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Abstract

We compare the performance of a DL reasoner with a FO prover on reasoning prob-
lems encountered during the classification of realistic knowledge bases.

1 Introduction

Description logics (DLs) can, in general, be viewed as decidable subsets of first-order logic
(FOL). It is, therefore, natural to compare the performance of dedicated DL reasoners with
general purpose FOL theorem provers. On the one hand, using available FOL provers could,
potentially, save a great deal of effort in developing algorithms and reasoners for various DLs.
On the other hand, FOL provers could be used to provide reasoning services for expressive
DLs for which specific algorithms have yet to be developed.

Hustadt and Schmidt [8] have investigated the use of FOL provers to reason with proposi-
tional modal logics, and, via well known correspondences [12], with description logics. They
used the SPASS FOL prover, and a relatively complex functional translation which produces
a subset of FOL for which SPASS is able to guarantee complete reasoning. The results of this
experiment were quite encouraging, with performance of the SPASS based system being com-
parable, in many cases, with that of state of the art DL reasoners. The tests, however, mainly
concentrated on checking the satisfiability of (large) single modal logic formulae (equiva-
lently, DL concepts), rather than the more interesting (in a DL context) task of checking the
satisfiability of formulae w.r.t. a large theory (equivalently, a DL knowledge base). More-
over, this approach has yet to be extended to the more expressive DLs that underpin ontology
languages such as OIL, DAML+OIL and OWL [7].

An alternative approach, and the one we investigate here, is to use a simple “direct” trans-
lation based on the standard first order semantics of DLs (see, e.g., [1]).1 Using this approach,
a TBox, given as set of DL axioms, is translated into a FO theory, defined as a set of FO ax-
ioms. Then a DL reasoning task (w.r.t. the TBox) is transformed into a FO task that uses the
theory. The translation φ maps DL concept and role names into unary and binary predicates
respectively. Complex concepts are mapped into formulae as shown below. DL axioms are
translated into FO axioms in the obvious way. For example, subsumption and equivalence
axioms are translated into, respectively, FO implication and equality axioms (with the free
variables universally quantified).

1The resulting theories will be equisatisfiable w.r.t. formulae produced by Hustadt and Schmidt’s functional
translation, but may lead to less efficient (and incomplete) reasoning—at least for the SPASS prover.



As an example, let’s see a translation of a couple of concept and role axioms:

DL FOL

R v S ∀x∀y(φR(x, y) → φS(x, y))
C ≡ D u ∃R.(Et ∀x(φC(x) = φD(x) ∧ ∃y(φR(x, y) ∧ (φE(y)∨

∀S−.F ) ∀x(φS(x, y) ∧ φF (x)))))
A v > 3 R.B ∀x(φA(x) → ∃y1∃y2∃y3(φR(x, y1) ∧ φB(y1)∧

φR(x, y2) ∧ φB(y2) ∧ φR(x, y3) ∧ φB(y3)∧
(y1 6= y2) ∧ (y2 6= y3) ∧ (y1 6= y3))

Trans(T ) ∀x∀y∀z(φT (x, y) ∧ φT (y, z) → φT (x, z))

For simple DLs (like ALC) the translation is into the FOL class L2 (the FOL fragment with
no function symbols and only 2 variables), which is known to be decidable.2 The above
translations of the role inclusion axiom and concept equality axiom are, for example, in L2.
When number restrictions are added to these DLs, they can be translated into C2—equivalent
to L2 with additional “counting quantifiers”—which is also known to be decidable [1]. Most
implemented FOL provers do not, however, support counting quantifiers, so in the above
example the number restriction has been translated into FOL with equality using more than
two variables. This translation is obviously problematical when a very large number is used
in a number restriction, as the number of inequalities increases with the square of the number
used in the restriction. Such cases are, however, extremely rare in realistic ontologies.

More expressive description logics, e.g., with transitive roles (SHIQ) and/or complex
role axioms (RIQ), need at least three variables for their First-Order translation. The above
transitivity axiom for role T is an example of this case. FOL with three variables is known
to be undecidable [3]. Such description logics are now widely used, e.g., in large KBs de-
scribing complex domains such as medicine [10], and as the basis for Semantic Web ontology
languages such as DAML+OIL and OWL.

For this reason, we have decided to investigate the use of the above straightforward trans-
lation method with a state of the art FO theorem prover. In the last few years, a number of
highly efficient FO provers have been implemented [9, 13, 11]. This provers compete annu-
ally on a set of tasks, and the results are published [4]. The best general-purposes prover in
recent years has been Vampire [11], and we have chosen this prover to use in our comparison.

2 Preliminaries

Like most efficient state-of-the-art automated theorem provers (ATPs), Vampire implements
saturation with resolution and paramodulation. The essence of the approach is as follows. The
input FO task is given as a set of clauses. Each clause is a disjunction of literals. The prover
then tries to deduce new clauses from the initial set, using the resolution or paramodulation
rules. This goes on until an empty clause (i.e., a disjunction of zero size) is inferred, or it is
not possible to create any new clauses. If the empty clause was inferred, then the task (initial
set of clauses) is unsatisfiable. This approach is sound, i.e., the empty clause will only be
inferred, if the FO task is unsatisfiable.

Vampire, like most other general-purposes ATPs, uses various strategies. Some of them
are complete. This means that if it is impossible to create a new clause from the existing set

2In order to stay in L2 the same two variables need to be used in alternating order in nested subformulae—
see [1].



of clauses, then the input task is satisfiable. Such set is called saturated. There are also some
incomplete strategies; they are used for faster search in some special cases. Even using a com-
plete strategy, it is not always possible to saturate the initial set: saturation does not always
converge, and even if it does it may use too much time on realistic problems. This means
that saturation-based provers such as Vampire are usually quite effective on unsatisfiable
problems (because they can often derive the empty clause before exhausting their resources),
but much less effective on satisfiable problems (because they may simply continue to gen-
erate new clauses until their resources are exhausted). Note when a subsumption holds, the
corresponding FO problem will be unsatisfiable, so ATPs are relatively good at proving sub-
sumption (positive subsumption), and much less good at proving non-subsumption (negative
subsumption).

In view of the relative unpredictability of their behaviour, testing an ATP is usually or-
ganized as follows. The ATP takes an input task with a time limit. It uses some (complete)
strategy which tries to infer an empty clause. Three answers are allowed: ”satisfiable”, ”un-
satisfiable” and ”timeout”.

Key DL reasoning tasks (for the TBox) include KB consistency, concept satisfiability,
concept subsumption and classification. All of these tasks are reducible to KB consistency
or, equivalently, concept subsumption w.r.t. a KB (in fact they are reducible to concept sat-
isfiability using internalisation). The classification task transforms into a (quite large) set of
subsumption tasks.

As a standard DL reasoner we will use FaCT++ version 0.8. This system is a next gener-
ation of the well-known FaCT reasoner [6], being developed as part of the EU WonderWeb
project (see http://wonderweb.semanticweb.org/). This implementation is based
on the same Tableaux algorithms as the original FaCT, but has a different architecture and is
written in C++ instead of LISP. the goal of developing FaCT++ was to create a modern rea-
soner for complex DLs (like SHIQ, OWL) with good performance, high extendibility and
internal data structures that are better able to handle very large knowledge bases. FaCT++ is
not as efficient as FaCT yet, because not all possible optimisations have been implemented,
but it has comparable performance characteristics. FaCT++ has a customisable architecture,
so it is possible to implement different tactics for reasoning and choose the best one for a
given TBox.

3 Basic comparison

3.1 Experimental methodology

We used the following comparison scheme. For a given KB, the DL reasoner performed the
classification process. In the case where a subsumption test is necessary, a task was also
generated for the FO prover, and the result of the DL testing was noted for future compari-
son. After finishing the classification process, the set of problems that were solved had been
generated. The FO prover was then run on this set of problems. The results were recorded
and then compared with the DL ones. Note that the time taken in generating the FO problem
and converting it to clausal normal form (CNF) is not considered in the experiment, as in a
realistic system the FO problems would be generated in CNF and would be communicated
directly to the FO prover rather than being written to a file.

We ran Vampire with a fixed time limit: 300 seconds per task. A larger time limit could,
of course, lead to solving more tasks. The other parameters were standard, except setting pre-



TBox Concepts Roles Pos subs Neg subs
Tambis 345 107 96 2241

Platt 313 14 140 17286
Galen 2749 207 4042 57091

Table 1: Knowledge bases used for the comparison

processing to minimum level (with option “--elim-def 0”) and setting resolution strat-
egy to hyperresolution (with option “--selection 2”). Empirically, it was discovered
that preprocessing is both time consuming and ineffective, and that hyperresolution was the
most effective strategy available. Vampire is highly tunable, and even better performance
may be achievable by adjusting other parameters.

Because of the number of tasks generated when classifying a large KB, and the nature
of Vampire’s behavior (troubles with saturating large sets of clauses in the case of failed
subsumption tests), not all problems generated by FaCT++ were tested using Vampire. We
used all positive subsumption tests, and a small number (between 1% and 10%) of negative
subsumption tests for each KB. The negative tests were chosen randomly from the entire set.

Note that actual number of comparisons depends on the DL systems’ classification al-
gorithm. If the algorithm is optimised (i.e. based on concept structure, results of previous
operations, etc), then the number of (logical) subsumption tests may be much smaller than
using a naive (unoptimised) algorithm. In the FaCT++ classifier, the number of actually per-
formed subsumption tests is typically only 2-5% of those that would be required in a “brute
force” implementation (see [2]). Relatively few of these tests give a positive result, because
most subsumptions are “obvious”, and do not need to be computed using a logical subsump-
tion test.

3.2 Test models

We used three KBs in the test; their parameters are given in the Table 1. The Tambis KB has a
small size (345 concepts, 107 roles) and quite simple structure. The Platt KB has a similar size
(313 concepts, 14 roles), but a more complicated structure and 13 general concept inclusion
axioms (GCIs) [1]. The Galen KB has very large size (2749 concepts, 207 roles) with quite
a simple concept language (only conjunction and existential restrictions), but with transitive
roles and a large number of GCIs. The comparison used all positive subsumption problems
plus 10% of Tambis’ negative subsumption problems, 1% of Platt’s negative subsumption
problems and 1% of Galen’s negative subsumption problems.

Results using the basic translation may be viewed in table 2. Columns Pos and Neg give
the number of positive and negative tasks; time is the average time (in seconds) per solved
task; S. Pos and S. Neg give the number of positive and negative tasks solved.

The only task Vampire cannot solve in the Platt KB is a negative subsumption problem
(it finishes with an “Out of time” result). All other tasks in the Platt and Tambis tests were
solved in times from 0 to 1.4 sec per task. In all cases a complete proving strategy was used.

For comparison purposes, we ran FaCT++ with its absorption optimisation disabled (see
[1]). In this configuration, FaCT++ cannot classify the largest KB (Galen) due to memory
limits. The reason for this is the large number of GCIs). Creating FO tasks for Vampire lead
to the solution of many of the chosen tasks, illustrating that Vampire with hyperresolution is
quite efficient, even with the (heavy) usage of GCIs.



tool KB Pos Neg time S. Pos S. Neg
FaCT++ Tambis 96 2241 0 96 2241
Vampire Tambis 96 227 0.2 96 227
FaCT++ Platt 140 17286 0 140 17286
Vampire Platt 140 173 0.55 140 172
FaCT++ Galen 4042 57091 — 0 0
Vampire Galen 4042 574 82.6 3958 373

Table 2: Comparison results for full-sized translation

tool KB Pos Neg time S. Pos S. Neg
FaCT++ Tambis 96 2241 0 96 2241
Vampire Tambis 96 227 0.2 96 227
FaCT++ Platt 140 17286 0 140 17286
Vampire Platt 140 173 1.09 140 172
FaCT++ Galen 4042 57091 0.01 4042 57091
Vampire Galen 4042 574 66.04 3963 375

Table 3: Comparison results for absorbed translation

4 Axiom absorption

One of the main factors that adversely affects performance is the presence of GCIs. With
tableaux algorithms, every GCI must must be satisfied in every tableaux state. This can lead
to an astronomical amount of calculation for the 408 GCIs of the Galen KB. Similarly, GCIs
lead to a great number of extra FO steps that usually slow down the theorem prover. Moreover,
a number of FO optimisations cannot work properly with GCIs.

It is sometimes possible to reduce global axioms to additional concept implications. This
process is called absorption [5]. This optimisation is equally applicable to the FO case, so
we have also tested the FO reasoner using tasks that are created after the DL reasoner has
pre-absorbed global axioms. This leads to smaller and more convenient (for reasoning) FO
axiom sets. All global axioms from the Platt and galen KBs were removed by the absorption
process. Results using the pre-absorbed translation may be viewed in table 3.

Absorption greatly improves the performance of FaCT++, and the Galen KB was com-
pletely solved in quite small time. In FO proving, however, we see quite different situation:
the Platt KB tests took two times longer, whilst Galen KB tests were 20% faster.

5 Relevant-only translation

Absorption has little affect on the performance of Vampire because its saturation algorithm
runs “globally”, i.e., the nature of resolution algorithm leads to the use of all the available
information. In contrast, the tableaux algorithm used in FaCT++ runs “locally”, i.e., it ignores
a lot of information that is unnecessary for proving a given subsumption task.

An obvious way to correct this situation is to remove all unnecessary information from
the FO task. This will lead to a small overhead in computational complexity, because the DL
reasoning process does not need to apply this procedure. On the other hand, this operation
should greatly increase the performance of the FO prover.

For computing a subsumption C v D, the “relevant” information is that which is relevant
to concept C or to concept D. In order to check subsumption w.r.t. a TBox, it is also necessary



FindRelevant (conceptExpression E)
1. forall [CN ∈ E] do MarkConceptRelevant (CN ); end do
2. forall [RN ∈ E] do MarkRoleRelevant (RN ); end do

MarkConceptRelevant (concept C)
1. if (C.Relevant = true) then return;
2. else
3. C.Relevant := true;
4. forall [C v D or C ≡ D in KB] do FindRelevant(D); end do
5. end if

MarkRoleRelevant (role R)
1. if (R.Relevant = true) then return;
2. else
3. R.Relevant := true;
4. forall [RN : R v RN ] do MarkRoleRelevant (RN ); end do
5. end if

Figure 1: Algorithms for locating relevant concepts and roles

tool KB Pos Neg time S. Pos S. Neg
FaCT++ Tambis 96 2241 0 96 2241
Vampire Tambis 96 227 0 96 227
FaCT++ Platt 140 17286 0 140 17286
Vampire Platt 140 173 0.01 140 173
FaCT++ Galen 4042 57091 0.01 4042 57091
Vampire Galen 404 574 1.15 399 381

Table 4: Comparison results for absorbed minimal-sized translation

add information relevant to all the GCIs in the TBox.
The process of selecting information relevant to a concept expression E looks very much

the same as unfolding (see [1]), and assumes that the KB is separated into a set of unfoldable
axioms and a set of GCIs. Every concept name CN and role name RN appearing in E is
relevant to E. The process is then repeated for unfoldable axioms with CN on the left hand
side (whether inclusion or equality axioms). Also, if role R is relevant to E, then so are all
it’s super-roles R′ : R v R′, along with their inverses (if the target DL allows inverse roles).

An algorithm for computing relevant information is described in Fig. 1. It should be run
for concepts in the subsumption test plus concepts occurring in GCIs of the TBox (if any).
After applying the algorithm, only unfoldable axioms having concepts and roles with a raised
Relevant flag on their left hand side should be translated to the FO task description.

Results using the relevant-only translation may be viewed in table 4. Note that here only
the Vampire running times are changed. In the current experimental implementation there is a
significant overhead (comparable to the DL subsumption testing time) for creating a relevant-
only task. This time is not, however, included in the table, as it would clearly be possible
to implement the relevant-only translation much more efficiently. In order to keep the time
required to carry out the experiment within reasonable bounds, we also reduced the number
of positive tests for the Galen KB, taking 10% at random.

The removal of irrelevant information results in a great improvement for the Vampire



reasoner. In the small tasks (Tambis and Platt) Vampire reasoning takes practically the same
time as FaCT++, both for positive and negative tests. For the Galen KB, the number of solved
tests increased, and the average time was much smaller.

6 Discussion

As can be seen from the results, the performance of Vampire is much worse than that of
FaCT++ when tested with reasoning tasks derived from a a naive translation of subsumption
tests (w.r.t. a KB). When a suitably optimised translation is used, however, the performance
of Vampire improves dramatically: for smaller KBs it is comparable with that of FaCT++,
although for the Galen KB it is still in the order of 100 times slower. Vampire is able to solve
the vast majority of tasks within the 300s time limit, but for the Galen KB it still fails on ap-
proximately 1% of positive tests (subsumption) and 34% of negative tests (non-subsumption).
Unfortunately, the vast majority of test performed during KB classification are negative tests.
The number of negative tests to be performed could, however, be significantly reduced by us-
ing caching and model-merging optimisations which are, as yet, not implemented in FaCT++.
It should also be pointed out that performing each subsumption test in isolation puts Vampire
at a considerable disadvantage, as fixed startup costs are incurred in every test, and informa-
tion from previous tests cannot be reused.

The performance of Vampire is sufficiently encouraging to suggest that further investi-
gations of FO theorem proving techniques would be worthwhile. The FO tasks generated in
the tests are in the TPTP format [4], which is a de-facto standard for the theorem proving
community, making it easy to use other FO provers in a similar comparison. Given that the
performance of FO provers can vary greatly depending on the type of problem, it may be that
another FO prover would give better performance on DL subsumption reasoning tasks.

Although the results presented here do not suggest that FO provers might be used to
replace dedicated DL reasoners, it could still be useful to use a FO prover in a hybrid tool for
dealing with complex DLs. For some very expressive DLs (like OWL), there is no known DL
algorithm for reasoning with the full language (e.g., when nominals and inverse roles are used
together). In this case, it would be possible to use a FO prover to compute some or all of the
relevant subsumption tests. Although there would inevitably be problems with the speed of
response, and with incompleteness, there would still be in improvement in performance given
that DL reasoners currently can’t deal with this situation at all.
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