Concept Abduction and Contraction in
Description Logics

Simona Colucci!, Tommaso Di Noia!, Eugenio Di Sciascio!,

Francesco Donini?, Marina Mongiello'
1: Dipartimento di Elettrotecnica ed Elettronica,
Politecnico di Bari, BARI, Italy
Email: {s.colucci,t.dinoia,disciascio,mongiello }@poliba.it
2: Facolta di Scienze Politiche
Universita della Tuscia, VITERBO, Italy

FEmail: donini@unitus.it

Abstract

Motivated by matchmaking in Peer-to-Peer electronic marketplaces,
we study abduction and contraction in description logics. We devise suit-
able definitions of the problem, and prove some simple complexity results.

1 Motivation

Several recent proposals try to formalize with Description Logics (DLs) the
description of supplies and demands in Peer-to-Peer electronic marketplaces (see
[7, 15, 14, 6, 11, 5] among others). Usually, proposals tend to use the standard
reasoning services of a DL system — subsumption and (un)satisfiability — to
classify potential partners. In brief, if a supply is described by a concept C' and
a demand by a concept D, unsatisfiability of C' T D identifies the incompatible
proposals, satisfiability identifies potential partners — that still have to agree on
underspecified constraints — and subsumption C' © D means that requirements
on D are completely fulfilled by C.

However, we believe that ranking of potential counteroffers is fundamental
to make a matchmaking service useful for an end user — similarly to “good”
rankings for search engines in the WWW. Moreover, the ranking should be as
transparent as possible, in case a user wants to know why a given proposal
has been ranked before another. This transparency is crucial for our electronic
business scenario, where we must give the user reasons to trust the system.

Therefore, we want to base our ranking functions on logical properties in DLs,
which call for more sophisticated reasoning services in DLs.

2 Concept Abduction

We tend to follow the notation of [9] for propositional abduction whenever pos-
sible, and modify it as needed. A Propositional Abduction Problem is a triple
(H,M,T) where H (Hypotheses) and M (Manifestations) are set of literals,
and T' (Theory) is a set of formulae. A solution for (H, M,T) is an Explanation
FE C H such that TUFE is consistent, and TUFE = M. We adapt this framework
to DLs as follows.

Definition 1 Let £ be a DL, C, D, be two concepts in L, and T be a set of
axioms in L, where both C' and D are satisfiable in T. A Concept Abduction
Problem (CAP), denoted as (L,C, D, T), is finding a concept H € L such that
TECNH=1L, and T ECNHLCD.

We use P as a symbol for a CAP, and we denote with SOLCAP(P) the set of
all solutions to a CAP P. Observe that in the definition, we limit to satisfiable
C and D, since (' unsatisfiable implies that the CAP has no solution at all,
while D unsatisfiable leads to counterintuitive results (—=C would be a solution
in that case).

As propositional abduction extends implication, a CAP extends concept sub-
sumption. But differently from propositional abduction, we do not make any
distinction between manifestations and hypotheses, which is usual when abduc-
tion is used for diagnosis. In fact, when making hypotheses about properties of
goods in e-marketplaces, there is no point in making such a distinction. This
uniformity implies that there is always the trivial solution D to a non-trivial

CAP (L£,C,D,T), as stated more formally as follows.
Proposition 1 [f CM D is satisfiable in T, then D € SOLCAP((L,C,D,T)).

Interpreted in our e-marketplace application domain, it means that if I hypothe-
size for the counteroffer (' exactly all my specifications D, then the counteroffer
trivially meets my specifications — if it was compatible anyway. However, in
case C' © D no hypothesis is really necessary, while in other cases the entire D
must be supposed. Clearly, in order to start the transaction the first case isin a
much better shape than the second one. Hence, if we want to use abduction to
highlight most promising counteroffers, "minimal” hypotheses must be defined.
In the following definition, we denote with C+ the subsumption relation between
concepts w.r.t. a TBox 7.

Definition 2 Let P=(L,C,D,T) be a CAP. The set SOLCAP(P) is the sub-
set of SOLC AP(P) whose concepts are mazimal under Cr. The set SOLCAP<(P)
is the subset of SOLC AP(P) whose concepts have minimum length.

We note that being maximal under T+ is still a minimality criterion, since it
means that no unnecessary hypothesis is assumed. It can be proved that the
two measures are incomparable.

Proposition 2 There exists a CAP P such that the two sets SOLCAP-(P)
and SOLCAP<(P) are incomparable.

Proof. 1t is sufficient to consider D = AjMA; Az, C = Ay, and T = {B C Ayl
As}. The logic is even propositional. Then A, A3 € SOLCAP-((L,C,D,T)),
B e SOLCAP.((L,C,D,T)), and neither solution is in the other set. —
The proof highlights that, although <-minimality could be preferable for concise-
ness, it is heavily dependent on 7. In fact, for every concept H € SOLC AP(P),
it is sufficient to add the axiom A = H to get a <-minimal solution A.

Observe also that the length-minimal solution B could not be obtained by
applying concept rewriting techniques — as defined in [1] — to CT1 D = A M
A1 Ay 11 As, because Ay M B is not a rewriting of the former concept.

A third minimality criterion is possible for DLs which admit a normal form
as a conjunction of concepts, that is, every concept (' in £ can be rewritten as
an equivalent concept C;M---MC,. This is the case for £L = ALN, and for the
DL of the CLASSIC KR system. We call such a normal form CNF, in analogy

with propositional logic.

Definition 3 Let P=(L,C, D, T) be a CAP in which L admits a normal form
with conjunctions of concepts. The set SOLC APR(P) is the subset of SOLC AP(P)
whose concepts are minimal conjunctions, i.e., if C € SOLCAPR(P) then no
sub-conjunction of C is in SOLCAP(P). We call such solutions irreducible.

It turns out that M-minimality subsumes both C-minimality and <-minimality.
This is not a surprise, since MN-minimality is a form of Cg-minimality, i.e., max-
imality for subsumption w.r.t. an empty TBox.

Proposition 3 For every CAP P in which £ admits a CNF, both SOLC AP-(P)
and SOLCAP<(P) are included in SOLCAPR(P).

Proof. If a concept C' is not MN-minimal, then it is not length-minimal, and the
same for 7.

2.1 Computational Complexity

Since Concept Abduction extends Concept Subsumption w.r.t. a TBox, com-
plexity lower bounds of the latter problem carry over to decision problems re-

lated to a CAP.

Proposition 4 Let P=(L,C, D, T) be a CAP. If Concept Subsumption w.r.t.
a TBox in Lis a problem C-hard for a complezity class C, then deciding whether
a concept belongs to SOLCAP(P) is C-hard.

Proof. Hardness for C comes from the fact that C' subsumes D in T iff T €
SOLCAP(P). —

Hence, if £ contains the DL AL, then deciding whether a concept belongs to
SOLCAP(P) is EXPTIME-hard [8] for a general TBox T, but it is PSPACE-
hard if 7 contains only acyclic concept axioms [3].

Regarding upper bounds, a simple result can be derived from the fact that D
is always a solution of the CAP (L£,C, D,T) — although not always a minimal
one. First of all, a total length-lexicographic order < can be defined over con-
cepts as follows: given two concepts C, D € L, let C < D if either |C| < |D|, or
both |C| = |D| and C is lexicographically before D. Based on this total order,
one can easily devise a simple-minded algorithm for finding a <-minimal solu-
tion of a CAP, using polynomial space relatively to an oracle for subsumption
in £. In fact, it is sufficient to try all concepts with less symbols than D, and
return D if a shorter solution is not found. This provides an upper bound on the
complexity of CAP, depending on the complexity class to which subsumption in
L belongs to.

Theorem 1 Let P=(L,C, D, T) be a CAP. If subsumption in L belongs to
a complexity class C that is included in PSPACE, then finding a concept in
SOLCAPL(P) is a problem in PSPACE. Otherwise if PSPACE is included in
C, then finding a concept in SOLCAP<(P) is a problem in C.

Given that the problem of finding a solution cannot be simpler than the cor-
responding decision problem, we can conclude with some general results about
<-minimal abduction.

Theorem 2 Let P=(L,C, D, T) be a CAP, with L a DL whose expressiveness
is between AL and the DL containing concept constructors M, U, -, AR.C,VR.C'
and role constructors U, role chain, transitive-reflexive closure of roles, role
identity, role inverse, and T is a TBox with general axioms of the form £ C F.
Then deciding whether a concept is in SOLCAP<(P) is a problem EXPTIMLE-

complete.

Proof. Hardness results for AL are in [8]. Membership result for the most
expressive logic comes from converse-Propositional Dynamic Logic [16].
Hence, for a general TBox the best known algorithms require exponential time
and also exponential space (unless unless one proves PSPACE = EXPTIME).

When the TBox is acyclic, complexity results for subsumption imply that
finding a concept in SOLCAP<(P) is a problem PSPACE-complete for DLs
whose expressiveness is between ALE [3] and ALC [12]. Even for the simplest
logic AL, the problem is co-NP-hard [3].

2.2 Irreducible solutions in ALN

In this section, we assume that 7 of a CAP P= (L£,C, D, T) is always acyclic.
Finding an irreducible solution is easier than finding a <-minimal or a C-minimal
solution, since a greedy approach can be used to minimize the set of conjuncts
in the solution: starting from C' I D, delete one redundant conjunct at a time
from D. However, instead of starting from C' M D, we adapt a structural sub-
sumption algorithm [2] that collects all concepts that should be conjoined to €'
to be subsumed by D. The algorithm operates on concepts in the well-known
normal form for Classic, which puts all VR.C with the same role in one concept,
simplifies redundant and inconsistent number restrictions, and expands all con-
cept definitions and inclusions. In the following algorithm, we denote the fact
that a concept A appears as a conjunct of a concept €' with A € C.

Algorithm findIrred(P);
input: a CAP P= (L£,C, D, T), with L=ALN , acyclic T
output: concept H € SOLCAPH(P)
(where H = T means that C is already subsumed by D)
variables: concept H
begin
H:=T;
for every concept name y in D
if y is not in C'
then H := H MNy;
for every concept (> n R) € D
such that there is no concept (> m R) € C with m > n
H:=Hn((> n R);
for every concept (< n R) € D
such that there is no concept (< m R) € C' with m <n
H:=HnN(< n R);
for every concept VR.E € D
if there exists VR.F' € C
then H := HNOVR.findlrred((L, F,E,T));
else H := HOVR.findlrred((L, T,E,T));
/* now H € SOLCAP(P), but it might be reducible */
(o)for every concept H; € H
if H without H; is in SOLCAP(P)
then delete H; from H;
return H;
end.

It can be proved that the concept H returned by findIrred() is indeed an
irreducible solution of P. We explain the need for the reducibility check following

(¢) with the help of an example. Let T = {A; T Ay, As C Ay}, and let C = As,
D = A; M A;. Then L is the propositional part of AL. The normal form for
Cis C" = A3 Ay, while D' = Ay 11 Ay 11 Ay, Then before (o) the algorithm
computes H = A; M A,, which must still be reduced to A;.

As for complexity, the expansion of the TBox in the construction of the
normal form can lead to an exponential blow-up, as demonstrated by Nebel in
[13]. And anyway, a polynomial algorithm cannot be expected since subsumption
in AL with an acyclic T is co-NP-hard [3]. However, in the cited paper Nebel
argues that the expansion is exponential in the depth of the hierarchy 7 if the
depth of T is O(log |T]), then the expansion is polynomial, and so is the above
algorithm.

Theorem 3 Let P= (L,C,D,T) be a CAP, with L=AL, and T an acyclic
TBox whose depth is always bounded by O(log |T|). Then finding an irreducible

solution to P is a problem solvable in polynomial time.

In order to rank the proposals in a marketplace according to how “near”
they are to a given proposal D, we take the number of concept names in the
irreducible solution returned by the above algorithm. The fact that a concept
H is actually computed makes easy to devise an explanation facility, in case a
user wants to know why a given proposal has been ranked before another. This
transparency is crucial for our electronic business scenario, where we must give
the user reasons to trust the system.

3 Concept Contraction

Other proposals [15, 14] usually exclude the case in which the concept expressing
a demand is inconsistent with the concept expressing a supply, assuming that
all requirements are strict ones. However, proposals for matchmaking outside
DLs (e.g., Markus and Stolze’s) are much more liberal on this subject, allowing
a user to specify negotiable requirements — some of which could be bargained
in favor of others.

The logical formalization of negotiable requirements calls, in our opinion,
for definitions already encountered in belief revision. In particular, we tend to
follow Gardenfors’ [10] formalization, in which a revision of a knowledge base K
with a new piece of knowledge A is a contraction operation, which results in a
new knowledge base K such that X & = A, followed by the addition of A to
Ky — usually modeled by conjunction.

Contraction is the operation which we are interested in, since from the fact
that C'T1D is unsatisfiable in a TBox 7, we want to retract requirements in C' to
obtain a concept K (for Keep) such that KD is satisfiable in 7. Clearly, a user
is interested in what she must trade to conclude the transaction — a concept

G (for Give up) such that C' was made by G and K. We try to formalize these
ideas as follows.

Definition 4 Let £ be a DL, C, D, be two concepts in L, and T be a set of
axioms in L, where both C' and D are satisfiable in T. A Concept Contraction
Problem (CCP), denoted as (L,C, D, T), is finding a pair of concepts (G, K) €
L x L such that T EC=GNK, and K 11D is satisfiable in T. We call K a
contraction of C' according to D and T .

We use Q as a symbol for a CCP, and we denote with SOLCC P(Q) the set of all
solutions to a CCP Q. We note that there is always the trivial solution (G, K') =
(C,T) to a CCP. This solution corresponds to the most drastic contraction,
that gives up everything of C'. In our e-commerce setting, it would model the
(infrequent) situation in which, in front of some very appealing counteroffer D,
incompatible with mine, I just give up completely my specifications C' in order
to meet D. On the other hand, when C M D is satisfiable in 7, the "best”
possible solution is (T, C'), that is, give up nothing — if possible.

Observe that as for concept abduction, we rule out cases where either C' or
D are unsatisfiable, as they correspond to counterintuitive situations.

Since usually one wants to give up as few things as possible, some minimality
in the contraction must be defined. As in the previous section, we denote with
C+ the subsumption relation between concepts w.r.t. a TBox 7.

Definition 5 Let Q=(L,C, D, T) be a CCP. The set SOLCC P(Q) is the sub-
set of solutions (G, K') in SOLCCP(Q) such that G is maximal under Cy. The
set SOLCCP<(Q) is the subset of SOLCCP(Q) such that G has minimum
length.

As Concept Abduction extends Subsumption, Concept Contraction extends sat-
isfiability — in particular, satisfiability of a conjunction K M D.

Proposition 5 Let £ be a DL containing AL, and let Concept Satisfiability
w.r.t. a TBox in Lbe a problem C-hard for a complexity class C. Then deciding
whether a pair of concepts is a solution of a CCP Q=(L,C, D,T) is C-hard.

Proof. A concept E € L is satisfiable w.r.t. a TBox 7 if and only if the CCP
(CL,VR.E,3R.T,T) has the solution (T,C).
This gives a lower bound on the complexity of Concept Contraction, for all DLs
that include AL. For DLs not including AL note that if the proof showing C-
hardness of satisfiability involves a concept with a topmost M symbol, the same
proof could be adapted for Concept Contraction.

Similarly to Concept Abduction, also for Concept Contraction some simpler
definitions are possible when the DL admits a normal form made up of con-
junctions, and in this case, an algorithm which is a simple modification of a

“structural satisfiability” algorithm is possible. Basically, the algorithm collects
all contradictory conjunctions while traversing the syntactic trees of the two
concepts. See some recent papers [6, 4] for numerical versions of the algorithm.

Once a contraction has been made, the obtained requirements K might still
not give an exact match. Hence, a Concept Abduction problem can be set up
between K and D, to see how many things are to be hypothesized in D to fulfill
K: e.g., “even if I give up smoking, I still don’t know whether the householder
accepts my dog and has autonomous heating system...”.

4 Conclusion

Motivated by Peer-to-Peer matchmaking in electronic marketplaces, we set up
definitions for Concept Abduction and Concept Contraction in DLs. We ana-
lyzed minimality criteria, and showed some preliminary results on complexity.
We also devised algorithms for the simple DL ALA . Preliminary experimenta-
tion [5] shows a good accordance with end-users judgements. Future research is
needed to devise algorithms for more expressive DLs.

Acknowledgements

We thank two anonymous referees for helpful comments and criticism. This work
has been supported by MURST project CLUSTER22, by EU-POP project Ne-
gotiation Agents for the Electronic Marketplace, by project Tecnologie innovative
per la valorizzazione e la fruizione dei Beni Culturali, by Italian CNR projects
LAICO, and Metodi di Ragionamento Automatico nella modellazione ed analisi
di dominio.

References

[1] Franz Baader, Ralf Kiisters, and Ralf Molitor. Rewriting concepts using
terminologies. In KR 2000, pages 297-308, 2000.

[2] A. Borgida and P. F. Patel-Schneider. A Semantics and Complete Algo-
rithm for Subsumption in the CLASSIC Description Logic. J. of Artificial
Intelligence Research, 1:277-308, 1994.

[3] D. Calvanese. Reasoning with inclusion axioms in description logics. In

FECAT'96, pages 303-307. John Wiley & Sons, 1996.

[4] T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. A system for
principled matchmaking in an electronic marketplace. In WWW’03. ACM,
2003.

[5]

[6]

[11]

[12]

[13]

[14]

[15]

[16]

T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. Abductive
matchmaking in description logics. In IJCAI03, 2003. To appear.

T. Di Noia, E. Di Sciascio, F.M. Donini, and M. Mongiello. Semantic
matchmaking in a P-2-P electronic marketplace. In SAC’03, pages H82—
586. ACM, 2003.

E. Di Sciascio, F.M. Donini, M. Mongiello, and G. Piscitelli. A knowledge-
based system for person-to-person e-commerce. In Workshop on Applica-
tions of Description Logics (KI 2001), 18 September 2001.

F. M. Donini. Complexity of reasoning. In Desecription Logics Handbook,
chapter 3. Cambridge University Press, 2003.

T. Eiter and G. Gottlob. The complexity of logic-based abduction. JACM,
42(1):3-42, 1995.

P. Gardenfors. Anowledge in Flux: Modeling the Dynamics of Epistemic
States. Bradford Books, MIT Press, Cambridge, MA, 1988.

L. Li and I. Horrocks. A software framework for matchmaking based on

semantic web technology. In WWW’03. ACM, 2003.

C. Lutz. Complexity of terminological reasoning revisited. In LPAR’99,
pages 181-200, 1999.

B. Nebel. Terminological reasoning is inherently intractable. Artif. Intell.,

43:235-249, 1990.

K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking
among heterogeneus software agents in cyberspace. Autonomous agents and
multi-agent systems, 5:173-203, 2002.

D. Trastour, C. Bartolini, and C. Priest. Semantic web support for the
business-to-business e-commerce lifecycle. In WWW’02, pages 89-98. ACM,
2002.

M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. J. of Computer and System Sciences, 32:183-221, 1986.

