for
all ASP programs. In recent work [2, 1], a large fragment of ASP programs, referred
to assuper-coherent programs(ASPsc), has been identified, for which DMS can be
proved to be correct.

While our main motivation for studyingASPsc stemmed from the applicability of
DMS, this class actually has many more important motivations. Indeed, it can be viewed
as the class ofnon-constraining programs: Adding extensional information to these
programs will always result in answer sets. One important implication of this property
is for modular evaluation. For instance, when using the splitting set theorem of [19], if a
top part of a split program is anASPsc program, then any answer set of the bottom part
will give rise to at least one answer set of the full program—sofor determining answer
set existence, there would be no need to evaluate the top part.

On a more abstract level, one of the main criticisms ofASP (being voiced espe-
cially in database theory) is that there are programs which do not admit any answer set
(traditionally this has been considered a more serious problem than the related nondeter-
minism in the form of multiple answer sets, cf. [23]). From this perspective, programs
which guarantee coherence (existence of an answer set) havebeen of interest for quite
some time. In particular, if one considers a fixed program anda variable “database,”
one arrives naturally at the classASPsc when requiring existence of an answer set. This
also indicates that deciding super-coherence of programs is related to some problems
from the area of equivalence checking in ASP [13, 10, 22]. Forinstance, when deciding
whether, for a given arbitrary programP , there is a uniformly equivalent definite pos-
itive (or definite Horn) program, super-coherence ofP is a necessary condition—this
is straightforward to see because definite Horn programs have exactly one answer set,
so a non-super-coherent program cannot be uniformly equivalent to any definite Horn
program.

Since the property of being super-coherent is a semantic one, a natural question
arises: How difficult is it to decide whether a given program belongs toASPsc? It turns
out that the precise complexity is rather difficult to establish. Some bounds have been
given in [2], in particular showing decidability, but especially hardness results seemed
quite hard to obtain.

In order to focus on the essentials of this problem, in this paper we deal with propo-
sitional programs and show the precise complexity (in termsof completeness) for de-
ciding whether a given propositionalASP program belongs toASPsc. In Section 2 we
first define some terminology needed later on. In Section 3 we formulate the problem
that we analyze and state the results. The remainder of the paper contains the proofs —
in Section 4 for disjunctive programs and in Section 5 for normal programs — and in
Section 6 we briefly discuss the relation to equivalence problems before concluding the
work in Section 7.



2 Preliminaries

In this paper we consider propositional programs, so an atomp is a member of a count-
able setU . A literal is either an atomp (a positive literal), or an atom preceded by the
negation as failuresymbolnot (a negative literal). Arule r is of the form

p1 ∨ · · · ∨ pn ← q1, . . . , qj , not qj+1, . . . , not qm

wherep1, . . . , pn, q1, . . . , qm are atoms andn ≥ 0, m ≥ j ≥ 0. The disjunctionp1 ∨
· · · ∨ pn is theheadof r, while the conjunctionq1, . . . , qj , not qj+1, . . . , not qm is
thebodyof r. Moreover,H(r) denotes the set of head atoms, whileB(r) denotes the set
of body literals. We also useB+(r) andB−(r) for denoting the set of atoms appearing
in positive and negative body literals, respectively, andAt(r) for the setH(r)∪B+(r)∪
B−(r). A rule r is normal (or disjunction-free) if|H(r)| = 1 or |H(r)| = 0 (in this
caser is also referred to as aconstraint), positive (or negation-free) ifB−(r) = ∅, a
fact if bothB(r) = ∅ and|H(r)| = 1.

A programP is a finite set of rules; if all rules in it are positive (resp. normal),
thenP is a positive (resp. normal) program. Odd-cycle-free and stratified programs
constitute two other interesting classes of programs. An atom p appearing in the head
of a rule r dependson each atomq that belongs toB(r); if q belongs toB+(r), p
depends positively onq, otherwise negatively. A program without constraints isodd-
cycle-freeif there is no cycle of dependencies involving an odd number of negative
dependencies, while it isstratifiedif each cycle of dependencies involves only positive
dependencies. Programs containing constraints have been excluded by the definition of
odd-cycle-free and stratified programs. In fact, constraints intrinsically introduce odd-
cycles in programs as a constraint of the form

← q1, . . . , qj , not qj+1, . . . , not qm

can be replaced by the following equivalent rule:

co← q1, . . . , qj , not qj+1, . . . , not qm, not co,

whereco is a fresh atom (i.e., an atom that does not occur elsewhere inthe program).
Given a programP , let At(P ) denote the set of atoms that occur in it, that is, let

At(P ) =
⋃

r∈P At(r). An interpretationI for a programP is a subset ofAt(P ). An
atomp is true w.r.t. an interpretationI if p ∈ I; otherwise, it is false. A negative literal
not p is true w.r.t.I if and only if p is false w.r.t.I. The body of a ruler is true w.r.t.I if
and only if all the body literals ofr are true w.r.t.I, that is, if and only ifB+(r) ⊆ I and
B−(r) ∩ I = ∅. An interpretationI satisfiesa ruler ∈ P if at least one atom inH(r)
is true w.r.t.I whenever the body ofr is true w.r.t.I. An interpretationI is amodelof
a programP if I satisfies all the rules inP .

Given an interpretationI for a programP , the reduct ofP w.r.t.I, denoted byP I , is
obtained by deleting fromP all the rulesr with B−(r) ∩ I 6= ∅, and then by removing
all the negative literals from the remaining rules. The semantics of a programP is given
by the setAS(P ) of the answer sets ofP , where an interpretationM is an answer set
for P if and only ifM is a subset-minimal model ofPM .

In the subsequent sections, we will use the following properties that the models and
models of reducts of programs satisfy (see, e.g. [9, 13]):



(P1) for any disjunctive programP and interpretationsI ⊆ J ⊆ K, if I satisfiesP J ,
thenI also satisfiesPK ;

(P2) for any normal programP and interpretationsI, J ⊆ K, if I andJ both satisfy
PK , then also(I ∩ J) satisfiesPK .

We now introduce super-coherent ASP programs (ASPsc programs), the main class
of programs studied in this paper.

Definition 1 (ASPsc programs [1, 2]).A programP is super-coherentif, for every set
of factsF , AS(P ∪ F ) 6= ∅. LetASPsc denote the set of all super-coherent programs.

Note thatASPsc programs include all odd-cycle-free programs (and therefore also
all stratified programs). Indeed, every odd-cycle-free program admits at least one an-
swer set and remains odd-cycle-free even if an arbitrary setof facts is added to its rules.
On the other hand, there are programs having odd-cycles thatare inASPsc, cf. [2].

An important question regards whetherASPsc programs are as expressive asASP
programs. Of course, checking coherence (existence of answer sets) is a trivial task for
ASPsc programs. But when considering query answering, it turns out that expressivity
is not lowered. Indeed, all expressivity results of [12] hold for disjunctive programs
with stratified negation (examining the proofs, actually for disjunctive programs with
input negation, that is, having at most two strata), which guarantee super-coherence
and are a proper subset ofASPsc. It therefore follows that all properties inΣP

2 or ΠP
2

are expressible byASPsc programs using a query under brave or cautious reasoning,
respectively. The picture is less clear for nondisjunctiveASPsc programs.

However, we should point out that many (probably most) existing ASP programs
follow a “Guess&Check” or “Generate&Test” methodology, which usually relies on
integrity constraints, the presence of which usually contradicts super-coherence. As
an alternative, violated integrity constraints can derivea special atom, on which the
query atom should depend negatively. If the Guess/Generatepart involves non-stratified
negation, it depends on how this construct is used in the encoding. If it just encodes a
choice, this can often be easily converted to a disjunction,while for encodings that
entangle guess and check using unstratified negation, an automated conversion to an
ASPsc program seems less straightforward. In general, however, we feel that for ob-
taining computationally efficientASPsc encodings, different encoding methodologies
should be developed.

3 Problem Statement and Main Theorems

In this paper, we study the complexity of the following natural problem.

– Given a programP , isP super-coherent, i.e. doesAS(P ∪F ) 6= ∅ hold for any set
F of facts.

We will study the complexity for this problem for the case of disjunctive logic pro-
grams and non-disjunctive (normal) logic programs. We firsthave a look at a similar
problem, which turns out to be rather trivial to decide.



Proposition 1. The problem of deciding whether, for a given disjunctive programP ,
there is a setF of facts such thatAS(P ∪F ) 6= ∅ isNP-complete;NP-hardness holds
already for normal programs.

Proof. We start by observing that there isF such thatAS(P ∪ F ) 6= ∅ if and only ifP
has at least one classical model. Indeed, ifM is a model ofP , thenP ∪M hasM as its
answer set. On the other hand, ifP has no model, then no addition of factsF will yield
an answer set forP ∪ F . It is well known that deciding whether a program has at least
one (classical) model isNP-complete for both disjunctive and normal programs.2

In contrast, the complexity for deciding super-coherence is surprisingly high, which
we shall show next. To start, we give a straight-forward observation.

Proposition 2. A programP is super-coherent if and only if for each setF ⊆ At(P ),
AS(P ∪ F ) 6= ∅.

Proof. The only-if direction is by definition. For the if-direction, let F be any set of
facts.F can be partitioned intoF ′ = F ∩ At(P ) andF ′′ = F \ F ′. By assumption,
P ∪ F ′ is coherent. LetM be an answer set ofP ∪ F ′. We shall show thatM ∪ F ′′ is
an answer set ofP ∪ F = P ∪ F ′ ∪ F ′′. This is in fact a consequence of the splitting
set theorem [19], as the atoms inF ′′ are only defined by facts not occurring inP ∪ F ′.
2

Our main results are as follows. The proofs are contained in the subsequent sections.

Theorem 1. The problem of deciding super-coherence for disjunctive programs isΠP
3 -

complete.

Theorem 2. The problem of deciding super-coherence for normal programs is ΠP
2 -

complete.

4 Proof of Theorem 1

Membership follows by the following straight-forward nondeterministic algorithm for
the complementary problem, i.e. given a programP , does there exist a setF of facts
such thatAS(P ∪ F ) = ∅: we guess a setF ⊆ At(P ) and checkAS(P ∪ F ) = ∅ via
an oracle-call. Restricting the guess toAt(P ) can be done by Proposition 2. Checking
AS(P ∪ F ) = ∅ is known to be inΠP

2 [11]. This showsΠP
3 -membership.

For the hardness we reduce theΠP
3 -complete problem of deciding whether QBFs

of the form∀X∃Y ∀Zφ are true to the problem of super-coherence. Without loss of
generality, we can considerφ to be in DNF and, indeed,X 6= ∅, Y 6= ∅, andZ 6= ∅. We
also assume that each disjunct ofΦ contains at least one variable fromX, one fromY
and one fromZ. More precisely, we shall construct for each such QBFΦ a programPΦ

such thatΦ is true iff PΦ is super-coherent. Before showing how to actually construct
PΦ from Φ in polynomial time, we give the required properties forPΦ. We then show
that for programsPΦ satisfying these properties, the desired relation (Φ is true iffPΦ is
super-coherent) holds, and finally we provide the construction of PΦ.



Definition 2. LetΦ = ∀X∃Y ∀Zφ be a QBF withφ in DNF. We call any programP
satisfying the following properties aΦ-reduction:

1. P is given over atomsU = X ∪ Y ∪Z ∪X ∪ Y ∪Z ∪ {u, v, w}, where all atoms
in setsS = {s | s ∈ S} and{u, v, w} are fresh and mutually disjoint;

2. P has the following models:
– U
– for eachI ⊆ X, J ⊆ Y ,

M [I, J ] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ Z ∪ Z ∪ {u, v}

and
M ′[I, J ] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ Z ∪ Z ∪ {v, w};

3. for eachI ⊆ X, J ⊆ Y , the models3 of the reductPM [I,J] areM [I, J ] and

O[I] = I ∪ (X \ I);

4. for eachI ⊆ X, J ⊆ Y , the models of the reductPM ′[I,J] areM ′[I, J ] and
– for eachK ⊆ Z such thatI ∪ J ∪K 6|= φ,

N [I, J,K] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪K ∪ (Z \K) ∪ {v};

5. the models of the reductPU are given only by the models already mentioned above,
i.e.U itself,M [I, J ], M ′[I, J ], andO[I], for eachI ⊆ X, J ⊆ Y , andN [I, J,K]
for eachI ⊆ X, J ⊆ Y , K ⊆ Z, such thatI ∪ J ∪K 6|= φ.

The structure of models ofΦ-reductions and the “countermodels” (see below what
we mean by this term) of the relevant reducts is sketched in Figure 1. The center of the
diagram contains the models of theΦ-reduction and their subset relationship. For each
of the model the respective box lists the “countermodels,” by which we mean those
reduct models which can serve as counterexamples for the original model being an
answer set, that is, those reduct models which are proper subsets of the original model.

We just note at this point that the models of the reductPU given in Item 5 are not
specified for particular purposes, but are required to allowfor a realization via disjunc-
tive programs. In fact, these models are just an effect of property (P1) mentioned in Sec-
tion 2. However, before showing a program satisfying the properties of aΦ-reduction,
we first show the rationale behind the concept ofΦ-reductions.

Lemma 1. For any QBFΦ = ∀X∃Y ∀Zφ with φ in DNF, a Φ-reduction is super-
coherent iffΦ is true.

Proof. Suppose thatΦ is false. Hence, there exists anI ⊆ X such that, for allJ ⊆ Y ,
there is aKY ⊆ Z with I ∪ J ∪KY 6|= φ. Now letP be anyΦ-reduction andFI =
I ∪ (X \ I). We show thatAS(P ∪FI) = ∅, thusP is not super-coherent. LetM be a
model ofP ∪FI . SinceP is aΦ-reduction, the only candidates forM areU , M [I, J ],
andM ′[I, J ], whereJ ⊆ Y . Indeed, for eachI 6= I, M [I, J ] andM ′[I, J ] cannot be
models ofP ∪ FI becauseFI 6⊆M [I, J ], resp.FI 6⊆M ′[I, J ]. We now analyze these
three types of potential candidates:

3 Here and below, for a reductPM we only list models of the formN ⊆ M , since those are the
relevant ones for our purposes. Recall thatN = M is always a model ofPM in caseM is a
model ofP .
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M [I0, J0] · · · M [Im, Jn] M ′[I0, J0] · · · M ′[Im, Jn]

⊂

· · ·
⊂ ⊂

· · ·

⊂

O[I0]

PM [I0,J0]

· · · O[Im]

PM [Im,Jn]

N [I0, J0,K] s.t.
I0 ∪ J0 ∪K 6|= φ

PM′[I0,J0]

· · ·
N [Im, Jn,K] s.t.
Im ∪ Jn ∪K 6|= φ

PM′[Im,Jn]

M [I0, J0] · · · M [Im, Jn] M ′[I0, J0] · · · M
′[Im, Jn]

O[I0] · · · O[Im]
N [I0, J0,K] s.t.
I0 ∪ J0 ∪K 6|= φ

· · ·
N [Im, Jn,K] s.t.
Im ∪ Jn ∪K 6|= φ

PU

Fig. 1.Models and reduct “countermodels” ofΦ-reductions

– M = U : Then, for instance,M [I, J ] ⊂ U is a model of(P ∪ FI)
M = PM ∪ FI

for anyJ ⊆ Y . Thus,M /∈ AS(P ∪ FI).
– M = M [I, J ] for someJ ⊆ Y . Then, by the properties ofΦ-reductions,O[I] ⊂
M is a model of(P ∪ FI)

M = PM ∪ FI . Thus,M /∈ AS(P ∪ FI).
– M = M ′[I, J ] for someJ ⊆ Y . By the initial assumption, there exists aKY ⊆ Z

with I ∪ J ∪KY 6|= φ. Then, by the properties ofΦ-reductions,N [I, J,K] ⊂M
is a model ofPM. Thus,M /∈ AS(P ∪ FI).

In each of the cases we have obtainedM /∈ AS(P ∪ FI), henceAS(P ∪ FI) = ∅
andP is not super-coherent.

Suppose thatΦ is true. It is sufficient to show that for eachF ⊆ U , AS(P ∪ F ) 6= ∅.
We have the following cases:

If {s, s} ⊆ F for somes ∈ X ∪ Y or {u,w} ⊆ F . ThenU ∈ AS(P ∪ F ) since
U is a model ofP ∪ F and each potential modelM ⊂ U of the reductPU (see the
properties ofΦ-reductions) does not satisfyF ⊆ M ; thus each suchM is not a model
of PU ∪ F = (P ∪ F )U .

Otherwise, we haveF ⊆ M [I, J ] or F ⊆ M ′[I, J ] for someI ⊆ X, J ⊆ Y . In
caseF ⊆ M [I, J ] andF 6⊆ O[I], we observe thatM [I, J ] ∈ AS(P ∪ F ) sinceO[I]
is the only model of the reductPM [I,J]. Thus for each suchF there cannot be a model
M ⊂M [I, J ] of PM [I,J] ∪F = (P ∪F )M [I,J]. As well, in caseF ⊆M ′[I, J ], where
w ∈ F , M ′[I, J ] can be shown to be an answer set ofP ∪ F . Indeed, in this case no
M ⊂M ′[I, J ] is a model ofPM ′[I,J] becauseΦ is true.

It remains to consider the caseF ⊆ O[I] for eachI ⊆ X. We show thatM ′[I, J ]
is an answer set ofP ∪ F , for someJ ⊆ Y . SinceΦ is true, we know that, for each



I ⊆ X, there exists aJI ⊆ Y such that, for allK ⊆ Z, I ∪ JI ∪ K |= φ. As can
be verified by the properties ofΦ-reductions, then there is no modelM ⊂ M ′[I, JI ]
of PM ′[I,JI ]. Consequently, there is also no such model of(P ∪ F )M

′[I,JI ], and thus
M ′[I, JI ] ∈ AS(P ∪ F ).

So in each of these casesAS(P ∪ F ) 6= ∅ and since these cases cover all possible
F ⊆ U , we obtain thatP is supercoherent.

In total we have shown thatΦ being false implies that anyΦ-reductionP is not
super-coherent, whileΦ being true implies that anyΦ-reduction is super-coherent,
which proves the lemma.

2

It remains to show that for any QBF of the desired form, aΦ-reduction can be
obtained in polynomial time (w.r.t. the size ofΦ). For the construction below, let us
denote a negated atoma in the propositional part of the QBFΦ asa.

Definition 3. For any QBFΦ = ∀X∃Y ∀Zφ with φ =
∨n

i=1 li,1 ∧ · · · ∧ li,mi
a DNF

(i.e., a disjunction of conjunctions over literals), we define

PΦ = {x ∨ x←; u← x, x; w ← x, x; x← u,w; x← u,w | x ∈ X} ∪ (1)

{y ∨ y ← v; u← y, y; w ← y, y; y ← u,w;

y ← u,w; v ← y; v ← y | y ∈ Y } ∪ (2)

{z ∨ z ← v; u← z,not w; u← z,not w; v ← z; v ← z;

z ← w; z ← w; z ← u; z ← u; w ∨ u← z, z | z ∈ Z} ∪ (3)

{w ∨ u← li,1, . . . , li,mi
| 1 ≤ i ≤ n} (4)

{v ← w; v ← u; v ← not u}. (5)

Obviously, the program from above definition can be constructed in polynomial
time in the size of the reduced QBF. To conclude the proof of Theorem 1 it is thus
sufficient to show the following relation.

Lemma 2. For any QBFΦ = ∀X∃Y ∀Zφ, the programPΦ is aΦ-reduction.

Proof. Obviously,At(PΦ) contains the atoms as required in 1) of Definition 2. We
continue to show 2). To see thatU is a model ofPΦ is obvious. We next show that the
remaining modelsM are all of the formM [I, J ] or M ′[I, J ]. First we havev ∈ M
because of the rulesv ← u andv ← not u in (5). In casew ∈ M , Z ∪ Z ⊆ M by
the rules in (3). In casew /∈ M , we haveK ∪ (Z \K) ⊆ M for someK ⊆ Z, since
v ∈ M and by (3). But then, sincew /∈ M , u ∈ M holds (rulesu ← z,not w resp.
u ← z,not w). Hence, also hereZ ∪ Z ⊆ M . In both cases, we observe that by (1)
and (2),I ∪ (X \ U) ∪ J ∪ (Y \ J) ⊆ M , for someI ⊆ X andJ ⊆ Y . This yields
the desired models,M [I, J ], M ′[I, J ]. It can be checked that no other model exists by
showing that forN 6⊆M [I, J ], resp.N 6⊆M ′[I, J ], N = U follows.

We next show that, for eachI ⊆ X andJ ⊆ Y , PM [I,J] andPM ′[I,J] possess the
required models. Let us start by showing thatO[I] is a model ofPM [I,J]. In fact, it can
be observed that all of the rules of the formx ∨ x ← in (1) are satisfied because either



x or x belong toO[I], while all of the other rules inPM [I,J] are satisfied because of a
false body literal. We also note that each strict subset ofO[I] does not satisfy some rule
of the formx∨x←, and thus it is not a model ofPM [I,J]. Similarly, any interpretation
W such thatO[I] ⊂ W ⊂ M [I, J ] does not satisfy some rule inPM [I,J] (note that
rules of the formu← z andu← z occur inPM [I,J] becausew 6∈M [I, J ]; such rules
are obtained by rules in (3)).

Let us now considerPM ′[I,J] and letW ⊆ M ′[I, J ] be one of its models. We
shall show that eitherW = M ′[I, J ], or W = N [I, J,K] for someK ⊆ Z such that
I ∪ J ∪ Z 6|= φ. Note thatv is a fact inPM ′[I,J], hencev must belong toW . By (1)
and (2), sincev ∈ W andW ⊆ M ′[I, J ], we can conclude that all of the atoms in
I ∪ (X \ I) ∪ J ∪ (Y \ J) belong toW . Consider now the atomw. If w belongs to
W , by the rules in (3) we conclude that all of the atoms inZ ∪ Z belong toW , and
thusW = M ′[I, J ]. Otherwise, ifw 6∈ W , by the rules of the formz ∨ z ← v in (3),
there must be a setK ⊆ Z such thatK∪ (Z \K) is contained inW . Note that no other
atoms inZ∪Z can belong toW because of the last rule in (3). Hence,W = N [I, J,K].
Moreover,w 6∈W andu 6∈W imply thatI ∪ J ∪K 6|= φ holds because of (4).

Finally, one can show thatPU does not yield additional models as those which are
already present by other models. LetW ⊆ U be a model ofPU . By (1), O[I] ⊆ W
must hold for someI ⊆ X. Consider now the atomv. If v 6∈ W , we conclude that the
modelW is actuallyO[I]. We can thus consider the other case, i.e.v ∈ W . By (2),
J ∪ (Y \ J) ⊆W must hold for someJ ⊆ Y . Consider now the atomu. If u ∈W , we
haveZ ∪ Z ⊆ W because of (3). If no other atom belongs toW , thenW = M [I, J ]
holds. Otherwise, if any other atom belongs toW , it can be checked thatW must be
equal toU . We can then consider the case in whichu 6∈W , and the atomw. Again, we
have two possibilities. Ifw belongs toW , by (3) we conclude that all of the atoms in
Z∪Z belong toW , and thus eitherW = M ′[I, J ] orW = U . Otherwise, ifw 6∈W , by
the rules of the formz∨z ← v in (3), there must be a setK ⊆ Z such thatK∪(Z \K)
is contained inW . Note that no other atoms inZ ∪ Z can belong toW because of the
last rule in (3). Hence,W = N [I, J,K]. Moreover, because of (4),w 6∈W andu 6∈W
imply thatI ∪ J ∪K 6|= φ holds. 2

Note that the program from Definition 3 does not contain constraints. As a conse-
quence, theΠP

3 -hardness result presented in this section also holds if we only consider
disjunctiveASP programs without constraints.

5 Proof of Theorem 2

Membership follows by the straight-forward nondeterministic algorithm for the com-
plementary problem presented in the previous section. We have just to note that a
co − NP oracle can be used for checking the consistency of a normal program. Thus,
ΠP

2 -membership is established.

For the hardness we reduce theΠP
2 -complete problem of deciding whether QBFs of

the form∀X∃Y φ are true to the problem of super-coherence. Without loss of generality,
we can considerφ to be in CNF and, indeed,X 6= ∅, andY 6= ∅. We also assume that



each clause ofΦ contains at least one variable fromX and one fromY . More precisely,
we shall adapt the notion ofΦ-reduction to normal programs. In particular, we have to
take into account a fundamental difference between disjunctive and normal programs:
while disjunctive programs allow for using disjunctive rules for guessing a subset of
atoms, such a guess can be achieved only by means of unstratified negation within a
normal program. For example, one atom in a set{x, y} can be guessed by means of the
following disjunctive rule:x ∨ y ←. Within a normal program, the same result can be
obtained by means of the following rules:x ← not y andy ← not x. However, these
last rules would be deleted in the reduced program associated with a model containing
bothx andy, which would allow for an arbitrary subset of{x, y} to be part of a model
of the reduct. More generally speaking, we have to take Property (P2), as introduced
in Section 2, into account. This makes the following definition a bit more cumbersome
compared to Definition 2.

Definition 4. Let Φ = ∀X∃Y φ be a QBF withφ in CNF. We call any programP
satisfying the following properties aΦ-norm-reduction:

1. P is given over atomsU = X ∪ Y ∪ X ∪ Y ∪ {v, w}, where all atoms in sets
S = {s | s ∈ S} and{v, w} are fresh and mutually disjoint;

2. P has the following models:
– for eachJ ⊆ Y , and for eachJ∗ such thatJ ∪ (Y \ J) ⊆ J∗ ⊆ Y ∪ Y

O[J∗] = X ∪X ∪ J∗ ∪ {v, w};

– for eachI ⊆ X,
M [I] = I ∪ (X \ I) ∪ {v};

– for eachI ⊆ X, J ⊆ Y , such thatI ∪ J |= φ,

N [I, J ] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ {w};

3. the only models of a reductPM [I] areM [I] andM [I] \ {v}; the only model of a
reductPN [I,J] is N [I, J ];

4. each modelM of a reductPO[J∗] satisfies the following properties:
(a) for eachy ∈ Y such thaty ∈ O[J∗] andy 6∈ O[J∗], if w ∈M , theny ∈M ;
(b) for eachy ∈ Y such thaty ∈ O[J∗] andy 6∈ O[J∗], if w ∈M , theny ∈M ;
(c) if (Y ∪ Y ) ∩M 6= ∅, thenw ∈M ;
(d) if there is a clauseli,1 ∨ · · · ∨ li,mi

of φ such that{li,1, . . . , li,mi
} ⊆ M , then

v ∈M ;
(e) if there is anx ∈ X such that{x, x} ⊆ M , or there is ay ∈ Y such that
{y, y} ⊆M , or {v, w} ⊆M , then it must hold thatX ∪X ∪ {v, w} ⊆M .

Lemma 3. For any QBFΦ = ∀X∃Y φ with φ in CNF, aΦ-norm-reduction is super-
coherent iffΦ is true.

Proof. Suppose thatΦ is false. Hence, there exists anI ⊆ X such that, for allJ ⊆ Y ,
I ∪ J 6|= φ. Now, letP be anyΦ-norm-reduction andFI = I ∪ (X \ I). We show that
AS(P ∪ FI) = ∅, thusP is not super-coherent. LetM be a model ofP ∪ FI . Since



P is aΦ-norm-reduction, the only candidates forM areO[J∗] for someJ ⊆ Y and
J∗ such thatJ ∪ (Y \ J) ⊆ J∗ ⊆ Y ∪ Y , M [I], andN [I, J ′], whereJ ′ ⊆ Y satisfies
I ∪ J ′ |= φ. However, from our assumption (for allJ ⊆ Y , I ∪ J 6|= φ), no such
N [I, J ′] exists. Thus, it remains to considerO[J∗] andM [I]. By the properties ofΦ-
norm-reductions,M [I]\{v} is a model ofPM [I], and henceM [I]\{v} is also a model
of PM [I]∪FI = (P∪FI)

M [I]. Thus,M [I] is not an answer set ofP∪FI . On the other
hand, it can be checked thatM [I] \ {v} is a model ofPO[J∗] ∪ FI = (P ∪ FI)

O[J∗],
for anyO[J∗], and so none of theseO[J∗] are answer sets ofP ∪ FI either. Since this
means that no model ofP ∪ FI is an answer set, we concludeAS(P ∪ FI) = ∅, and
henceP is not super-coherent.

Suppose thatΦ is true. It is sufficient to show that, for eachF ⊆ U , AS(P ∪ F ) 6= ∅.
We distinguish the following cases forF ⊆ U :

F ⊆ I ∪ (X \ I) ∪ {v} for someI ⊆ X: If v ∈ F , thenM [I] is the unique model
of PM [I] ∪ F = (P ∪ F )M [I], and thusM [I] ∈ AS(P ∪ F ). Otherwise, ifv /∈ F ,
sinceΦ is true, there exists aJ ⊆ Y such thatI ∪ J |= φ. Thus,N [I, J ] is a model of
P ∪ F , and since no subset ofN [I, J ] is a model of(P ∪ F )N [I,J] (by property 3 of
Φ-norm-reductions),N [I, J ] ∈ AS(P ∪ F ).

I ∪ (X \ I) ⊂ F ⊆ N [I, J ] for someI ⊆ X andJ ⊆ Y such thatI ∪ J |= φ: In
this caseN [I, J ] is a model ofP ∪F and, by property 3 ofΦ-norm-reductions,N [I, J ]
is also the unique model ofPN [I,J] ∪ F = (P ∪ F )N [I,J].

I ∪ (X \ I) ⊂ F ⊆ N [I, J ] for someI ⊆ X andJ ⊆ Y such thatI ∪ J 6|= φ:
We shall show thatO[J ] is an answer set ofP ∪ F in this case. LetM be a model
of PO[J] ∪ F = (P ∪ F )O[J]. SinceI ∪ (X \ I) ⊂ F ⊆ N [I, J ], eitherw ∈ F or
(Y ∪ Y ) ∩ F 6= ∅. Clearly,F ⊆ M and sow ∈ M in the first case. Note thatw ∈ M
holds also in the second case because of property 4(c) ofΦ-norm-reductions. Thus, as
a consequence of properties 4(a) and 4(b) ofΦ-norm-reductions,J ∪ (Y \ J) ⊆ M
holds. SinceI ∪ J 6|= φ and because of property 4(d) ofΦ-norm-reductions,v ∈ M
holds. Finally, since{v, w} ⊆ M and because of property 4(e) ofΦ-norm-reductions,
X ∪X ⊆M holds and, thus,M = O[I].

In all other cases, either{v, w} ⊆ F , or there is anx ∈ X such that{x, x} ⊆ F ,
or there is ay ∈ Y such that{y, y} ⊆ F . We shall show that in such cases there is an
O[J∗] which is an answer set ofP ∪F . LetO[J∗] be such thatJ∗ = F ∩ (Y ∪ Y ) and
letM be a model ofPO[J∗] ∪F = (P ∪F )O[J∗] such thatM ⊆ O[J∗]. We shall show
thatO[J∗] ⊆M holds, which would imply thatO[J∗] = M is an answer set ofP ∪F .
Clearly,F ⊆M holds. By property 4(e) ofΦ-norm-reductions,X ∪X ∪ {v, w} ⊆M
holds. Thus, by property 4(a) ofΦ-norm-reductions and becausew ∈ M , it holds that
y ∈ M for eachy ∈ Y such thaty ∈ O[J∗] andy /∈ O[J∗]. Similarly, by property
4(b) ofΦ-norm-reductions and becausew ∈ M , it holds thaty ∈ M for eachy ∈ Y
such thaty ∈ O[J∗] andy /∈ O[J∗]. Moreover, for ally ∈ Y such that{y, y} ⊆ O[J∗],
it holds that{y, y} ⊆ F ⊆ M . Therefore,O[J∗] ⊆ M holds and, consequently,
O[J∗] ∈ AS(P ∪ F ).

So in each of these casesAS(P ∪ F ) 6= ∅ and since these cases cover all possible
F ⊆ U , we obtain thatP is supercoherent.



Summarizing, we have shown thatΦ being false implies that anyΦ-norm-reduction
P is not super-coherent, whileΦ being true implies that anyΦ-norm-reduction is super-
coherent, which proves the lemma.

2

Definition 5. For any QBFΦ = ∀X∃Y φ with φ =
∧n

i=1 li,1 ∨ · · · ∨ li,mi
in CNF, we

define

NΦ = {x← not x; x← not x | x ∈ X} ∪ (6)

{y ← not y, w; y ← not y, w; w ← y; w ← y | y ∈ Y } ∪ (7)

{z ← v, w; z ← x, x; z ← y, y | z ∈ X ∪X ∪ {v, w},

x ∈ X, y ∈ Y } ∪ (8)

{v ← li,1, . . . , li,mi
| 1 ≤ i ≤ n} ∪ (9)

{w ← not v}. (10)

Again, the program from the above definition can be constructed in polynomial time
in the size of the reduced QBF. To conclude the proof, it is thus sufficient to show the
following relation.

Lemma 4. For any QBFΦ = ∀X∃Y φ with φ in CNF, the programNΦ is aΦ-norm-
reduction.

Proof. We shall first show thatNΦ has the requested models. LetM be a model ofNΦ.
Let us consider the atomsv andw. Because of the rulew ← not v in (10), three cases
are possible:

1. {v, w} ⊆ M . Thus,X ∪ X ⊆ M holds because of (8). Moreover, there exists
J ⊆ Y such thatJ ∪ (Y \ J) ⊆ M because of (7). Note that any other atom inU
could belong toM . These are the modelsO[J∗].

2. v ∈M andw /∈M . Thus, there existsI ⊆ X such thatI ∪ (X \ I) ⊆M because
of (6). Moreover, no atoms inY ∪ Y belong toM because of (7) andw /∈ M by
assumption. Thus,M = M [I] in this case.

3. v /∈M andw ∈M . Thus, there existI ⊆ X andJ ⊆ Y such thatI∪(X \ I) ⊆M
andJ ∪ (Y \ J) ⊆ M because of (6) and (7). Hence, in this caseM = N [I, J ]
and, because of (9), it holds thatI ∪ J |= φ.

Let us consider a reductPM [I] and one of its modelsM ⊆ M [I]. First of all,
note thatPM [I] contains a fact for each atom inI ∪ (X \ I). Thus,I ∪ (X \ I) ⊆ M
holds. Note also that, since each clause ofφ contains at least one variable fromY , all
of the rules of (9) have at least one false body literal. Hence, eitherM = M [I] or
M = M [I] \ {v}, as required byΦ-norm-reductions.

For a reductPN [I,J] such thatI ∪ J |= φ it is enough to note thatPN [I,J] contains
a fact for each atom ofN [I, J ].

Let us consider a reductPO[J∗] and one of its modelsM ⊆ O[J∗]. The first obser-
vation is that for eachy ∈ Y such thaty ∈ O[J∗] andy /∈ O[J∗], the reductPO[J∗]

contains a rule of the formy ← w (obtained by some rule in (7)). Similarly, for each



y ∈ Y such thaty ∈ O[J∗] andy /∈ O[J∗], the reductPO[J∗] contains a rule of the
form y ← w (obtained by some rule in (7)). Hence,M must satisfy properties 4(a) and
4(b) ofΦ-norm-reductions. Property 4(c) is a consequence of (7), property 4(d) follows
from (9) and, finally, property 4(e) must hold because of (8). 2

Note that the program from Definition 5 does not contain constraints. As a conse-
quence, theΠP

2 -hardness result presented in this section also holds if we only consider
normalASP programs without constraints.

6 Some Implications

In [22] the following problem has been studied under the name“uniform equivalence
with projection:”

Given two programsP andQ, and two setsA,B of atoms,P ≡A
B Q iff for each

setF ⊆ A of facts,{I ∩B | I ∈ AS(P ∪ F )} = {I ∩B | I ∈ AS(Q ∪ F )}.

Let us callA the context alphabet andB the projection alphabet. As is easily verified
the following relation holds.

Proposition 3. A programP over atomsU is super-coherent iffP ≡U
∅
Q, whereQ is

an arbitrary definite Horn program.

Note thatP ≡U
∅
Q means{I ∩ ∅ | I ∈ AS(P ∪ F )} = {I ∩ ∅ | I ∈ AS(Q ∪ F )}

for all setsF ⊆ U . Now observe that for anyF ⊆ U , both of these sets are either
empty or contain the empty set, depending on whether the programs (extended byF )
have answer sets.

{I ∩ ∅ | I ∈ AS(P ∪ F )} =

{

∅ iff AS(P ∪ F ) = ∅
{∅} iff AS(P ∪ F ) 6= ∅

{I ∩ ∅ | I ∈ AS(Q ∪ F )} =

{

∅ iff AS(Q ∪ F ) = ∅
{∅} iff AS(Q ∪ F ) 6= ∅

If Q is a definite Horn program, thenAS(Q ∪ F ) 6= ∅ for all F ⊆ U , and therefore
the statement of Proposition 3 becomes equivalent to checking whetherAS(P ∪F ) 6= ∅
for all F ⊆ U , and thus whetherP is super-coherent.

In [22], the complexity of the problem of deciding uniform equivalence with pro-
jection has also been investigated, reportingΠP

3 -completeness for disjunctive programs
andΠP

2 -completeness for normal programs. However, these hardness results use bound
context alphabetsA ⊂ U (whereU are all atoms from the compared programs). Our
results thus strengthen the observations in [22]. Using Proposition 3 and the main re-
sults in this paper, we obtainΠP

3 -hardness (resp.ΠP
2 -hardness in the case of normal

programs) for uniform equivalence with projection even forthe particular parameteri-
zation where the context alphabet is unrestricted, the projection set is empty, and one of
the compared programs are of a very simple structure (in fact, even the empty program
is sufficient forQ in Proposition 3).



7 Conclusion

Many recent advances in ASP rely on the adaptions of technologies from other ar-
eas. One important example is the Magic Set method, which stems from the area of
databases and is used in state-of-the-art ASP grounders. Recent work showed that a
particular variant of this technique only applies to a certain class of programs called
super-coherent [2]. Super-coherent programs are those which possess at least one an-
swer set, no matter which set of facts is added to them. We believe that this class of
programs is interesting of its own (for instance, since there is a certain relation to some
problems in equivalence checking) and thus studied here theexact complexity of recog-
nizing the property of super-coherence for disjunctive andnormal programs. Our results
show that the problems are surprisingly hard, viz. completefor ΠP

3 and resp.ΠP
2 . One

direction of future work is to search for methods to turn arbitrary programs into super-
coherent ones with minimal changes. Our proofs might provide valuable foundations
for such methods. That said, for using super-coherent programs efficiently for applica-
tions, we believe that an approach that uses a methodology different from the currently
prevailing “Guess&Check” or “Generate&Test” should be developed.
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