
The Birth of a WASP:
Preliminary Report on a New ASP Solver⋆

Carmine Dodaro, Mario Alviano, Wolfgang Faber, Nicola Leone,
Francesco Ricca, and Marco Sirianni

Dipartimento di Matematica, Università della Calabria, 87030 Rende, Italy
carminedodaro@gmail.com,

{alviano,faber,leone,ricca,sirianni}@mat.unical.it

Abstract. We present a new ASP solver for ground ASP programs that builds
upon related techniques, originally introduced for SAT solving, which have been
extended to cope with disjunctive logic programs under the stable model seman-
tics. We describe the key components of this solving strategy, namely: learning,
restarts, heuristics based on look-back concepts, and backjumping. At the same
time, we introduce a new heuristics based on a mixed approach between look-
back and look-ahead techniques. Moreover, we present the results of preliminary
experiments that we conducted in order to assess the impact of these techniques
on both random and structured instances (used also in the last ASP Competition
2011). In particular, we compared our system with both DLV and ClaspD.

1 Introduction

Answer Set Programming (ASP) [1] is a declarative programming paradigm which has
been proposed in the area of non-monotonic reasoning and logic programming. The
idea of ASP is to represent a given computational problem by alogic program whose
answer sets correspond to solutions, and then use a solver tofind them [2].

The ASP language considered here allows disjunction in ruleheads and nonmono-
tonic negation in rule bodies. These features make ASP very expressive; all problems in
the second level of the polynomial hierarchy are indeed expressible in ASP [3]. There-
fore, ASP is strictly more expressive than SAT (unlessP = NP). Despite the intrinsic
complexity of the evaluation of ASP, after twenty years of research many efficient ASP
systems have been developed (e.g. [4–11]). The availability of robust implementations
made ASP a powerful tool for developing advanced applications in the areas of Arti-
ficial Intelligence, Information Integration, or Knowledge Management; for example,
ASP has been used in applications for team-building [12], semantic-based information
extraction [13], and e-tourism [14]. These applications ofASP have confirmed the via-
bility of the use of ASP. Nonetheless, the interest in developing more effective and faster
systems is still a crucial and challenging research topic, as witnessed by the results of
the ASP Contests series [15–17].

⋆ Partly supported by Regione Calabria and EU under POR Calabria FESR 2007-2013 and
within the PIA project of DLVSYSTEM s.r.l., and by MIUR under the PRINproject LoDeN.
We also thank the anonymous reviewers for their valuable comments.

This paper provides a contribution in the aforementioned context. In particular, we
provide a preliminary report on the development of a new ASP solver for propositional
programs calledwasp. The new system is inspired by several techniques that were orig-
inally introduced for SAT solving, like the Davis-Putnam-Logemann-Loveland (DPLL)
backtracking search algorithm [18],clause learning[19, 20], backjumping[21, 22],
restarts [23], and conflict-driven heuristics[24] in the style of Berkmin [25]. The
mentioned SAT-solving methods have been adapted and combined with state-of-the-art
pruning techniques adopted by modern native disjunctive ASP systems [4]. In particu-
lar, the role of Boolean Constraint Propagation in SAT-solvers (based on the simpleunit
propagationinference rule) is taken by a procedure combining a set of inference rules.
Those rules combine an extension of the well-founded operator for disjunctive programs
with a number of techniques based on ASP program properties (see, e.g., [26]). More-
over,wasp uses a new branching heuristics tailored for ASP programs, which is based
on a mixed approach between Berkmin-like heuristics and look-ahead, which takes into
account minimality of answer sets (a requirement not present in SAT solving). Finally,
stable model checking, which is a co-NP-complete problem for disjunctive logic pro-
grams, is efficiently implemented relying on the rewriting method of [27], by calling
Minisat [28] as suggested by [29].

In the following, after briefly introducing ASP, we describethe new systemwasp.
We start from the solving strategy and present the design choices regarding propagation,
constraint learning, restarts, and the new heuristics. Moreover, we present the results
of some experiments conducted for assessing the impact of these techniques, on both
random and structured instances; some of these instances had been used in the last
ASP Competition [17]. In particular, we compared our systemwith both DLV and
ClaspD. The obtained results are encouraging: the new prototype system is already
competitive with state-of-the-art solvers, even if there is still room for improvements in
both the implementation (e.g., through the optimization and tuning of data structures
and heuristic parameters), and in the supported language features (notably aggregates
and weak constraints).

2 Preliminaries

In this paper we consider propositional programs, so an atomp is a member of a count-
able setA. A literal is either an atomp (a positive literal), or an atom preceded by the
negation as failuresymbolnot (a negative literal). Arule r is of the form

p1 ∨ · · · ∨ pn :- q1, . . . , qj , not qj+1, . . . , not qm (1)

wherep1, . . . , pn, q1, . . . , qm are atoms andn ≥ 0, m ≥ j ≥ 0. The disjunctionp1 ∨
· · · ∨ pn is theheadof r, while the conjunctionq1, . . . , qj , not qj+1, . . . , not qm is
thebodyof r. Moreover,H(r) denotes the set of head atoms, whileB(r) denotes the set
of body literals. We also useB+(r) andB−(r) for denoting the set of atoms appearing
in positive and negative body literals, respectively, andAt(r) for the setH(r)∪B+(r)∪
B−(r). A rule r is normal (or disjunction-free) if|H(r)| ≤ 1, positive (or negation-
free) ifB−(r) = ∅, a fact if bothB(r) = ∅ and|H(r)| = 1, aconstraintif |H(r)| = 0.

A programP is a finite set of rules; if all rules in it are positive (resp. normal), thenP
is a positive (resp. normal) program.

Let L denote the complement of a literalL, i.e.,a = not a andnot a = a for an
atoma. We extend this to sets of literals and will useS for denoting{L | L ∈ S}. An
interpretationI is a subset ofA∪A. An interpretationI is total if for eacha ∈ A either
a ∈ I or not a ∈ I; otherwise,I is partial. An interpretationI is inconsistent if there
existsa ∈ A such that{a, not a} ⊆ I; otherwise,I is consistent. An interpretation thus
associates each ASP structure (atom, literal, head or body)with a truth value in the set
{T ,F ,U}, which extends toH(r) andB(r) in the standard way.

An interpretationI satisfiesa ruler ∈ P if H(r) is true w.r.t.I wheneverB(r) is
true w.r.t.I, while I violatesr if H(r) is false butB(r) is true. A total interpretationI
is amodelof a programP if I satisfies all the rules inP. Given an interpretationI for
a programP, the reduct ofP w.r.t. I, denoted byPI , is obtained by deleting fromP
all the rulesr with B−(r) ∩ I 6= ∅, and then by removing all the negative literals from
the remaining rules. The semantics of a programP is given by the setAS(P) of the
answer sets (or stable models) ofP, where a total interpretationM is an answer set (or
stable model) forP if and only ifM is a subset-minimal model ofPM .

3 Model Generator

In this section we sketch the main model generator function MG (cf. Fig. 1), which
is able to perform learning and restart techniques. MG is similar to the Davis-Putnam
procedure in SAT solvers. For reasons of presentation, we have considerably simplified
the procedure in order to focus on its main ideas. For example, the version described
here computes only one answer set, but modifying it to compute all orn stable models
is straightforward.

In the sequel,P will refer to the input program. Initially, the MG function is invoked
with I = ∅, andbj level = −1 (but it will become 0 immediately), and the global
variable numberOfConflicts is set to 0. MG returns true if theprogramP has an answer
set, and setsI to the computed answer set; otherwise it returns false.

MG first calls a function Propagate, which extendsI with those literals that can be
deterministically inferred, and keeps track of the reason of each inference by building a
representation of the so-called implication graph [24]. Propagate is similar to unit prop-
agation as employed by SAT solvers, but exploits the peculiarities of ASP for making
further inferences (e.g., it uses the knowledge that every answer set is a minimal model).
Propagate, described in more detail in Section 3.1, returnsfalse if an inconsistency (or
conflict) is detected (i.e., the complement of a true literalis inferred to be true), true
otherwise.

If Propagate returns true and no undefined atom is left inI, MG invokes CheckModel
to verify that the current total interpretation is also an answer set; the CheckModel func-
tion implements the techniques described in [27]. If the stability check succeeds, MG
returns true.1 If Propagate returned true butI is still partial, an undefined literalL is
selected according to a heuristic criterion and MG is recursively called. The atomL
corresponds to abranching variablein SAT solvers.

1 This is a co-NP-complete task in case of general disjunctive ASP programs.

If Propagate returns false, function ResolveConflict is called, which calculates the
Unique Implication Point (UIP) of the implication graph (see Section 3.1), and exploits
it to learn a constraint representing the inconsistency (see Section 3.2), which is added
to the input program. As a by-product, ResolveConflict returns the recursion level to go
back to (backjumping) in order to continue the search in the first branch of the search
that is free of the just-detected conflict.

After a certain number of conflicts, ResolveConflict may decide to restart the entire
search, if the total number of conflicts found during the search reached a certain thresh-
old. It is important to note that after each restart MG works on a program composed
of the original input program and the learned constraints. Our restart policy is based on
the sequence of thresholds (32, 32, 64, 32, 32, 64, 128, . . .) introduced in [30].

If the recursive call returned true, MG just returns true as well. If it returned false,
the corresponding branch is inconsistent,bj level is set to the recursion level to back-
track or backjump to. Now, ifbj level is less than the current level, this indicates a
backjump, and we return. If not, then we have reached the level to go to, and the search
continues.

bool MG (Interpretation& I, int& bj level)
int curr level = ++ bj level;

if (! Propagate(I))
bj level = ResolveConflict();
return false;

if (“no atom is undefined in I”)
if (CheckModel(I))return true;
else

bj level = ResolveConflict();
return false;

Select an undefined atomA using a heuristic;

if (MG(I ∪ {A}, bj level)) return true;
if (bj level< curr level) return false;

if (MG(I ∪ {not A}, bj level)) return true;
if (bj level< curr level) return false;

return false;

int ResolveConflict()
int level = calculateFirstUIP();
learning();
if(inRestartSequence(numberOfConflict))return 0;
return level;

Fig. 1. Computation of answer sets

3.1 Propagation

WASP implements a number of deterministic inference rules for pruning the search
space during the computation of stable models. These inference rules are namedfor-
ward inference, Kripke-Kleene negation, contraposition for true heads, contraposition
for false headsandwell-founded negation. All of these inference rules are briefly de-
scribed in this section.

During the propagation of deterministic inferences, implication relationships among
atoms are stored in a graphG named Implication Graph. This graph has a node〈a, t〉
for each atoma and truth valuet such thata has been assignedt. Each node of the
graph is associated with adecision level, which is set to the level of the backtracking
tree whent is assigned toa. Moreover,G has a directed arc connecting a node〈a, t〉
to a node〈a′, t′〉 whenever〈a, t〉 is one of the reasons that lead to the derivation of the
truth valuet′ for the atoma′. Note thatG will contain at most one node for each atom
of the program, unless a conflict is derived. The way of buildingG is described below.

Forward Inference. This is essentially modus ponens. When the body of a ruler is
true w.r.t. the current partial interpretation, and all butone of the head atoms ofr are
false and the remaining one is undefined, then there is only one way to satisfyr, by
deriving the remaining head atom as true.

Concerning the Implication GraphG, it is updated as follows. Letr be of the form
(1) and letpi be the undefined atom inH(r). The following elements are added to
G: a node〈pi, T 〉; arcs(〈qk, T 〉, 〈pi, T 〉) (k = 1, . . . , j); arcs(〈qk,F〉, 〈pi, T 〉) (k =
j + 1, . . . ,m); arcs(〈pk,F〉, 〈pi, T 〉) (k = 1, . . . , n andk 6= i).

Kripke-Kleene Negation. This derives negative information by using supportedness,
the fact that each atoma which is true in a stable modelM must occur in at least one
ruler such thatB(r) is true w.r.t.M anda is the only atom inH(r) which is true w.r.t.
M . Hence, atoms with no candidate supporting rules can be derived to be false. So, if
all of the rulesr such thata ∈ H(r) are satisfied because of a false body literal or
because of a true head atom different froma, atoma is inferred as false.

ConcerningG, a node〈a,F〉 is introduced. Moreover, for each ruler with a ∈
H(r), let L be the first literal (in chronological order of derivation) that satisfiedr. If
L ∈ B+(r), an arc(〈L,F〉, 〈a,F〉) is added toG; otherwise, ifL ∈ H(r), an arc
(〈L, T 〉, 〈a,F〉) is added toG; otherwise,L ∈ B−(r) and thus an arc(〈L, T 〉, 〈a,F〉)
is added toG.

Contraposition for True Heads. Supportedness is also used by this inference rule:
If an atoma that has been derived as true has only one candidate supporting ruler,
the truth of all literals inB(r) and the falsity of all atoms inH(r) different froma are
inferred.

ConcerningG, the following new nodes and arcs are introduced:〈b, T 〉 (for each
b ∈ B+(r)); 〈b,F〉 (for eachb ∈ B−(r) ∪ H(r) \ {a}); for each new node〈b, v〉
an arc(〈a, T 〉, 〈b, v〉). Moreover, for each ruler′ such thata ∈ H(r′), let L be the
first literal (in chronological order of derivation) that satisfied r′. If L ∈ B+(r′), an
arc (〈L,F〉, 〈b, v〉) is added toG, otherwise, ifL ∈ B−(r′) ∪ H(r′) \ {a}, an arc
(〈L, T 〉, 〈b, v〉) is added toG; this is done for each new node〈b, v〉 introduced by the
application of the inference rule forr.

Contraposition for False Heads. This inference rule is essentially modus tollens.
When for a ruler all head atoms are false, the only way to satisfyr is by having a false
body. In case all but one body literals ofr are true, falsity of the remainingL is inferred.

ConcerningG, a node〈a, v〉 is added, wherea is the atom inL andv = F if L = a

or v = T if L = not a. Moreover, the following arcs are added toG: (〈b,F〉, 〈a, v〉)
(for eachb ∈ H(r) ∪B−(r) \ {a}; (〈b, T 〉, 〈a, v〉) (for eachb ∈ B+(r) \ {a}).

Well-founded Negation. Unfounded sets are sets of unsupported or self-supporting
atoms, that is, atoms that can have supporting rules only if their own truth is assumed.
It is well-known that unfounded sets are disjoint from stable models, which allows for
assuming the falsity of all the atoms that belong to some unfounded set. Hence, after the
propagation process has been carried out,wasp determines the setX of all the atoms
belonging to some unfounded set and derives the falsity of these atoms; if this set is
empty, the rule does not apply.

In order to model such a lack of external supporting rules, a number of nodes and
arcs is added toG. For eacha ∈ X, a node〈a,F〉 is added. Arcs are introduced ac-
cording to the following schema: LetC be the set of atoms inX that were previously
derived as true, and letc be a randomly selected atom inC. For eacha ∈ X \C, an arc
(〈a,F〉, 〈c,F〉) is added toG. Moreover, for eachb ∈ C \ {c} and for each ruler such
thatb ∈ H(r), letL be the first literal (in chronological order of derivation) that satisfied
r. If L ∈ B+(r), an arc(〈L,F〉, 〈c,F〉) is added toG; otherwise, ifL ∈ H(r), an arc
(〈L, T 〉, 〈c,F〉) is added toG; otherwise,L ∈ B−(r) and thus an arc(〈L, T 〉, 〈c,F〉)
is added toG.

3.2 Constraint Learning

Constraint learning means acquiring information that avoids arriving again at a conflict
that was already encountered during the search. Our learning schema is based on the
concept of the first Unique Implication Point (UIP) [24]. A noden in the Implication
Graph is a UIP for a decision leveld iff all paths from the literal chosen at the leveld

to a conflict atom pass throughn. Intuitively, a UIP is the most concise reason for the
conflict of a certain decision level. We calculate the first UIP only for the decision level
of the conflict. By definition the chosen literal is always a UIP, but since several UIPs
may exist, we calculate the UIP closest to the conflict, the first UIP. After each conflict
at the decision leveld, a constraint is learned that contains the first UIP and all atoms
of lower levels that are connected to a node between the first UIP and the conflict.

Since the number of learned constraints may become exponential in the size of the
program, we adopt the standard technique of expiring learned constraints. Our policy
is similar to Minisat’s [28]: Each learned constraint has anactivity value, measuring
how much it is involved in conflicts. If a learned constraint has recently been used for
propagation, we do not delete it. If the number of learned constraints is greater than one
third of the input program, then we delete half of the learnedconstraints. Moreover, we
also delete all learned constraints with an activity value lower than a threshold value.

4 Heuristics

Clearly, a crucial issue in the Model Generator function in Fig. 1 is the selection of a
literal when all inferences have been made and there are still undefined atoms. It is clear
that the correctness of the algorithm reported in Fig. 1 doesnot depend on the strategy
in which this selection is made, but making a “good” choice isvery important for prac-
tical efficiency. However, strategies which perform very well on some domains may
perform very bad for other domains, and of course an optimal strategy seems unlikely
to be found. For this reason, some heuristic must be adopted;the quality of the adopted
heuristic can often only be assessed empirically.

Heuristics can be classified in two main classes,look-aheadbased andlook-back
based. Look-ahead heuristics estimate the effects of assigning a specific truth value to a
given undefined atom, for any truth value and for a set of undefined atoms (which might
also be the set of all undefined atoms). Once the effects of allcandidate assumptions
have been estimated, a look-ahead heuristic selects the most promising undefined atom
and truth value according to some function. Look-back heuristics, instead, rely on the
information on conflicts derived in the computation so far.

The heuristic implemented inwasp is based on a mixed approach. In fact, a look-
back approach is used for selecting an undefined atom and, in some cases, a look-ahead
step is performed for choosing the truth value for the selected atom. More specifically,
statistics on previously detected conflicts are analyzed and atoms that have caused most
conflicts are preferred. Also the “age” of conflicts is taken into account in the selection
process, and more recent conflicts are given greater importance. This approach has
already been adopted in the context of SAT, for example in theBerkMin solver [31]. In
this sense, our heuristic could be seen as an extension of theheuristic implemented in
BerkMin to the framework of ASP.

In the remainder of this section, we will provide a few additional details on the
strategy adopted bywasp for selecting undefined atoms and truth values to be assumed
during the computation of stable models.

A countercl(L) is associated with each literalL. Initially, all of these counters are
set to zero. When a new constraint is learned, counters for allliterals occurring in the
constraint are increased by one. In this way,wasp keeps track of those literals occurring
more frequently in learned constraints. Moreover, counters are also updated during the
computation of the First UIP: If a literalL is traversed in the implication graph, the
associated countercl(L) is increased by one. In this way, those literals that mainly
caused the derivation of a conflict are identified. Finally, every 100 conflicts, all these
counters are divided by 4 (this is an experimentally determined parameter), which gives
more importance to recently active literals. Our heuristicwill first select an atom and
then a truthvalue for this atom. To this end, we will usecv(a) := cl(a) + cl(not a), for
each propositional atoma.

Learned constraints are stored in chronological order. Theatom selection is first
restricted to those undefined atoms that occur in the first (ifany) learned constraintr
with undefined body. Among those, the atom with the highestcv(·) value is chosen.
In case of ties, the atom removing the highest number of supporting rules is selected2.

2 An atom removes a supporting rule if it makes the body ofr false or the head ofr true

If two or more atoms remove the same number of supporting rules, the first processed
atom is chosen. In this way, the chances of achieving a conflict increases, and this
may help the learning process. If no learned constraints with undefined body exist,
the undefined atom with the highestcv(·) value is selected. In case of ties, the first
processed atom is selected. If there are no learned constraints, e.g. in the beginning of
the solving process, the atom occurring in most rules is picked.

After selecting an atoma according to the strategy described above,wasp chooses
a truth value fora. For this purpose, we only distinguish two cases, namely whether a
learned constraintr with undefined body exists or not. If a learned constraintr with un-
defined body exists, additional counters are considered forchoosing a truth value fora.
In particular, a countergcl(L) is associated with each literalL for estimating the global
contribution ofL to all of the conflicts derived during the computation. For each literal
L, gcl(L) is initially set to zero and increased whenevercl(L) is increased. The differ-
ence tocl(L) is thatgcl(L) is never decreased, that is,gcl(L) is unchanged whencl(L)
is divided by 4. Thus, in this casewasp assumes the truth ofa if gcl(a) > gcl(not a);
otherwise, ifgcl(a) ≤ gcl(not a), the falsity ofa is assumed. It is important to em-
phasize that this counter is not used when the atom removing the highest number of
supporting rules was chosen. In fact, in this case the literal removing the highest num-
ber of supporting rules is picked. In the other case, that is,if all learned constraints have
false bodies, a look-ahead step is performed and botha andnot a are propagated (i.e.,
the function Propagate is invoked). The literal appearing in more rules is propagated
before the other one. During these propagations,wasp estimates the impact of the two
assumptions on the computation of answer sets. In particular, wasp counts the number
of inferred atoms and the number of rules that have been satisfied by the two propaga-
tions. The truth ofa is then assumed if the impact of the propagation ofa is greater than
the impact of the propagation ofnot a, whilea is assumed to be false in other case, that
is, if the impact of the propagation ofnot a is greater than the impact of the propaga-
tion of a. If the impact is equal thena is assumed to be false. It is important to note that
when a conflict is derived in one of the two propagations, a deterministic inference is
determined. That is, if a conflict is derived during the propagation ofa, the falsity ofa
is determined, while the truth ofa is determined whenever a conflict is derived during
the propagation ofnot a.

Example 1.We will now provide an example of the way our heuristic works.In the ex-
ample, we will consider the following rulesr1–r4 and learned constraintsc1–c2 (listed
in chronological order):

r1 : a :- c. r3 : a ∨ c :- e. c1 : :- a, b.

r2 : a ∨ b :- d. r4 : e ∨ b :- c. c2 : :- a, not c, d.

Moreover, let us assume a partial interpretationI1 = {a, not b} and the following
counter values:cl(a) = 2, cl(not a) = 2, cl(b) = 1, cl(not b) = 0, cl(c) = 1,
cl(not c) = 2, cl(d) = 3 andcl(not d) = 0.

Note that constraintc1 is satisfied becauseb is false. Thus, the first learned constraint
(according to the chronological order) which is not satisfied isc2. Indeed, two undefined
literals occur in the body ofc2, namelynot c andd. We then consider the counters

cv(c) = cl(c) + cl(not c) andcv(d) = cl(d) + cl(not d), which are both equal to 3.
The heuristics then examines the removal of supporting rules:

Two supporting rules would be removed (r1 and r4) by settingc false, and one
supporting rule (r3) would be removed by settingc true, for a total of 3 supporting
rules removed. Concerningd, one supporting rule (r2) would be removed by settingd
false, and no rules would be removed by settingd true, for a total of 1 supporting rule
removed. Thereforec removes more supporting rules thand, and therefore our heuristic
will choosec and it first will be set to false.

5 Experiments

In this section we report the results of an experimental analysis we carried out in order
to assess the performance ofwasp. As a comparison, we also ran the suite of our bench-
marks on two state-of-the-art ASP solvers, namely DLV and ClaspD;3 a discussion on
the difference betweenwasp and these two systems is provided in Section 6.

The machine used for the experiments is a two-processor Intel Xeon “Woodcrest”
(quad core) 3GHz machine with 4MB of L2 Cache and 4GB of RAM, running Debian
GNU Linux 4.0. As our ASP system focuses on the Model Generation phase, only
the time for evaluating ground programs (previously produced by the DLV instantiator
from the original non-ground instances) have been considered. In the following, we
briefly describe both benchmark problems and data.

5.1 Benchmark Problems and Data

In our experiments, we considered problems from the most recent ASP Competition
[17] and other problems which have already been employed forassessing performance
of the ASP solver DLV [4]. Our experiments consist of 36 instances in 15 different
domains. The instances and encodings are those that were used in the competitions
or in the other publicly available suites. In the following we describe the benchmark
problems.

Labyrinth. Ravensburger’s Labyrinth game deals with guiding an avatarthrough a
dynamically changing labyrinth to certain fields. A solution is represented by pushes of
the labyrinth’s rows and columns such that the avatar can reach the goal field (which
changes its location when pushed) from its starting field (which also changes its location
when pushed) by a move along some path after each push.

Knight-tour. Given a chessboard, the problem is to find a tour for a knight piece that
starts at any square, travels all squares, and comes back to the origin, following the
knight move rules of chess.

Graph coloring. Given an undirected graph and a set ofn colors, we are interested in
checking whether there is an assignment of colors to nodes such that no adjacent nodes
share the same color.

3 Winners of the disjunctive tracks in the last ASP Competitions [15–17].

Maze-Generation. A maze is anm × n grid, in which each cell is empty or a wall
and two distinct cells on the edges are indicated as entranceand exit, satisfying the
following conditions: (1) each cell on the edge of the grid isa wall, except entrance
and exit that are empty; (2) there is no2 × 2 square of empty cells or walls; (3) if two
walls are on a diagonal of a2× 2 square, then not both of their common neighbors are
empty; (4) no wall is completely surrounded by empty cells; (5) there is a path from the
entrance to every empty cell. The problem has been proved to be NP-complete in [32].

Strategic Companies. Strategic companies is a well-knownNPNP -complete prob-
lem that has often been used for system comparisons, also in the previous ASP Compe-
titions. In the Strategic Companies problem, a collectionC = c1, . . . , cm of companies
is given, for somem ≥ 1. Each company produces some goods in a setG, and each
companyci in C is possibly controlled by a set of owner companiesOi (whereOi is
a subset ofC, for eachi = 1, . . . ,m). In this context, a setC ′ of companies (i.e., a
subset ofC) is astrategic setif it is minimal among all the sets satisfying the following
conditions: (i) Companies in C’ produce all goods in G; (ii) if Oi is a subset ofC ′, the
associated companyci must belong toC ′ (for eachi = 1, . . . ,m). We considered a
random instance having 7500 companies and 22500 products.

2-QBF. The problem consists of checking the validity of a quantifiedboolean formula
Φ = ∃X∀Y φ, whereX andY are disjoint sets of propositional variables andφ = C1∨
. . .∨Ck is a DNF on variablesX andY . In our benchmark, we used the transformation
from 2-QBF to ASP presented in [4], which is based on a reduction presented in [33].
The instance considered has 1000 universal variables, 20 existential variables, 10000
clauses, and is a 5-DNF.

Prime Implicants. In Boolean logic, an implicant is a ”covering” (sum term or product
term) of one or more minterms (a product term in which each of the n variables appears
once) in a sum of products, or, maxterms (a sum term in which each of the n variables
appears once) in a product of sums, of a boolean function. Formally, a product termP
in a sum of products is an implicant of the Boolean functionF if P impliesF . A prime
implicant of a function is an implicant that cannot be covered by a more general (more
reduced - meaning with fewer literals) implicant. The instance we considered consists
of 180 variables and 774 clauses.

3-Colorability. This well-known problem asks for an assignment of three colors to the
nodes of a graph, in such a way that adjacent nodes always havedifferent colors. One
simplex graph was generated with the Stanford GraphBase library [34], by using the
functionsimplex(600, 600,−2, 0, 0, 0, 0). Another ladder graph was generated having
11998 edges, and8000 nodes.

Hamiltonian Cycle. A classical NP-complete problem in graph theory, which can
be expressed as follows: given a directed graphG = (V,E) and a nodea ∈ V of
this graph, does there exist a path inG starting ata and passing through each node
in V exactly once? One random graph was generated with the Stanford GraphBase li-
brary [34], by using the functionrandom graph(85, 700, 0, 0, 0, 0, 0, 1, 1, 33), having
700 edges and85 nodes; the other instances has been generating using the function
random graph(80, 456, 0, 0, 0, 0, 0, 1, 1, 33), having456 edges and80 nodes.

Blocks World. Blocks world is one of the most famous planning domains in artificial
intelligence. We have a set of cubes (blocks) sitting on a table. The goal is to build
one or more vertical stacks of blocks. The catch is that only one block may be moved
at a time: it may either be placed on the table or placed atop another block. Because
of this, any blocks that are, at a given time, under another block cannot be moved.
The four instances considered are by Esra Erdem and taken from the ccalc homepage
(http://www.cs.utexas.edu/users/tag/cc/).

3SAT. The satisfiability problem (SAT) is a decision problem, whose instance is a
propositional formula. The question is: given the formula,is there some assignment of
T andF values to the variables that will make the entire expressiontrue? SAT is the
best-known NP-complete problem. 3-satisfiability is a special case of SAT, where each
formula is a CNF in which each clause contains exactly three literals. We considered
two random instances with 280 variables and 1204 clauses.

Towers of Hanoi. The Towers of Hanoi (ToH) problem has three pegs and n disks.
Initially, all n disks are on the left-most peg. The goal is tomove all n disks to the right-
most peg with the help of the middle peg. The rules are: (1) move one disk at a time;
(2) only the top disk on a peg can be moved; (3) a larger disk cannot be placed on top
of a smaller one. The instance we considered has 6 disks, and we check whether a plan
of length 64 exists.

Ramsey Numbers. The Ramsey numberramsey(k,m) is the least integern such
that, no matter how the edges of the complete undirected graph (clique) withn nodes
are colored using two colors, say red and blue, there is a red clique with k nodes (a
red k-clique) or a blue clique withm nodes (a bluem-clique).The encoding of this
problem consists of one rule and two constraints. For the experiments, the problem was
considered of deciding whether, fork = 3, m = 7, n = 21, and fork = 4, m = 6,
n = 26, n is the Ramsey numberramsey(k,m).

n-Queens. The 8-queens puzzle is the problem of putting eight chess queens on an
8x8 chessboard such that none of them is able to capture any otherusing the standard
chess queen’s moves. Then-queens puzzle is the more general problem of placingn

queens on annxn chessboard (n ≥ 4). The instance considered is forn = 23.

Timetabling. The problem is determining a timetable for some university lectures that
have to be given in one week to some groups of students. The timetable must respect a
number of given constraints concerning availability of rooms, teachers, and other issues
related to the overall organization of the lectures.

5.2 Experimental Results

The results of our experiment are summarized in Table 1, reporting, for each consid-
ered instance the execution times in seconds elapsed by eachconsidered system. For
each instance of the benchmark problems, we allowed a maximum of 600 seconds of
execution time. Timeouts are indicated by means of the word TIME in Table 1. In the
last rows we report, for each system, the total number of solved instances, the average
execution time for solving all the 36 considered instances (timeouts are counted 600s
each), and the number of instances in which each solver resulted to be the fastest.

Table 1. Benchmark Results on ASP competition suite

Problem wasp DLV ClaspD

LABYRINTH-1 0,39 0,02 0,03
LABYRINTH-2 299,74 3,17 65,84
LABYRINTH-3 415,14 56,19 113,04
LABYRINTH-4 TIME 25,76 561,93
LABYRINTH-5 14,47 29,15 490,04
KNIGHT-TOUR-1 0,07 0,21 0,15
KNIGHT-TOUR-2 0,14 1,64 0,34
KNIGHT-TOUR-3 0,65 14,45 2,84
KNIGHT-TOUR-4 0,67 56,31 10,56
KNIGHT-TOUR-5 7,44 TIME 179,48
GRAPH-COLOURING-1153,67 TIME 3,05
GRAPH-COLOURING-2 TIME TIME TIME
MAZE-GENERATION-1 0,28 0,93 0,79
MAZE-GENERATION-2 46,84 104,47 1,76
MAZE-GENERATION-3 47,37 261,57 3,94
MAZE-GENERATION-4 94,17 TIME 9,64
MAZE-GENERATION-5 123,40 TIME 23,49
STRATCOMP 179,06 2,33 5,71
2QBF 0,11 3,31 0,92

Problem wasp DLV ClaspD

PRIMEIMPL 3,24 1,33 0,21
3COL-SIMPLEX 23,02 33,58 TIME
3COL-LADDER 2,29 91,24 34,08
HAMCYCLE-RANDOM 5,29 1,50 2,52
HAMCYCLE-FREE 106,89 31,37 0,47
BLOCKS-WORLD-1 224,09 6,48 1,92
BLOCKS-WORLD-2 340,84 11,84 1,75
BLOCKS-WORLD-3 0,76 8,87 1,67
BLOCKS-WORLD-4 129,28 11,05 0,83
3SAT-1 78,31 9,59 65,84
3SAT-2 31,07 5,43 0,06
TOWERS-OF-HANOI 3,81 8,46 437,55
RAMSEY-1 3,03 9,84 24,01
RAMSEY-2 4,87 15,74 40,28
23-QUEENS 0,10 41,10 0,54
SCHOOL-TIMETABLING 7,45 61,09 224,93

TOTAL SOLVED 34 31 34
WEIGHTED AVERAGE 98,08 108,87 98,17
WINS 15 9 15

Overall, the results of the preliminary experimental analysis are encouraging: the
performance ofwasp is comparable to ClaspD (same number of wins and cumulative
average time), and it is often faster than DLV (only 9 wins vs 15 ofwasp and ClaspD).
In more detail, for the Labyrinth problemwasp was able to solve four instances out
of five in the allowed time, while the other systems solved allfive instances; the sys-
tem is always outperformed by the competitors, except for one instance in which it is
the best performer. Regarding the Knight Tour problem,wasp always outperforms the
competitor systems, solving the hardest instance (on whichDLV timed out) in only
7, 44 seconds compared to179, 48 seconds for ClaspD. Concerning the Graph Color-
ing problem,wasp was slower than ClaspD, but solved one instance more than DLV.
Also for the Maze Generation benchmarks,wasp was slightly slower than ClaspD, but
always outperformed DLV. Considering the other benchmarks, wasp outperformed the
other two ASP solvers on 2QBF, Ramsey Numbers, N-Queens, School Timetabling,
3Colorability, and Towers of Hanoi. In the remaining benchmarks, the system remains
competitive, with the single exception of Strategic Companies. For this, we hypothesize
that a reason might be thatwasp does not implement yet a model-checking-driven back-
jumping technique, which proved to be very effective on thisparticular benchmark [35].

6 Related Work and Conclusion

In this paper we provided a preliminary report on a new ASP solver for propositional
programs calledwasp. The new system is inspired by several techniques that were orig-
inally introduced for SAT solving, like the Davis-Putnam-Logemann-Loveland (DPLL)
backtracking search algorithm [18],clause learning[19, 20], backjumping[21, 22],
restarts[23], andconflict-driven heuristics[24] in the style of Berkmin [25]. Actually,
some of the techniques adopted inwasp, includingbackjumpingandlook back heuris-
tics were first introduced for Constraint Satisfaction [21, 22, 36] and successively suc-
cessfully applied in SAT [37, 38, 25, 24] and QBF solving [39–42]. Some of these tech-

niques were already adapted in modern non-disjunctive ASP solvers like Smodelscc [43,
44], Clasp [8], and solvers supporting disjunction like CModels3 [10], GnT [45], and
DLV [46, 47].

Concerning other ASP solvers, we differ from non-native solvers like Cmodels3 [10],
in the sense that we do not rely on a rewriting into a propositional formula and an ex-
ternal SAT solver, but use native ASP techniques. Among native solvers, similarities
with DLV [4] can be found in the propagation rules, in the computation of the great-
est unfounded set, and in the model checking technique. However, we clearly differ
from DLV as it does not implement many of the look-back techniques borrowed from
CP and SAT. The prototypical version of DLV presented in [46]and extended in [47],
implements backjumping and some forms of look back heuristics, but it does not in-
clude clause learning, restarts, and does not use an implication graph for determining
the reasons of the conflicts. Similar considerations hold for GnT [45], which, as DLV,
implements a systematic backtracking without learning andlook-ahead heuristics.

Comparing our system with ClaspD (a disjunction-supporting version built upon
Clasp) more similarities can be found, as it includes similar techniques, e.g. backjump-
ing, clause learning, restarts, and look-back heuristics.There are nonetheless several
differences withwasp. First of all,wasp performs the unfounded set checking by means
of the well-founded operator, while ClaspD relies on the computation of loop formulas.
Moreover, ClaspD implements an alternative version of the implication graph that is
more similar to SAT solvers, since it relies on unit propagation of nogoods (minimality
is handled via loop formula learning). Furthermore, ClaspD, aswasp, adopts a branch-
ing heuristics based on Berkmin [25]; however,wasp extends the original Berkmin
heuristics by exploiting a lookahaed technique in place of the “two” function calcu-
lating the number of binary clauses in the neighborhood of literal L, together with an
additional criterion based on minimality of answer sets. Inparticular, to deal with the
case of two atoms with the same heuristic value,wasp chooses the atom that introduces
the maximum number of unsatisfied supporting rules.

It is worth pointing out that the implementation ofwasp is still in a preliminary
phase, yet the results obtained up to now are encouraging. Our system is able to compete
with the state-of-the-art solvers, and even outperform them in some of the considered
benchmarks.

Concerning future work, we plan to extend the prototypical system by introducing
new language constructs such as aggregates [48, 49] and weakconstraints [50], which
are currently missing fromwasp. Moreover, the current implementation can be im-
proved in several respects: parameter tuning of the heuristics, fine tuning of the source
code, a model-checking-driven backjumping [35] as well as support for multi-threading
are also planned.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs andDisjunctive Databases.
NGC 9 (1991) 365–385

2. Lifschitz, V.: Answer Set Planning. In: ICLP’99, Las Cruces, New Mexico, USA, The MIT
Press (1999) 23–37

3. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM TODS22 (1997) 364–418

4. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
System for Knowledge Representation and Reasoning. ACM TOCL7 (2006) 499–562

5. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Seman-
tics. AI 138 (2002) 181–234

6. Lin, F., Zhao, Y.: ASSAT: Computing Answer Sets of a Logic Program by SAT Solvers. In:
AAAI-2002, Edmonton, Alberta, Canada, AAAI Press / MIT Press (2002)

7. Babovich, Y., Maratea, M.: Cmodels-2: Sat-based answer sets solver enhanced to non-tight
programs.http://www.cs.utexas.edu/users/tag/cmodels.html (2003)

8. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.
In: IJCAI 2007,(2007) 386–392

9. Janhunen, T., Niemelä, I., Seipel, D., Simons, P., You, J.H.: Unfolding Partiality and Dis-
junctions in Stable Model Semantics. ACM TOCL7 (2006) 1–37

10. Lierler, Y.: Disjunctive Answer Set Programming via Satisfiability. In: LPNMR’05. LNCS
3662, (2005) 447–451

11. Drescher, C., Gebser, M., Grote, T., Kaufmann, B., König, A., Ostrowski, M., Schaub, T.:
Conflict-Driven Disjunctive Answer Set Solving. In: Proc. of KR 2008, Sydney, Australia,
AAAI Press (2008) 422–432

12. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano,S., Leone, N.: Team-building
with Answer Set Programming in the Gioia-Tauro Seaport. TPLP.CUP (2011) To appear.

13. Manna, M., Ruffolo, M., Oro, E., Alviano, M., Leone, N.: The HiLeX System for Semantic
Information Extraction. Transactions on Large-Scale Data and Knowledge-Centered Sys-
tems.Berlin/Heidelberg(2011) To appear.

14. Ricca, F., Alviano, M., Dimasi, A., Grasso, G., Ielpa, S.M., Iiritano, S., Manna, M., Leone,
N.: A Logic-Based System for e-Tourism. FI.IOS Press105 (2010) 35–55

15. Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczýnski, M.: The first
answer set programming system competition. In: LPNMR’07. LNCS 4483, (2007) 3–17

16. Denecker, M., Vennekens, J., Bond, S., Gebser, M., Truszczyński, M.: The second answer
set programming competition. In: Proc. of LPNMR ’09, Berlin, Heidelberg, (2009) 637–654

17. Calimeri, F., Ianni, G., Ricca, F., Alviano, M., Bria, A., Catalano,G., Cozza, S., Faber, W.,
Febbraro, O., Leone, N., Manna, M., Martello, A., Panetta, C., Perri, S., Reale, K., Santoro,
M.C., Sirianni, M., Terracina, G., Veltri, P.: The Third Answer Set Programming Competi-
tion: Preliminary Report of the System Competition Track. In: Proc. of LPNMR11., LNCS
(2003) 388–403

18. Davis, M., Logemann, G., Loveland, D.: A Machine Program forTheorem Proving. Com-
munications of the ACM5 (1962) 394–397

19. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient Conflict Driven Learning
in Boolean Satisfiability Solver. In: ICCAD 2001. (2001) 279–285

20. Pipatsrisawat, K., Darwiche, A.: On Modern Clause-Learning Satisfiability Solvers. JAIR
44 (2010) 277–301

21. Gaschnig, J.: Performance measurement and analysis of certain search algorithms. PhD
thesis, CMU (1979) Tech. Report CMU-CS-79-124.

22. Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Computational
Intelligence9 (1993) 268–299

23. Gomes, C.P., Selman, B., Kautz, H.A.: Boosting Combinatorial Search Through Random-
ization. In: Proceedings of AAAI/IAAI 1998, AAAI Press (1998) 431–437

24. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an
Efficient SAT Solver. In: DAC 2001 (2001) 530–535

25. Goldberg, E., Novikov, Y.: BerkMin: A Fast and Robust Sat-Solver. In: Design, Automation
and Test in Europe Conference and Exposition (DATE 2002), Paris, France, IEEE Computer
Society (2002) 142–149

26. Faber, W., Leone, N., Pfeifer, G.: Pushing Goal Derivation in DLP Computations. In: LP-
NMR’99. LNCS 1730, (1999) 177–191

27. Koch, C., Leone, N., Pfeifer, G.: Enhancing Disjunctive Logic Programming Systems by
SAT Checkers. AI15 (2003) 177–212

28. Éen, N., S̈orensson, N.: An Extensible SAT-solver. In: Theory and Applicationsof Satisfia-
bility Testing, 6th International Conference, SAT 2003., LNCS (2003) 502–518

29. Maratea, M., Ricca, F., Veltri, P.: DLVC: Enhanced Model Checking in DLV. In: Proceedings
of Logics in Artificial Intelligence, JELIA 2010. (2010) 365–368

30. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of las vegas algorithms. Inf. Pro-
cess. Lett.47 (1993) 173–180

31. Goldberg, E., Novikov, Y.: Berkmin: A fast and robust sat-solver. Discrete Appl. Math.155
(2007) 1549–1561

32. Alviano, M.: The Maze Generation Problem is NP-complete. In: Proc. of ICTCS ’09. (2009)
33. Eiter, T., Gottlob, G.: On the Computational Cost of Disjunctive Logic Programming: Propo-

sitional Case. AMAI15 (1995) 289–323
34. Knuth, D.E.: The Stanford GraphBase : A Platform for Combinatorial Computing. ACM

Press, New York (1994)
35. Pfeifer, G.: Improving the Model Generation/Checking Interplay toEnhance the Evaluation

of Disjunctive Programs. In: LPNMR-7. LNCS 2923, (2004) 220–233
36. Dechter, R., Frost, D.: Backjump-based backtracking for constraint satisfaction problems.

AI 136 (2002) 147–188
37. Bayardo, R., Schrag, R.: Using CSP Look-back Techniques to Solve Real-world SAT In-

stances. In: Proceedings of the 15th National Conference on ArtificialIntelligence (AAAI-
97). (1997) 203–208

38. Silva, J.P.M., Sakallah, K.A.: GRASP: A Search Algorithm for Propositional Satisfiability.
IEEE Transaction on Computers48 (1999) 506–521

39. Zhang, L., Malik, S.: Conflict Driven Learning in a Quantified Boolean Satisfiability Solver.
In: Proc. of ICCAD 2002. (2002) 442–449

40. Zhang, L., Malik, S.: Towards a Symmetric Treatment of Satisfaction and Conflicts in Quan-
tified Boolean Formula Evaluation. In: CP 2002. NY, USA, (2002) 200–215

41. Giunchiglia, E., Narizzano, M., Tacchella, A.: Backjumping for Quantified Boolean Logic
Satisfiability. AI145 (2003) 99–120

42. Letz, R.: Lemma and Model Caching in Decision Procedures for Quantified Boolean For-
mulas. In: TABLEAUX 2002. Denmark, (2002) 160–175

43. Ward, J., Schlipf, J.S.: Answer Set Programming with Clause Learning. In: LPNMR-7.
LNCS 2923, (2004) 302–313

44. Ward, J.: Answer Set Programming with Clause Learning. PhD thesis, Ohio State University,
Cincinnati, Ohio, USA (2004)

45. Janhunen, T., Niemelä, I.: Gnt - a solver for disjunctive logic programs. In: LPNMR-7.
LNCS 2923, Fort Lauderdale, Florida, USA, (2004) 331–335

46. Ricca, F., Faber, W., Leone, N.: A Backjumping Technique for Disjunctive Logic Program-
ming. AI Communications19 (2006) 155–172

47. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics in dlv: Im-
plementation, evaluation and comparison to qbf solvers. Journal of Algorithms in Cognition,
Informatics and Logics63 (2008) 70–89

48. Pelov, N., Denecker, M., Bruynooghe, M.: Well-founded and Stable Semantics of Logic
Programs with Aggregates. TPLP7 (2007) 301–353

49. Faber, W., Leone, N., Pfeifer, G.: Semantics and complexity of recursive aggregates in an-
swer set programming. AI175 (2011) 278–298 Special Issue: John McCarthy’s Legacy.

50. Buccafurri, F., Leone, N., Rullo, P.: Enhancing Disjunctive Datalog by Constraints. IEEE
TKDE 12 (2000) 845–860

