
Rule Based Computation of Updates to Terminologies

S.Modgil
Biomedical Informatics Unit,

Eastman Institute for Oral Health Care Sciences,
University College London, England

Email: S.Modgil@eastman.ucl.ac.uk

Abstract

In this paper we formalise compilation of the conjunctive bodies of a restricted
class of Horn rules into updates on terminologies. This involves a pre-processing
of the graphs representing connections between terms in a rule body. We mo-
tivate and illustrate application of this work in hybrid Description Logic/Rule
based frameworks for medical plan specification.

1 Introduction and Motivation

A number of works (e.g., [5, 3]) have investigated reasoning in mixed rule based and
Description Logic knowledge bases. In this paper we describe a novel treatment of
the interaction between Horn rules and Description Logic terminologies; viz.a.vie., we
formalise compilation of the conjunctive bodies of a restricted class of Horn rules into
updates on terminologies, so as to exploit the ability of Description Logics to maintain
incomplete information about individuals. We motivate application and benefits of
this work in the context of incremental design tasks in which: a) rule based reasoning
over a partially specified design is used to suggest addition of design components;
b) there is a requirement to represent and reason with incomplete specifications of
these design components; c) domain knowledge is encoded in a Description Logic
terminology.
To illustrate, consider the incremental task of designing (authoring) a medical

plan. In [9] we describe the development and use of a medical plan authoring tool.
Use of the tool results in generation of both a symbolic representation of the plan for
export to plan execution software, and a textual description of the plan for inclusion
in a protocol document. Linked to the authoring tool is a “plan advisor” [8] which
contains rules that can be queried to suggest updates to a plan being designed, e.g.,

safety(Action, E1, Prevent Act) ← plan(Action), effect(Action,E1) (1)
hazard(E1),action(Prevent Act),effect(Prevent Act,E2),prevent(E2,E1)

Suppose a partially designed medical plan containing the Action drug A which has the
hazardous effect E1 = dehydration, and the query ? safety(Action, E1, Prevent Act).
Successful evaluation of the query will bind Prevent Act to an action that has an effect
E2 which prevents dehydration, prompting the plan author to update the symbolic
plan representation with this preventative action. However, the user can interact with
the plan advisor to partially evaluate (unfold) a natural language translation of (1) to:

safety(drug A,dehydration,Prevent Act)← action(Prevent Act),effect(Prevent Act,E2),
prevent(E2,dehydration) (2)

The body of (2) is then used to generate the text “execute an action that has an effect
which prevents dehydration”, which is added to (updates) the textual protocol de-
scribing the plan. This text represents an incompletely specified new action described
in terms of its intentions or goals. The ability to model planned actions in terms of
their intentions has a number of important benefits [11]. In particular it allows for
flexibility in the detailed specification of an action at plan execution time, at which
point the specifics of a suggested action can be checked for compliance with the in-
tentions (one can think of intentions as constraints). However, (2) does not constitute
a corresponding declarative representation of the incompletely described action, for
inclusion in the symbolic representation of the plan. Now, assuming a Description
Logic encoding of the medical domain knowledge (of which there are an increasing
number of examples e.g., [10]), then the body of (2) can be compiled into a new con-
cept definition; prevent dehydration act

.
= actionu ∃effect.prevent : dehydration,

and a new fact, prevent dehydration act(a2), can be asserted. The intentions of the
“place-holder” action a2 are encoded in the description, so that at plan execution
time, classification services can check for compliance of a suggested specific action
(checking whether it has the intended effect). Furthermore, at plan design time, the
action a2 can be reasoned with as part of the symbolic plan (e.g., ordered tempo-
rally) in the same way as other concrete actions (e.g., drug A). Also, properties of
a2 can be reasoned about, via hybrid reasoning of the type described in [5] (e.g.,
safety(drug A, dehydration, a2) will be a hybrid entailment).
In the remainder of this paper we formalise the above update procedure in the

context of mixed Horn Rule and Description Logic knowledge bases. This requires
defining compilation of the conjunctive bodies of a restricted class of Horn rules to De-
scription Logic concepts. Compilation involves an initial pre-processing of the graphs
representing connections between terms in a rule body. Note that the central role of
conjunctive queries in database and knowledge representation has motivated previous
work on compilation of conjunctive queries into concept descriptions [2, 4]. The class
of conjunctions considered in this work is wider than those considered in [2], but close
to those considered in [4]. Our approach necessarily differs from the latter given that
we update, rather than query, terminologies.

2 Preliminaries

In this work, a knowledge base (kb) is a tuple (R,T,A), where R is a set of non-recursive
Horn rules H(Y)← B1(X1), . . . , Bn(Xn), where Y ,X1, . . . , Xn are tuples of variables
or constants, and the rule is safe, i.e., any variable in Y must also appear in

⋃n
i=1 X i.

A is a set of ground facts, and T is an acyclic terminology in a language that is a
superset of ERIB (concept conjunction; role conjunction; existential quantification;
fills (R : a); inverse roles (R−1)). Our primary concern is to show how the body of a
rule in R can be compiled into a ERIB concept definition. However, this work should
be viewed in the context of hybrid reasoning on mixed knowledge bases. In [5], hybrid
reasoning is described for a CARIN kb 4 = (R,T,A), where predicates in a rule body
can be concept or role names, or ordinary predicates of arbitrary arity that do not

appear in T. T is encoded in some subset ofALCNR (no inverse roles or fills). A sound
and complete decidable reasoning procedure is defined for determining whether 4 ²

q(a), where q is a concept, role or ordinary predicate, and a a tuple of constants. A key
feature of this procedure is the existential entailment algorithm (based on constraint
systems). Propagation rules are applied to generate completions of the models of T

and the ground concept and role atoms in A. Extensions of the ordinary predicates are
then computed by evaluating the Horn rules using a traditional Horn rule reasoning
algorithm. The CARIN authors have indicated (in private communications) that their
reasoning procedure can be extended (straightforwardly) for fills, and (with difficulty)
for inverse roles.
The following definitions establish the notion of a computable rule, i.e., a rule

whose body can be compiled into a ERIB expression. The concluding lemma will be
of use in the following section.

Definition 1 The binding graph G(B), of a Horn rule H ← B, is a set of labelled
edges (α, β, {r1, . . . , rn}), where (α, β, {r1, . . . , rn}) ∈ G(B) if α and/or β is a variable
in B, and for i = 1 . . . n, ri(α, β) is a predicate in B.

We say that predecessor((α, β,R)) = α and successor((α, β,R)) = β. A node η is in
a set of edges Σ, if η is the predecessor or successor of an edge e ∈ Σ. Also, an edge e
= (α,β,R) can be reversed to e−1 = (β,α,R−1), where R−1 = {r−1|r ∈ R}. Note that
if Σ = {e1, . . . , en} then Σ

−1 = {e−1
1 , . . . , e−1

n }.

Definition 2 Let α and β be two nodes in a set of edges Σ = {e1, . . . , en}. Then,
• connected(α, β) if a) (α, β,R) ∈ Σ or (β, α,R) ∈ Σ, or b) (α, γ,R) ∈ Σ or (γ, α,R)
∈ Σ, and connected(γ, β)
• Σ is a route from α to β iff predeccessor(e1) = α, successor(en) = β, and for i =
1 . . . n− 1, successor(ei) = predecessor(ei+1). Σ is a cyclical route if α = β.
• Σ∗ denotes a set obtained by reversing some subset Σ′ of edges in Σ, i.e., Σ∗ = (Σ
- Σ′) ∪ Σ′−1

• A set Σ′ of edges is distinct from Σ if ¬∃ Σ′∗ such that Σ′∗ = Σ

Definition 3 Let G be a binding graph.
• Σ is a subgraph of G if Σ ⊆ G, ∀η, η′(η 6= η′) in Σ, connected(η, η′), and Σ is
maximal under set inclusion. Σ is a variable subgraph of G if Σ is a subgraph of
G′, where G′ is the set of edges in G with variable predecessors and successors
• Σ is a cycle in G if Σ ⊆ G and there exists a cyclical route Σ∗

Definition 4 A Horn rule H ← B and the binding graph G(B) are said to be com-
putable, iff
- n ≤ 2 for any non-ground n-arc predicate in the body B1.
- If {Σ1, . . . ,Σn} is the set of cycles in G(B), then for i = 1 . . . n, there exists a constant
node in Σi.

Lemma 1 Let Σ and Σ′ be two sets of edges such that there exists two distinct routes,
Σ∗ from β to δ, and Σ′∗ from β to δ. Then Σ ∪ Σ′ contains a cycle

1Excluding non-ground predicates of arity > 2 is not as restrictive as might first appear, since any
n-arc predicate can be re-expressed as a conjunction of binary predicates ([1])

Proof. Since Σ∗ and Σ′∗ are distinct, then ∃e ∈ Σ∗ (Σ′∗) such that neither e nor e−1

are in Σ′∗ (Σ∗). It is sufficient to prove there is a cycle in the case that Σ∗ and Σ′∗ differ
by only one edge (and its reverse). Let Σ∗ = {e1, . . . , ek−1, (α, γ,R), ek+1, . . . , en} and
Σ′∗ = {e1, . . . , ek−1, (α, γ,R

′), ek+1, . . . , en} (i.e., two distinct edges from nodes α
to γ). Hence there exists a Υ ⊆ Σ ∪ Σ′ such that there is a cyclical route Υ∗ =
{(α, γ,R), (γ, α,R′−1)}, i.e., Σ ∪ Σ′ contains a cycle. qed

3 Compiling Updates from Rule Bodies

Figure 1: a) Binding graph for body of rule (3); (b) binding graph transformed by
definition 6; c) partitioned graphs defined by definition 7

Fig.1a) shows the binding graph for the example rule:

h(X) ← i(X),m(Z, Y), p(X,Y), q(X, a), r(a, Y), s(a,W), t(V,W) (3)

A binding graph must be processed before compilation of updates. This initially
involves transforming the binding graph so that no variable is the successor of two
edges. Firstly, we define a procedure for transforming a set of edges to a tree (the
term root node describes a node that is not the successor of any other node).

Definition 5 Let Σ be a set of edges and α a root node in Σ. Then trans(Σ) =
subtrans(α, ∅), where for any node η in Σ, subtrans(η,P) is defined as follows: (read
“P” as “processed nodes”):

Let {(η, β1, R1), . . . , (η, βn, Rn)} be the set of all edges in Σ with predecessor η. Let
{(γ1, η, R

′
1), . . . , (γl, η, R

′
l)} be the set of all edges in Σ with successor η, such that for

k = 1 . . . l γk /∈ P. Then,

subtrans(η,P) =
⋃n

j=1{ {(η, βj , Rj)} ∪ subtrans(βj ,P ∪ {η}) } ∪
⋃l

k=1{ {(η, γk, R
′−1
k)} ∪ subtrans(γk,P ∪ {η}) }

Note, if Σ is a variable subgraph of a computable graph, then Σ contains no cycles and
so at least one root node. We now show that the procedure trans(Σ) terminates and
generates a tree, and subsequently define the first step in the processing of a binding
graph.

Theorem 2 If G is a computable binding graph and Σ a variable subgraph of G, then
trans(Σ) terminates and generates a tree.

Proof. Let trans(Σ) = subtrans(ρ, ∅). By def.5, at any stage in the computation,
the (partially) computed trans(Σ), is the union of sets of edges T1, . . . , Tn where each
Ti is of the form Ω∗ ∪ subtrans(δ,P), where Ω ⊆ Σ. By def.5:

Ω∗ is a route from ρ to δ, and ∀ η, η 6= δ, η is in Ω∗ if η ∈ P. 2.1
Given that Σ is finite, proof of termination is shown if δ 6= δ′ for any T = Ω∗ ∪
subtrans(δ,P), T ′ = Ω′∗ ∪ subtrans(δ′,P′). Suppose δ = δ′. Then there exist two
distinct computed routes Ω∗ from ρ to δ, and Ω′∗ from ρ to δ. By lemma1, Ω ∪ Ω′

contains a cycle. Hence, a subset of Σ contains a cycle, contradicting the assumption
that G is computable. To show trans(Σ) generates a tree, we show that for any T
= Ω∗ ∪ subtrans(α,P), if (γ1, α,R

′
1), . . . , (γl, α,R

′
l) are edges with successor α, then

there exists at most one γk ∈ P, i.e., all but one of the edges with successor α will
be reversed. Suppose γj ∈ P and γk ∈ P. Then by 2.1, Ω∗ = {e1, . . . , en, (γk, α,R

′
k)}

where γj is a node in {e1, . . . , en}. Hence there is a route from γj to α that is a subset
of Ω∗. By assumption, there is a distinct route {(γj , α,R

′
j)}, and so by the same

reasoning as above, some subset of Σ contains a cycle, contradicting the assumption
that G is computable. qed

Definition 6 Let G be a computable binding graph and {Σ1, . . . ,Σn} the set of
all variable subgraphs of G. Let H =

⋃n
i=1Σi and H ′ =

⋃n
i=1 trans(Σi). Let I =

{(α, β,R)|(α, β,R) ∈ G, and α is a constant}. Then,
transform(G) = (G−H − I) ∪ (H ′ ∪ I−1)

As a result of applying transform to a binding graph, no variable is the successor
of two or more edges, and no constant is the predecessor of an edge. Fig.1b) shows
the results of applying transform to the binding graph for (3). The second step
involves partitioning each subgraph in transform(G) into a set of graphs (fig.1c). Each
partitioned graph has exactly one root node, and no two graphs share a variable node.
We give a declarative definition of the partitioned graphs (PW denotes “powerset”),
then give a final definition for processing a binding graph, and subsequently prove
properties of the graphs obtained which will be referenced in the theorem concluding
this section.

Definition 7 For a set of edges Σ, let τ be a set {Σ′
1, . . . ,Σ

′
k}, such that:

1) τ ⊆ PW(Σ),
2) Σ =

⋃k
i=1Σ

′
i, and

⋂k
i=1Σ

′
i = Ø,

3) each Σ′
i has exactly one root node,

4) if α is a variable in Σ′
i then ¬∃Σ

′
j , such that j 6= i and α is in Σ′

j

If Σ is a singleton set {(α, β,R)} then partition(Σ) = {Σ}, else:
partition(Σ) is a set τ , such that τ satisfies 1)-4) above, and ∀τ ′ such that τ ′ satisfies
1) - 4), |τ | ≤ |τ ′|.

Definition 8 Let G be a computable binding graph, and {Σ1, . . . ,Σn} the set of all
subgraphs of transform(G). Then, process(G) =

⋃n
i=1 partition(Σi).

Lemma 3 Let G be a computable binding graph. Then: i) No variable node in
process(G) has more than one predecessor; ii) no constant in process(G) is a pre-
decessor node; ii) If a constant α is the successor of n edges in a subgraph Σ ∈
process(G), then Σ contains n distinct routes from the root node η (in Σ) to α

Proof. i) follows from theorem 2 and def.6. It is sufficient to prove ii for the case
n = 2, i.e., (γ, α,R) ∈ Σ, (β, α,R′) ∈ Σ, γ 6= β. By def.1 stating that no edge in G
has a constant predecessor and successor, and by reversal of all edges with constant
predecessor in def.6, γ and β must be variables, and a constant can only be a terminal
node (proving ii). Hence, by i and assumption of a single root node, there must exist
two distinct routes (containing only variables) from η to γ (hence α), and η to β
(hence α). qed

Note that it must be possible to partition a graph Σ to obtain graphs with a single
root node such that no two graphs share a variable. Firstly, it cannot be the case
that Σ has no root nodes. Suppose otherwise. Then some subset Σ′ of Σ must be a
cyclical route {(α, β1, R), (β1, β2, R1), . . . , (βn, α,Rn)}. By def.6, no node in Σ′ can be
a constant, contradicting the assumption of computability. Secondly, suppose Σ has
two or more root nodes, and it is not possible to partition. This will be the case if a
variable node is the successor or more than one edge, since one cannot then retain all
edges in the partitioned graphs (def.7-2)) while ensuring that no variable is common
to any two graphs. But then this contradicts lemma 3i) (which holds true of graphs
obtained by transform (def.8) prior to partitioning).
We now define compilation of ERIB expressions, and computation of updates from

a rule body. In the following, if r = H ← B, then ∀α ∈ B, let Unary(r, α) = {A |A(α)
is a unary predicate in B}, and Unary(r, α) = > if there exists no unary predicate in
B. Also, let ground(B) denote the ground predicates in B, and isolated(B) denote
the non-ground predicates in B whose variables do not appear in any binary predicate
(all predicates in isolated(B) will be unary).

Definition 9 Let r = H ← B, and β a node in a subgraph Σ ∈ process(G(B)). Let
{(β, γ1, R1), . . . , (β, γl, Rl), (β, γl+1, Rl+1), . . . , (β, γn, Rn)}

be the set of all edges in Σ with predecessor β, where each Ri is a set {r
1
i , . . . , r

k
i },

and for i = 1 . . . l, γi is a variable, for i = l + 1 . . . n, γi is a constant. Then,

compile(β) =
∧

Unary(r, β) ∧
∧l

i=1(∃r
1
i u· · ·ur

k
i . compile(γi))∧

∧n
i=l+1(r

1
i u· · ·ur

k
i : γi)

Definition 10 Let4 = (R,T,A), r =H ← B a computable rule, and let {γ1, . . . , γm}
be the variables in isolated(B). Then,

A′′ =
⋃m

i=1{A(bi) |A ∈ Unary(r, γi)} , where each bi is a fresh constant

Let process(G(B)) = {Σ1, . . . , Σn}, and for each Σi, let αi denote the root node for
Σi. Then,

T′ =
⋃n

i=1{ci
.
= compile(αi)} , A′ =

⋃n
i=1{ci(ai)}

where each ai is a fresh constant and each ci a fresh concept name

4 updated via B is defined as (R, T ∪ T′, A ∪ A′ ∪ A′′ ∪ ground(B))

The updates defined for rule (3), on the basis of the graphs in fig.1c), are (we omit
writing > if > is one among a number of conjuncts):

c1
.
= i u (∃p.(r−1 : a) u (∃m−1.>))u q : a , c1(a1) , c2

.
= ∃t.s−1 : a , c2(a2)

Referring to the medical planning example of section 1, assuming a knowledge base 4
= (R,T,A), where R is the set of plan advisor rules, T a medical terminology encoded in
a superset of ERIB, and A contains facts about a plan being designed and facts about
the medical domain, then def. 10 will update T and A with prevent dehydration act
.
= actionu ∃effect.prevent : dehydration, and prevent dehydration act(a2). Note
that the properties of a2 can be reasoned about, via hybrid reasoning of the type
described in [5]. For example, hybrid reasoning will determine the entailment 4 ²

safety(drug A, dehydration, a2). Indeed, to facilitate rapid re-implementation and
thus demonstrate proof of concept, we chose to simulate hybrid reasoning of the
above type, by translating T to a definite program T∗, thus obtaining the definite
program 4∗ = (R∪T∗∪A) (we refer the reader to [7] for details of the translation and
re-implementation). At plan execution time the place holder action a2 can be “instan-
tiated” by a specific action which can be checked to determine that it is an instance
of prevent dehydration act; effectively checking for compliance with the intentions
encoded in the concept definition.
Finally, to demonstrate “correctness” of the procedure for update computation,

the following theorem states that given a rule r, then a ground instance of the head of
r is entailed by r and the skolemised first order translation of the updates computed
on the basis of the body of r. Firstly, if d is an ERIB concept expression, and α a
constant or variable, then the first order translation fol(d, α) is defined as follows:

1) if d is atomic (a concept name) then fol(d, α) = d(α)
2) if d = d1 ∧ d2 then fol(d, α) = fol(d1, α) ∧ fol(d2, α)
3) if d = ∃R.d′ then fol(d, α) = fol(R,α, Y) ∧ fol(d′, Y), Y is a fresh variable
4) if d = R : b then fol(d, α) = fol(R,α, b),
where fol(R,α, β) is defined as follows: Let R denote a role expression 2 p1 u . . . u
pj u q−1

j+1 u . . . u q−1
n . Then, fol(R,α, β) =

∧j
i=1 pi(α, β) ∧

∧n
k=j+1 qk(β, α).

Correctness of the above translation should be obvious given the first order seman-
tics for the operators. Hence, c

.
= d is equivalent to ∀Xc(X) ↔ fol(d,X), and so

for each updated pair (ci
.
= di, ci(ai)), ∀Xci(X) ↔ fol(di, X), ci(ai) ² fol(di, ai).

Substituting a skolem constant for each fresh variable introduced by 3), we thus ob-
tain the skolemised first order entailment skol(fol(di, ai)), where skol(fol(di, ai)) is a
conjunction of ground unary and binary predicates.

Theorem 4 Let r be a computable rule H(Y) ← B1(X1), . . . , Bn(Xn). Let the up-
dates computed from the body of r, as given by def.10, be:

T′ = {c1
.
= d1, . . . , cn

.
= dn}, A′ = {c1(a1), . . . , cn(an)}, A′′, ground(B).

Let Γ =
⋃n

i=1{skol(fol(di, ai))} ∪ A′′ ∪ ground(B). Then: Γ, r ² H(a).

Proof. It is sufficient to show that Γ entails ground instances of every predicate in B
with a valid substitution of constants for variables in B. ground(B) ⊆ Γ, and Bi(ai)
∈ A′′ if Bi(Xi) is in isolated(B) (Xi is not a variable in any binary). Let B ′′ denote
the remaining non-ground unary and binary predicates (those not in ground(B) or
isolated(B)). Each binary predicate pb in B′′ labels an edge in G(B). We show that pb

2We can assume any role expression to be of this form since role conjunction is associative and
commutative, and inverse role is distributive

or p−1
b labels an edge in some Σi in process(G(B)) = {Σ1, . . . ,Σn}. This follows from

def.5 (where every node in a variable subgraph is connected and so will be processed
by subtrans), and definitions 6, 7-2) and 8. In def.10, every pb / p−1

b will compile to
a role in ci

.
= (compile(αi) = di), since (referring to def.9) when compiling a variable

γi, γi has no predecessor other than β (lemma 3i). Compiling a constant γi, γi is not
the predecessor of any edge (lemma 3ii), and if there is an e =(β ′,γi,R) (β

′ 6= β), then
by lemma 3ii) there is a route from αi to γi that includes e, and so all predicates in R
will be compiled. Every unary predicate in B ′′ shares a variable with some binary pb

in B′′, and so (by def.9) will compile to a concept in some di. We thus have that every
predicate in B′′ is compiled to a role or concept in some di, and hence appears as a
ground predicate in

⋃n
i=1{skol(fol(di, ai))}. Since by def.7-4) no variable is common

to any two Σi, Σj , then substitution of variables by skolem constants constitutes a
valid substitution on B′′. qed

4 Conclusions

Our work formalises compilation of the conjunctive bodies of a restricted class of Horn
rules into updates on terminologies. We have illustrated application and benefits of
this work in a medical planning context, but believe that it can be generalised to other
incremental design tasks in which incomplete specifications of design components need
to be represented and reasoned with (e.g., in configuration management [6]). An im-
mediate goal is to link the plan advisor and plan authoring tool to established large
scale medical terminologies (e.g., [10]), and further develop and implement the update
procedures described here. Our work on compilation of conjunctions to concept de-
scriptions is related to existing works on compilation of conjunctive queries [2, 4]. In
[2] conjunctions are compiled into ALEN concept descriptions [2]. The class of con-
junctions considered do not include constants, and the binding graphs are required
to define a tree from the outset. In [4], compilation is defined for conjunctions with
constants, and whose binding graphs include cycles and variables converged on by
two or more edges. Cycles exclusively containing variables are handled by nondeter-
ministically substituting a variable in the cycle with an individual name (constant)
occurring in the ABox. Variables converged on by two or more edges are similarly
substituted. However, these techniques are only suitable when compiling conjunctive
queries and would clearly not be appropriate when updating compiled descriptions
and associated instances.

Acknowledgements: Warm thanks to Maarten Marx for his valuable comments on
this paper

References

[1] A. Deliyanni and R. Kowalski, Logic and Semantic Networks. In: Commun. ACM,
(22,3), 184-192, Mar. 1979.

[2] F. Goasdou and M. Rousset, Compilation and Approximation of Conjunctive
Queries by Concept Descriptions. In: Proceedings of the 15th European Con-
ference on Artificial Intelligence, ECAI 2002.

[3] B. N. Grosof, I. Horrocks, R. Volz, S. Decker. Description Logic Programs: Com-
bining Logic Programs with Description Logic. In: Proceedings of 12th Interna-
tional Conference on the World Wide Web (WWW-2003), Budapest, Hungary,
May 20-23, 2003.

[4] I. Horrocks and S. Tessaris, A Conjunctive Query Language for Description Logic
Aboxes. In: Proceedings of the 17th National Conference on Artificial Intelligence
(AAAI-2000), 399-404, 2000.

[5] A. Y. Levy and M. Rousset, Combining Horn Rules and Description Logics in
CARIN. In: Artificial Intelligence 104 (1-2), 165-209, 1998.

[6] D. McGuinness, Description Logic for Configuration. In: eds., F. Baader, D.
McGuinness, D. Nardi, and P. Patel-Schneider, The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press, 2002.

[7] S. Modgil, Linking Rules to Terminologies and Applications in Medical Planning.
To appear in: 9th Conference on Artificial Intelligence in Medicine in Europe,
Cyprus, 2003 (http://www.eastman.ucl.ac.uk/%7Edmi/publications.html)

[8] S. Modgil and P. Hammond, Generating Symbolic and Natural Language Partial
Solutions for Inclusion in Medical Plans. In: Proc. 8th Conf. on Artificial Intelli-
gence in Medicine in Europe, (LNAI 2101, Springer-Verlag), 239-248, 2001.

[9] S. Modgil and P. Hammond, Decision Support Tools for Clinical Trial Design, In:
Artificial Intelligence in Medicine, 27(2), 181-200, 2003.

[10] A. Rector et. al., The GRAIL concept modelling language for representing medical
terminology. In: Artificial Intelligence in Medicine, (9), 139-171, 1997.

[11] Y. Shahar, S. Miksch, P. Johnson, The Asgaard project: a task-specific framework
for the application and critiquing of time-oriented clinical guidelines, In: Artificial
Intelligence in Medicine, 14(1-2), 29-51,1998.

