Wine Agent: Semantic Web Testbed Application

Eric I. Hsu and Deborah L. McGuinness
Knowledge Systems Laboratory
Stanford University
{ehsu, dlm}@ksl.stanford.edu

Abstract

The Wine Agent is a demonstration system that uses an underlying domain
ontology to provide suitable wines for a given meal. In doing so it serves as a
testbed, not only for the logical domain description, but additionally for emerging
Semantic Web technologies that process, infer, justify, and execute the pairings.
Specifically, it combines the the DAML+OIL and OWL Web-based description
logics with the JTP theorem prover. The resulting knowledge base can be queried
remotely via the DQL query language. Suitable pairings are explained within the
Inference Web apparatus, and then transacted via a preliminary implementation
of Web Services. Besides serving as a prototype for these methodologies, the
wine agent has provided useful empirical lessons regarding reasoning via Semantic
Web axioms, language requirements, and requirements for explanation, as well as
pragmatic issues concerning implementation and integration.

1 Overview

The Wine Agent is accessed over the Web, at http://onto.stanford.edu:8080

The main interface, shown in Figure 1, allows the user to select a type of course
that will be served from a mock-up menu. Alternatively, they can select a specific
individual food, in which case the Wine Agent will make an additional set of inferences
in order to determine the type of course for that food, and then proceed as if the user
had chosen that type.

The result of one such interaction, where the user has chosen a pasta with spicy
red sauce, is shown in Figure 1. The Wine Agent lists the requisite properties of a
suitable wine, in terms of the wine’s color, sugar, body, and flavor. This statement is
appended with a link to an inference web explanation, and then followed by a listing
of individual wines meeting the desired characteristics. A link labeled “Web Inventory
Search” instructs the agent to search various external sites for these wines, offering
them for direct purchase. In case this provides an inadequate number of options,
the Wine Agent also identifies general varietals featuring the targeted characteristics.
Each is displayed as a link to a specific merchant, wine.com, whose inventory of that
specific varietal can be browsed or searched by the user.

The Wine Agent employs a suite of emerging Semantic Web formalisms in order
to derive this functionality from a core ontology that describes the general properties
of meals, foods, and wines. The ontology is expressed using the description logics

v G0 Bookmarks ools Window

Wine Agent 1.0 Wine Agent 1.0
i How does it work? Iy
How does it work?

Please select a type of course:

DES?EY\\T Course Type: PASTA-WITH-SPICY-RED-SAUCE
"Pairs well with diy red varieties. Full-bodied wines featuring strong flavors
‘match espectally well."why?

TOMATO-BASED FOOD i

— . MOUNT EDEN VINEYARD ESTATE PINOT NOIR

Or, select; a specific item from the sample men: + SANTA CRUZ MOUNTAIN VINEYARD CABERNET SAUVIGNON -
- Personl cheese pizze « SEAN THACKREY SIRIUS PETITE SYRAH

+ COTTURI ZINFANDEL

+ CHATEAU LAFITE ROTHSCHILD PAUILLAC

e chicken.- Roast duck - Roast goose - Roast turkey.
e can be found below, along with some comparable selections:

Meat: Griled T-Bone stesk- 10 cz
Griled pork chops - Lamb curry

Web Inventory Search

Seatood e ld flounder - Griled swvordsish - Griled helibut - Broled scrod - Maine. ‘Altematively, the following varieties include rmany suiteble matches:
- Whole

+ PINOT-NOIR

pie - Fruitplate - Baked apples - Banenas Foster - Peach * ZINF;
fed cheeses + RED-BURGUNDY

+ PETITE SYRAR
+ CABERNET-SAUVIGNON

S i \Z D @ | Document Done (0038 secs) ol

3
&

Figure 1: Wine Agent Front Page and Example Response.

DAML+4OIL and OWL, which are designed for distribution over the Web via names-
paces and a syntax based on mark-up. Using DQL, or “DAML Query Language”,
to express and transact a series of queries, the Wine Agent initiates inference by the
JTP theorem prover. JTP uses set of DAML4OIL/OWL axioms to interpret the
ontology as first-order-logic and perform model-elimination theorem proving. Besides
answering queries, it also outputs proofs for use with the Inference Web, which is a
system for registering explanations for inferences made by various systems distributed
across the Web. Finally, the links to external sites are accomplished via an incomplete
implementation of Web Services.

The following sections will detail each of these steps in turn, followed by discussion
and conclusions.

2 Domain Ontology: DAML+OIL/OWL

The domain ontology is general-purpose, usable by any system wishing to reason about
foods and wines. Here, though, the relevant terms include meal courses pairing foods
with drinks, specializations for the various types of food, varietals of wines, individual
wines, and wine properties, in addition to various subsidiary definitions. Figure 2
shows an excerpt of a description for meal courses featuring pastas with spicy red
sauces; individual food items like “Fra Diavolo” might reference this class as their
type.

The first portion of the definition identifies the term as a type of meal course
whose food item is constrained to be some sort of pasta with spicy red sauce, via a
<daml :Restriction>. Alternatively, the definition ends with restrictions on the prop-
erties of a any drink that might be associated with such a course, without referencing
their properties directly. Rather, in this logic restrictions can be reified, and the above
can be interpreted as constraining all pasta courses featuring spicy red sauce to be a
subclasses of all meal courses meeting the required constraints.

On the other side of the match, wines are represented as individuals. Suppose
some wine has been defined as a Pauillac whose maker is Chateau Lafite Rothschild.
Together with other statements in the ontology, this allows the reasoner to deduce

<rdfs:Class rdf:ID="PASTA-WITH-SPICY-RED-SAUCE-COURSE">
<daml:intersection0f rdf:parseType="daml:collection">
<rdfs:Class rdf:about="#MEAL-COURSE"/>
<daml:Restriction>
<daml:onProperty rdf:resource="#F00D"/>
<daml:toClass rdf:resource="#PASTA-WITH-SPICY-RED-SAUCE"/>
</daml:Restriction>
</daml:intersection0f>
<rdfs:subClass0f
rdf :resource="#DRINK-HAS-RED-COLOR-RESTRICTION"/>
<rdfs:subClass0f
rdf :resource="#DRINK-HAS-FULL-BODY-RESTRICTION"/>
<rdfs:subClass0f
rdf :resource="#DRINK-HAS-STRONG-FLAVOR-RESTRICTION"/>
<rdfs:subClass0f
rdf :resource="#DRINK-HAS-DRY-SUGAR-RESTRICTION"/>
</rdfs:Class>

Figure 2: Ontology Excerpt: Pasta with Spicy Red Sauce.

many additional facts: that this a Medoc wine from Bordeaux, in France, and that it
is red, to name a few. The definition for all Pauillacs is is shown in Figure 3.

rdfs:Class rdf:ID="PAUILLAC">
<rdfs:subClass0f rdf:resource="#FULL-BODY-RESTRICTION"/>
<rdfs:subClassOf rdf:resource="#STRONG-FLAVOR-RESTRICTION"/>
<rdfs:subClass0f rdf:resource=
"#CABERNET-SAUVIGNON-INDIVIDUAL-GRAPE-SLOT-RESTRICTION"/>
<rdfs:subClass0f rdf:resource=
"#GRAPE-SLOT-MAX-CARDINALITY-1-RESTRICTION"/>
<daml:intersection0f rdf:parseType="daml:collection">
<rdfs:Class rdf:about="#MEDOC"/>
<daml:Restriction>
<daml:onProperty rdf:resource="#REGION"/>
<daml:hasValue rdf:resource="#PAUILLAC-INDIVIDUAL"/>
</daml:Restriction>
</daml:intersection0Of>
</rdfs:Class>

Figure 3: Ontology Excerpt: Pauillac.

Most of the wine’s distinguishing properties are specified here; one exception is
that its red color arises from being a Medoc. In addition, wines of this type must be
unblended, i.e. made from only one varietal of grape, cabernet sauvignon. In addition
they must be grown in the Pauillac region. Again, thanks to namespacing, these terms
are all available for reference by any system across the Web, not just the Wine Agent.

3 Reasoning: JTP

The next step is to infer the appropriate match using JTP, which is a general-purpose
theorem prover developed at the Stanford Knowledge Systems Lab. Using standard
XML parsers, it interprets the DAML+OIL/OWL ontology as a series of first-order
logical statements. Using an added set of Axioms capturing the meaning of such
statements, JTP can thus seek to infer arbitrary sentences entailed by the KB.

In practice, the axiomatization is extremely difficult, not only to conceive, but

also to test throughly. One example is the interpretation of disjunctive restrictions, for
instance the notion that a particular course requires wines with full or medium bodies.
Such cases were sometimes handled incorrectly due to subtleties in the axiomaization.
Further, this problem was not discovered until the completion of the initial version of
the Wine Agent.

4 Querying the KB: DQL

The DAML Query Language can be though of as a combination of SQL and TCP; it is
designed to query remote knowledge bases, and additionally to manage the transmis-
sion of responses and refinements during a query-answering session. That is, it allows
for incomplete answer sets, requests for further answers, discontinuous sessions, and
additional functionality useful for controlling the semantic level of a client/server in-
teraction.

A typical query first arrives at the server hosting the wines KB via DQL. Wine
Agent specifies the premises for the query concerning a hypothetical wine being paired
with the food in question, and that the server must provide as many answers as it can
find. The server replies with a preliminary (and possibly incomplete) set of answers, as
well as a process handle in case the user wishes to send future messages requesting more
answers. In conforming to DQL, JTP knows to interpret the premises as assertions
that it must make before performing the queries, and then retract once the session
terminates.

5 Justifying the Answers: Inference Web

Performing inference over the Web drives multiple needs for explanation. First is
provenance: systems must verify that inferences and underlying descriptions come
from trustworthy and recent sources. Another priority is transparency, the exposure
of the employed reasoning methodology, accomplished here via browser navigation.
Interoperability consititutes a long-term goal: the sharing and composition of proofs
from distributed, heterogeneous collections of reasoners. Finally, reasoning abstraction
is a necessity for breaking proofs into fragments that human users can understand.

The Inference Web project seeks to meet these challenges via a registry of proofs
and provers, as well as an inference browser for traversing their explanations. As
previously mentioned, the wine agent participates by outputting proof explanations
in the required format, caching them, registering them, and then linking to them
through the IW browser.

6 Performing Transactions: Web Services

The final step for each Wine Agent session is to link to external merchants, both
for individual wines and for varietals. The process of querying their inventories and
performing purchase transactions can be seen as a matter of Web Services. How-
ever, because the merchants in question do not yet use these emerging standards, the
implementation is incomplete.

Specifically, our system identifies matching varietals and wines via their names
within the web-accessible general-purpose ontology. If wine.com were to use the same
lexicon, the two sites could build up a protocol of seeking, displaying, and selling
targeted wines by direct reference. Instead, the Wine Agent relies on existing syntactic
methods by scraping screens from the merchants and linking into their search engines
with targeted parameters already in place, via HTML “GET” formats. In the future,
hopefully, this will not be the case!

7 Conclusions

Pedagogically, the Wine Agent prototype is an operational specification for integrating
emerging standards for web query languages (DQL), description logics (DAML+OIL),
distributed web explanation (Inference Web), and services markup languages (DAML-
S) to build an integrated web agent. The system is motivated by an example appli-
cation in the OWL Guide [6] that is in turn grounded in work on the CLASSIC
description logic [2].

Though a successful integration in the end, the prototype was much more dif-
ficult to develop than originally expected. One reason is that the information web
sites used by the system are not marked up with DAML-S. Even upon switching to
screen-scraping, such sites still present a challenge because they do not provide as
much representational detail as does the ontology. The project required additional
integration work between the JTP reasoner, the DQL query langauage, and the ax-
iomatization of the employed description logics. Finally, preformance issues by the
reasoner necessitated the caching of popular and time-consuming queries.

8 Bibliography

[1] Merryll K. Abrahams, Deborah L. McGuinness, Rich Thomason, et al. NeoClassic Tutorial:
Version 1.0. Artificial Intelligence Research Department, AT&T Labs Research, 1996.

[2] Ronald J. Brachman, Alex Borgida, Deborah L. McGuinness, et al. Living with CLASSIC:
When and How to Use a KL-ONE-Like Language. In Principles of Semantic Networks: FExplo-
rations in the Representation of Knowledge, ed. John Sowa. San Mateo, California: Morgan
Kaufmann, 1991, pages 401-456.

[3] Richard Fikes, Pat Hayes, Ian Horrocks, ed. DAML Query Language (DQL) Abstract
Specification. August, 2002. http://www.ksl.stanford.edu/projects/dql.

[4] Deborah L. McGuinness and Paulo Pinheiro da Silva. Infrastructure for Web Explana-
tions. To appear in Proceedings of 2nd International Semantic Web Conference (ISWC2003),
Sanibel, FL. Springer, October 2003.

[5] Sheila Mcllraith and David Martin. Bringing Semantics to Web Services. IEEE Intelligent
Systems, 18(1):90-93, January /February, 2003.

[6] Michael Smith, Deborah L. McGuinness, Raphael Volz, and Chris Welty. Web Ontology
Language (OWL) Guide Version 1.0. Technical Report Working Draft, World Wide Web

Committee (W3C), 2003. http://www.w3.org/TR/owl-guide/.

