
Rewriting Aggregate Queries using Description Logic

David DeHaan, David Toman, and Grant Weddell
School of Computer Science, University of Waterloo

{dedehaan, david, gweddell}@uwaterloo.ca

Abstract

This paper presents an application of a DL reasoner to the optimization of
an object-relational query language. Queries containing aggregate functions are
difficult to optimize because care must be taken to guarantee that the output value
of the aggregate function is not affected. We present a mapping from an object-
relational aggregate query to a DL implication problem such that satisfaction of
the implication is a sufficient condition for the correctness of a particular logical
rewrite rule with respect to a given schema.

1 Introduction

An aggregate function is a function that takes as input a bag of values and outputs
a single value. An aggregate query is a query that contains an aggregate function.
Aggregate functions may occur frequently in certain application domains; for example,
query workloads in OLAP and data warehousing environments make substantial use
of aggregation [3, 8]. The most commonly discussed aggregate functions are those
defined by SQL—Sum, Average, Maximum, Minimum, and Count. However, many other
aggregates are possible: Median, Standard Deviation, Parity, and Product, just to
name a few with mathematical significance.
Description Logics can be used as a representation for the preconditions of the rules

of a query optimizer, as well as for the constraints of an object-relational database
schema. One advantage of this approach is that all of the reasoning about the applica-
bility of optimization rules can be reduced to instances of logical implication. The rest
of this paper describes a particular query rewrite rule for aggregate queries and how
Description Logics with an ability to express uniqueness constraints can be used to
reason about the applicability of the rule. In particular, this paper contributes three
sufficient conditions—formulated as DL implication problems—for the commuting of
a join operator with an aggregation operator which handle cases missed by algorithms
that assume the aggregation operator occurs at the root of the query. This builds
directly upon the work in [9, 10].

2 Definitions

In this section we define a Description Logic called DLFDE and an object-relational
query language called QLA. Both of these languages are extensions of similar lan-
guages found in [10].

D ::= C (D)I = (C)I ⊆ ∆
| > ∆
| ⊥ ∅
| D1 uD2 (D1)

I ∩ (D2)
I

| D1 tD2 (D1)
I ∪ (D2)

I

| ∀f.D {x : (f)I(x) ∈ (D)I}
| ¬D ∆ \ (D)I

E ::= D (E)I = (D)I

| E1 u E2 (E1)
I ∩ (E2)

I

| (Pf1 = Pf2) {x : (Pf1)
I(x) = (Pf2)

I(x)}

| D : {Pf1, . . . ,Pfk} → Pf {x : ∀y ∈ (D)I .
∧k

i=1(Pfi)
I(x) = (Pfi)

I(y)
⇒ (Pf)I(x) = (Pf)I(y)}

Figure 1: Syntax and Semantics of DLFDE

Definition 1 (Syntax and Semantics of DLFDE)
Let F be a set of attribute names {f1, f2, . . .}. A path expression is defined by the
grammar “Pf ::= f.Pf | Id” for f ∈ F . Let {C1, C2, . . .} be primitive concept de-
scriptions. We define derived concept descriptions by the grammar in Figure 1. An
inclusion dependency is an expression of the form D v E.

The semantics of expressions is defined with respect to a structure (∆, ·I), where ∆
is a domain of “objects” {e1, e2, . . .} and (·)

I an interpretation function that fixes the
interpretations of primitive concepts C to be subsets of ∆ and primitive attributes f to
be total functions1 (f)I : ∆→ ∆. The interpretation is extended to path expressions,
(Id)I = λx.x, (f.Pf)I = (Pf)I ◦ (f)I and derived concept descriptions D and E as
defined in Figure 1. An interpretation satisfies an inclusion dependency D v E if
(D)I ⊆ (E)I . A terminology T consists of a finite set of inclusion dependencies. The
logical implication problem asks if T |= D v E holds; that is, if all interpretations
that satisfy all constraints in T also satisfy (D)I ⊆ (E)I (the posed question).

A DLFDE terminology can be used to represent the schema of an object-relational
database; in particular, each object type corresponds to a primitive concept. In or-
der for the implication problems to be decidable in DLFDE , certain stratification
requirements over equational constraints must be met [10]. In this case, the DLFDE
implication problem is DEXPTIME-complete.
The following example demonstrates how a DLFDE terminology can be used to

represent an object-relational schema. This schema will be used as a running example
throughout the paper.

Example 1 Figure 2 illustrates a schema for a simple purchase order database along
with the corresponding DLFDE terminology. The constraints in T induce the primitive
concepts PERSON, VIP, ORDER, ITEM, LINEITEM, STRING, INT, and FLOAT. Observe
that the final constraint on the ORDER concept models the fact that orders for a VIP
customer are always handled by the same sales rep.

Definition 2 (Object-Relational Query Language QLA)
Let V]B ⊆ F be respective sets of query variables {a1, a2, . . .} and aggregate functions

1DL languages are somewhat divided over the issue of whether or not attribute descriptions should
denote partial or total functions. We follow [1] in opting for the latter case in order to avoid compli-
cations that would otherwise arise that relate to the semantics of some of our constructors[2].

PERSON

LINEITEM

ORDER

Cust Rep

Ord It

STRING

ITEM

Name

Price

FLOAT

Date

VIP

INT

Inheritance

Attribute

Name
T = { PERSON v (∀Name.STRING),

VIP v PERSON,
ITEM v (∀Name.STRING)

u (∀Price.FLOAT)
u (ITEM : {Name} → Id),

ORDER v (∀Cust.PERSON)
u (∀Rep.PERSON) u (∀Date.INT)
u (ORDER : {Cust,Date,Rep} → Id)
u (∀Cust.VIP : {Cust} → Rep),

LINEITEM v (∀Ord.ORDER)
u (∀It.ITEM) }

Figure 2: Purchase Order Database Schema

Q ::= D as a [[Q]]I ≡ {〈a :e〉 : e ∈ (D)I}
| (a1.Pf1 = a2.Pf2) {〈a1 :e1, a2 :e2〉 : (Pf1)

I(e1) = (Pf2)
I(e2)}

| true {〈 〉}
| empty a1, . . . , an ∅
| select a1, . . . , an Q1 {|〈a1 : t@a1, . . . , an : t@an〉 : t ∈ [[Q1]]I|}
| elim a1, . . . , an Q1 {〈a1 : t@a1, . . . , an : t@an〉 : t ∈ [[Q1]]I}
| agg a1, . . . , an, β(a) as aβ Q1 {t1 ∪ {aβ :AVt1}, . . . , tk ∪ {aβ :AVtk} :

{t1, . . . , tk} = [[elim a1, . . . , an Q1]]I}
where AVt = β({|e ∈ ∆ : t ∪ {a :e} ∈

[[select a1, . . . , an, a Q1]]I|})
| from Q1, Q2 [[Q1]]I on [[Q2]]I
| Q1 union all Q2 [[Q1]]I] [[Q2]]I

Figure 3: Syntax and Semantics of QLA

{β1, β2, . . .}.
2

The syntax and semantics of QLA are shown in Figure 3. The semantics of a query
Q, denoted [[Q]], is a function that maps interpretations to bags of tuples. Query
variables occuring in a given query are assumed to satisfy standard conditions of well-
formedness, and are never reused within the query. Also, for a given tuple t = 〈a1 :
e1, . . . , an : en〉 ∈ [[Q]]I computed by query Q over interpretation I, we write t@ai to
denote ei.

Although the agg operator defined for QLA is restricted to taking only a single ag-
gregate function β, this does not limit the expressive power of the language since any
agg operator containing multiple aggregate functions can be rewritten as the natural
join of multiple agg operators, each taking a single aggregate function. For the rest
of the paper, common abbreviations to syntax will be made; e.g., from Q1, . . . , Qk

stands for iterated binary joins.

3 Related Work

Testing the equivalence of arbitrary aggregate queries has been characterized for con-
junctive [11], positive [6], and disjunctive queries with limited negation [5]. However,

2We have selected V and B as subsets of the attribute names in order to reduce the need for addi-
tional notational baggage. In particular, query variables “become” attribute names in our abstraction
of queries as DLFDE concept descriptions.

this body of work does not consider schema information, and only considers queries
where the aggregation operator is at the root of the query operator tree.
Khizder et al [9] use Description Logic to deduce the correctness (with respect to a

schema) of a rewrite rule for moving subqueries out of the scope of the elim operator.
Unfortunately, their construction requires converting the query to a normal form that
is only possible because their query language is conjunctive and does not contain
aggregate functions. Liu et al [10] extend this to positive queries by introducing the
concept of query context which eliminates the reliance on a normal form.

Definition 3 (Query Context) A query context Q[] is a QLA expression contain-
ing a single instance of the special terminal symbol []. For Q′ ∈ QLA, the expression
Q[Q′] denotes the syntactic substitution of Q′ for [].

Yan and Larson [12, 13] consider a rewrite that commutes a top-level aggregation
operator with the join of two base relations. Let C denote the base relation pulled
out of the aggregate block, V the set of attributes in the selection list of the aggre-
gation operator, and R the attributes from C that form the join key with the rest of
the aggregation block. They show that a necessary and sufficient condition for the
correctness of the rewrite with respect to schema T (assuming an arbitrary aggregate
function) is that both the functional dependencies V → R and V ∪R→ Key(C) are
implied by the constraints in T and the rest of the query. This condition has been
used within the context of a system for answering queries using views [7], but it no
longer remains necessary when the aggregation block is not at the root of the query
operator tree. Similar rewrites have been considered in [4, 8].

4 DL Reasoning for Rewriting Aggregate Queries

In this section we show how a reasoner for DLFDE terminologies can be applied to
rewriting aggregate queries expressed in QLA. Specifically, we wish to generalize the
rule of Yan and Larson described in the previous section to allow for the commuting
of a join with an aggregation operator within general query contexts.

4.1 Generalizing Join-Aggregation Commutation

The rewrite rule of [12] can be generalized in several ways. First, the two functional
dependencies in the condition can be combined into the single equivalent dependency
V → IdC , where IdC is a unique tuple identifier for tuples from relation C (follows
since, by definition, IdC → R). Next, relation C can be allowed to be an arbitrary sub-
query. Finally, rather than considering only top-level aggregation operators, one can
allow the aggregation block to occur at arbitrary positions within a larger containing
query. One impact of this last generalization is that the functional dependency is no
longer a necessary condition for correctness of the rewrite; it is possible for the over-
all queries to be equivalent without the aggregate subqueries being equivalent. This
can happen when the rewritten aggregate block is nested within another aggregation
operator whose aggregate function ignores or compensates for the changes introduced
by the rewrite.

Example 2 The following queries are equivalent even though the dependency

CQ v > : {Date} → o.Id

does not hold for all databases, where CQ is a primitive concept corresponding to the
result of the query.

E1: agg Sum(ItemCnt) as TotalItemCnt

[agg Date, Count(l) as ItemCnt

from ORDER as o, LINEITEM as l,
(o.Date = Date), (o = l.Ord)]

E2: agg Sum(ItemCnt) as TotalItemCnt

[select Date, ItemCnt

from ORDER as o,
(agg o, Date, Count(l) as ItemCnt

from LINEITEM as l,
(o.Date = Date), (o = l.Ord))]

The queries in Example 2 are equivalent even though the output of the [] blocks may
differ. This is because the output values from the Count function are re-aggregated
by the Sum function in such a way that the granularity of the inner grouping does not
matter. More formally, we say that the Sum function is cleanly composable with the
Count function.

Definition 4 (Cleanly Composable Aggregate Functions)
Aggregate functions β′ and β cleanly compose if and only if for any two bags of values
M1 and M2,

β′({|β(M1]M2)|}) = β′({|β(M1), β(M2)|}).

Some examples of cleanly composable pairings besides Sum-Count include Sum-Sum,
Product-Product, Max-Max, and Min-Min.

Example 3 The following queries are minor modifications of the queries from Example 2.
They are also equivalent.

E1: agg Max(Date) as MaxDate

[agg Date, Count(l) as ItemCnt

from ORDER as o, LINEITEM as l,
(o.Date = Date), (o = l.Ord)]

E2: agg Max(Date) as MaxDate

[select Date, ItemCnt

from ORDER as o,
(agg o, Date, Count(l) as ItemCnt

from LINEITEM as l,
(o.Date = Date), (o = l.Ord))]

The above queries are equivalent because when the join is moved out of the scope
of the inner aggregation operator, any differing values for ItemCnt are not used and
the Max function ignores any duplicate tuples introduced. More formally, Max is a
duplicate insensitive aggregate function.

Definition 5 (Duplicate Insensitive Aggregate Function)
An aggregate function β is duplicate insensitive if and only if for any bag of values
M ,

β(M) = β({e : e ∈M}).

Other examples of duplicate insensitive functions include Min and CountDistinct.
We wish to design a rewrite rule that captures the scenarios illustrated by Ex-

amples 2 and 3. In order to do so, we introduce some terminology that allows us to
concretely refer to an aggregation block that is “above” the current aggregation block
being examined.

Definition 6 (Nearest Enclosing Aggregation Operator)
Given a query context Q[], the nearest enclosing aggregation operator to [] (if such
an operator exists) is the elim or agg operator such that Q[] = Q′′[elim V ′ Q′[]] or
Q[] = Q′′[agg V ′, β′(aβ) as aβ′ Q′[]] where Q′ does not contain elim or agg.

We are now ready to give an informal outline of our desired rewrite rule. Given
queries

E1: Q[agg V , β(a) as aβ from Q1, Q2]
E2: Q[select V , aβ from Q1, (agg W , β(a) as aβ Q2)]

(W will be defined later), define E ′1 and E
′
2 to be the respective contents of [] for E1

and E2. Then, E1 ≡ E2 if we can determine that any one of the following conditions
hold.

1. E ′1 ≡ E
′
2 within the context of Q[].

2. Potentially differing values for aβ are “compensated for” by a clean composition
of the aggregate function of the nearest enclosing aggregate operator with β.

3. Potentially differing values for aβ are not used, and any duplicate tuples intro-
duced are removed by the nearest enclosing aggregate operator.

For the last two conditions, we need to ensure that the values for aβ are not used in
some value-dependent manner (such as in a predicate) anywhere in the query operator
tree between [] and the nearest enclosing aggregate operator.

4.2 Expressing the Rules within DLFDE

To utilize a DL reasoner for testing correctness of the rewrite we need to represent
in DLFDE the constraints induced by the query structure. In preparation, it will be
helpful to extend our schema information with additional knowledge about aggregate
functions.

Definition 7 We define an aggregate schema, written Tagg, as

Tagg = {Cβ v CDI : β ∈ B and β is duplicate insensitive}

∪ {Cβ′ v ∀β.CCC : β
′, β ∈ B and β′, β are cleanly composable}

where CDI, CCC, and each Cβ and Cβ′ are distinct primitive concepts.

The aggregate schema information depends only on the aggregate functions available
in the system and not on each query; therefore, it can be stored along with T .
Now we are ready to model the query-dependent constraints for a given invocation

of the DL reasoner to decide the applicability of the rewrite rule to the query. For
subquery Q and query context Q[], we introduce the inclusion dependency CQ v

Q αQ EQ

D as a {a} (∀a.D) u (> : {a} → IdQ)
(a1.Pf1 = a2.Pf1) {a1, a2} (a1.Pf1 = a2.Pf1) u (> : {a1, a2} → IdQ)
true {} >
empty V V ⊥
select V Q1 V EQ1 u (> : {IdQ1} → IdQ)
elim V Q1 V EQ1 u (> : {V } → IdQ)
agg V , β(a) as aβ Q1 V ∪ {aβ} EQ1 u (∀aβ .Cβ) u (> : {V } → IdQ)
from Q1, Q2 αQ1 ∪ αQ2 EQ1 u EQ2 u (> : {IdQ1 , IdQ2} → IdQ)

Q1 union all Q2 αQ1 ∪ αQ2 M(EQ1 t EQ2)
3

Q[] αQ[] EQ[] γQ[] AQ[]

[] {} > {} >
Q1[from Q2, []] αQ1[] ∪ αQ2 EQ1[] u EQ2 γQ1[] AQ1[]

or Q1[from [], Q2]
Q1[select V []] αQ1[] ∪ V EQ1[] γQ1[] AQ1[]

Q1[elim V []] αQ1[] ∪ V EQ1[] {} Celim

Q1[agg V , β(a) as aβ []] αQ1[] ∪ V EQ1[] {a} Cagg u ∀δ.Cβ

Q1[Q2 union all []] αQ1[] EQ1[] γQ1[] AQ1[]

or Q1[[] union all Q2]

Figure 4: Capturing Structural Constraints

(EQuEQ[]), where CQ is a primitive concept corresponding to the result of the query,
EQ is a concept inherited “up” from Q, and EQ[] is a concept inherited “down” from
Q[]. Figure 4 defines EQ and EQ[], as well as αQ and αQ[] which are the sets of variable
names that occur in Q and Q[], respectively. Note that each unique object identifier
IdQ is peculiar to subexpression Q and is an artifact of the translation to DLFDE ;
IdQ need not occur as an actual attribute within the object-relational system.
The second and third conditions of the outline at the end of the previous sec-

tion require knowing properties of the nearest enclosing aggregate operator in Q[].
Relevant properties of the nearest aggregate operator are captured by introducing
dependencies of the form CQ v AQ[], where AQ[] is defined as in Figure 4. Note that
this construction requires two distinct primitive concept names Cagg and Celim and
a distinct attribute name δ. Figure 4 also defines γQ[] which is a set containing the
variable name of the input argument to the aggregate function of the nearest enclosing
aggregation operator in Q[].

Theorem 1 The queries

E1: Q[agg V , β(a) as aβ from Q1, Q2]
E2: Q[select V , aβ from Q1, (agg W , β(a) as aβ Q2)] ,

where W = (V ∪ αQ1) ∩ αQ2, are equivalent with respect to T ∪ Tagg if any of the
following conditions are satisfied.

1. T ∪ {CQ v EQ[] u EQ1 u EQ2} |= CQ v (CQ : {V ∪ αQ[]} → IdQ1)

2. aβ 6∈ αQ[], aβ ∈ γQ[], and

T ∪ Tagg ∪ {CQ v AQ[]} |= CQ v (Cagg u ∀δ.∀β.CCC)

3M is a mapping that removes functional dependencies and equational constraints from its argu-
ments. This is necessary to keep EQ a valid DLFDE concept.

3. aβ 6∈ αQ[], and

T ∪ Tagg ∪ {CQ v AQ[]} |= CQ v (Celim t (Cagg u ∀δ.CDI))

Proof (sketch): Let E ′1 and E
′
2 denote the contents of [] for E1 and E2.

Condition 1: Suppose that E1 6≡ E2. Then there exists some interpretation I with
a fixed valuation of αQ[] such that [[E

′
1]]I 6≡ [[E

′
2]]I. This is only possible if the

interpretation [[E ′2]]I includes two distinct tuples which agree on attributes V ∪
αQ[]. However, these tuples can be used to create an interpretation I containing

only two objects s, t ∈ (CE ′
2
)I that agree on attributes V ∪ αQ[] but disagree on

IdE ′
2
. Define Q′

2 = (agg W , β(a) as aβ Q2). As these objects satisfy the left-
hand side of the constructed implication, the EQ construction for the select
and from operators dictates that s and t must differ on either IdQ1 or IdQ′

2
.

However, by the EQ rule for the agg operator, disagreement on IdQ′
2
implies

disagreement on W ⊆ (V ∪ αQ1) which implies disagreement on IdQ1 (because
we already stated that s, t agree on V ∪ αQ[]). Therefore, we have

T ∪ {CQ v EQ[] u EQ1 u EQ2} 6|= CQ v CQ : {V ∪ αQ[]} → IdQ1 .

Condition 2: By construction, this condition is true only when [] falls into the scope
of an aggregation operator and the nearest such operator to [] is

Q′′[agg V ′, β′(aβ) as aβ′ Q′[]]

such that β′ and β are cleanly composable and Q′ does not contain elim or agg.
Consider a single tuple t ∈ [[from Q1, Q2]]I corresponding to a single pair of
values (IdQ1 , IdQ2). Because aβ 6∈ αQ[] (i.e. intermediate tuples are not filtered
out based upon value of αβ), for every grouping of V

′ in

[[agg V ′, β′(aβ) as aβ′ Q′[E ′1]]]I

to which t contributes ft copies of a to the aggregate operator β
′ (summed across

all groupings of V), an identical grouping exists in

[[agg V ′, β′(aβ) as aβ′ Q′[E ′2]]]I

to which t also contributes ft multiples of a (summed across all groupings of
V). It follows from Definition 4 that the value of aβ′ for each grouping of V ′ is
unchanged, so E1 ≡ E2.

Condition 3: By construction, this condition is only true when the nearest enclosing
aggregation operator to [] is either elim or agg with a duplicate insensitive
aggregate function. However, the output of this aggregation operator is not
affected by any duplicate tuples introduced by the rewrite, and since aβ 6∈ αQ[],
the value of aβ is never used (including in the selection list of the aggregation
operator) so aβ does not affect the output of the query. Thus, E1 ≡ E2.

The rewrite rule from Theorem 1 is useful for pushing aggregation operators below
joins, which reduces the cost of calculating the aggregate function. It can also be used
to pull aggregation operators above a join, which could be useful for making the query
match the definition of a materialized aggregate view, as in [7].

Example 4 The following queries—which both report the number of orders matching
each (Cust, Rep.Name) pair for VIP customers—can be reasoned equivalent by Condition
1 of Theorem 1.

E1: select Customer, RepName, OCnt

from VIP as v, (v = Customer),
[agg Customer, RepName, Count(o) as OCnt

from PERSON as p, (p.Name = RepName),
ORDER as o, (o.Rep = p),
(o.Cust = Customer)]

E2: select Customer, RepName, OCnt

from VIP as v, (v = Customer),
[select Customer, RepName, OCnt

from (from PERSON as p,
(p.Name = RepName)),

(agg p, Customer, Count(o) as OCnt

from ORDER as o, (o.Rep = p),
(o.Cust = Customer))]

The queries inside the [] are broken down into the following subqueries.

Q1 = from PERSON as p, (p.Name = RepName)

Q2 = from ORDER as o, (o.Rep = p), (o.Cust = Customer)

The rewrite is correct because

T ∪ {CQ v EQ[] u EQ1
u EQ2

} |= CQ v (CQ : {Customer,RepName} → IdQ1
)

holds. By examining the constraints constructed for EQ1 , it is fairly obvious that p
functionally determines IdQ1 in the result. Therefore, the crucial step in the reasoning
process is to combine the inherited constraints from EQ[]

CQ v ∀v.VIP u (v = Customer)

with various equality constraints from EQ2 , plus the schema constraint

ORDER v (∀Cust.VIP : {Cust} → Rep)

in order to conclude that

CQ v (CQ : {Customer} → p. Id)

holds. A reasoning algorithm such as the one in [12] that reasons about aggregation blocks
independent of their context in the query tree would miss the constraints from EQ[], and
so fail to find the equivalence.

The queries given in Examples 2 and 3 can be reasoned equivalent using Conditions 2
and 3, respectively.

5 Summary

We have presented an application of a DL reasoner in testing sufficient conditions for
the correctness of a query optimization rule for the object-relational query language
QLA which includes aggregation and union operators. One novel feature of the con-
structed implication problems is the capturing of functional dependencies over virtual
object identifiers induced by the structure of the query.
Future work includes establishing completeness results for logical rewrites involving

aggregation operators. Completeness with respect to the interpretation of arbitrary
aggregate functions is not realistic, as one can create sets of pathological functions
whose interactions adhere to patterns that would need to be explicitly represented in

the aggregate schema. We have proposed the duplicate insensitive and cleanly compos-
able classes of aggregate functions in an attempt to generalize two common patterns.
Unfortunately, our current reasoning mechanism is not complete even with respect to
un-interpreted aggregate functions. One problem is that the notion of nearest enclos-
ing aggregation operator and our associated construct AQ[] is not powerful enough to
capture transitive cases of compensation between nested aggregation blocks. To do
so, we would need to extend our construction to capture the entire hierarchy of aggre-
gation operators that occur as ancestors of [] in the query tree; we would also need to
stratify αQ[] and γQ[] so that we could identify value-dependent usage of aggregation
variables at different depths in the query tree.

Acknowledgement

The authors gratefully acknowledge the National Sciences and Engineering Research
Council of Canada, Communications and Information Technology Ontario, and Nortel
Networks for support of this research.

References
[1] A. Borgida and P. F. Patel-Schneider. A semantics and complete algorithm for subsump-

tion in the CLASSIC description logic. Journal of Artificial Intelligence Research, pages
277–308, 1994.

[2] M. Buchheit. Refining the structure of terminological systems: Terminology = schema +
views. In Proc. 12th National Conference on Artificial Intelligence, pages 199–204, 1994.

[3] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.
ACM SIGMOD Record, 26(1):65–74, 1997.

[4] S. Chaudhuri and K. Shim. Including group-by in query optimization. In Proc. 20th Int’l
Conference on Very Large Data Bases (VLDB’94), pages 354–366, 1994.

[5] S. Cohen, W. Nutt, and Y. Sagiv. Equivalences among aggregate queries with negation. In
Proc. 20th Symposium on Principles of Database Systems (PODS 2001), pages 215–226.
ACM Press, 2001.

[6] S. Cohen, W. Nutt, and A. Serebrenik. Rewriting aggregate queries using views. In Proc.
18th Symposium on Principles of Database Systems (PODS 1999), pages 155–166. ACM
Press, 1999.

[7] J. Goldstein and P.-Å. Larson. Optimizing queries using materialized views: a practical,
scalable solution. In Proc. 2001 ACM SIGMOD Int’l Conference on Management of
Data, pages 331–342. ACM Press, 2001.

[8] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing in data warehous-
ing environments. In Proc. 21th Int’l Conference on Very Large Data Bases (VLDB’95),
pages 358–369, 1995.

[9] V. L. Khizder, D. Toman, and G. Weddell. Reasoning about duplicate elimination with
description logic (preliminary report). In Computational Logic (CL/DOOD 2000), volume
1861 of Lecture Notes in Computer Science, pages 1017–1032. Springer, 2000.

[10] H. Liu, D. Toman, and G. Weddell. Fine grained information integration with description
logics. In Proc. 2002 Int’l Workshop on Description Logics (DL2002), volume 53 of CEUR
Workshop Proceedings, 2002.

[11] W. Nutt, Y. Sagiv, and S. Shurin. Deciding equivalences among aggregate queries. In
Proc. 17th Symposium on Principles of Database Systems (PODS 1998), pages 214–223.
ACM Press, 1998.

[12] W. P. Yan and P.-Å. Larson. Performing group-by before join. In Proc. 10th Int’l Con-
ference on Data Engineering (ICDE’94), pages 89–100. IEEE Computer Society, 1994.

[13] W. P. Yan and P.-Å. Larson. Eager aggregation and lazy aggregation. In Proc. 21st Int’l
Conference on Very Large Data Bases (VLDB’95), pages 345–357, 1995.

