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Abstract

Matching problems in Description Logics are theoretically well understood,
with a variety of algorithms available for different DLs. Nevertheless, still no im-
plementation of a general matching algorithm exists. The present paper presents
an implementation of an existing matching algorithm for the DL ALE and shows
first results on benchmarks w.r.t. randomly generated matching problems. The
observed computation times show that the implementation performs well even on
relatively large matching problems.

1 Motivation

Matching in Description Logics (DLs) has been first introduced by Borgida and
McGuinness in the context of the Classic system [9] as a means to filter out irrelevant
aspects of large concept descriptions. It has also been mentioned that matching (as
well as unification) can be used either to find redundancies in or to integrate knowl-
edge bases [7, 10]. More recently, matching has been proposed to perform queries
on knowledge bases, an application particularly interesting in combination with other
non-standard inferences [11].

A matching problem (modulo equivalence) consists of a concept description C and
a concept pattern D, i.e., a concept description with variables. Matching D against
C means finding a substitution of variables in D by concept descriptions such that C

is equivalent to the instantiated concept pattern D.
Matching algorithms have been developed for the DLs ALN , ALE , and their re-

spective sublanguages [4, 3]. For ALN and its sublangages, algorithms could even
be found for an extension of matching problems, namely matching under side condi-
tions [1]. However, there exists no implementation of an algorithm providing matching
in DLs as an explicit inference service. In the present paper, we present an implemen-
tation of an ALE-matching algorithm as introduced in [3]. It has also been shown in
the relevant paper that the algorithm is in expspace. As with other non-standard
inferences, the question arises whether or not the actual run-time behavior of an im-
plemented algorithm is as adverse as the theoretical upper bound suggests.

To cast light on this question, we have performed benchmarks w.r.t. randomly
generated matching problems. As we shall see, in our case moderate optimization

∗Supported by the DFG under grant BA 1122/4-3



strategies suffice to observe practicable run-times. The remainder of the present paper
is structured as follows: after introducing relevant basic notions and definitions the
existing ALE-matching algorithm is discussed in Section 3. In Section 4 the ideas
underlying our implementation will be presented while Section 5 shows the results of
our benchmarks.

2 Preliminaries

Concept descriptions are inductively defined with the help of a set of constructors,
starting with a set NC of concept names and a set NR of role names. For the sake
of simplicity, we assume NR to be the singleton {r}. However, all definitions and
results can easily be generalized to arbitrary sets of role names. In this work, we
consider the DL ALE which allows for the top concept (>), bottom concept (⊥),
conjunction (C u D), existential restrictions (∃r.C), and value restrictions (∀r.C).
The semantics of ALE-concept descriptions is defined in the usual model-theoretic
way. For every concept description C the >-normal form C> of C is obtained by
exhaustive application of the transformation rule ∀r.> → > to C.

In preparation to the following section we also need to introduce concept patterns.
These are defined w.r.t. a finite set NX of concept variables distinct from NC . Concept
patterns are an extension of concept descriptions in the sense that they allow for
primitive concepts A ∈ NC and concept variables X ∈ NX as atomic constructors.
The only restriction is that primitive negation may not be applied to concept variables.
For every concept pattern D, a >-pattern of D is obtained by syntactically replacing
some variables in D by the top-concept >.

One of the most important traditional inference services provided by DL systems
is computing the subsumption hierarchy of concept descriptions. The concept de-
scription C is subsumed by the description D (C v D) iff CI ⊆ DI holds for all
interpretations I. The concept descriptions C and D are equivalent (C ≡ D) iff they
subsume each other. Subsumption of ALE-concept descriptions has been characterized
by means of homomorphisms between so-called description trees [6] which are defined
as follows.

Definition 1 An ALE-description tree is a tree of the form G = (N,E, n0, `) where
1. N is a finite set of nodes;

2. E ⊆ N × {∃, ∀} × NR × N is a finite set of edges each labeled with a quantor
and a role name;

3. n0 is the root node of G;

4. ` is a labeling function with `(n) ⊆ {⊥} ∪ NC ∪ {¬A | A ∈ NC} ∪ NX for all
n ∈ N .

Description trees correspond to syntax trees of concept descriptions (or concept
patterns). It is therefore easy to see that concept descriptions can be translated into
description trees and back (See [5] for a formal translation). By tree(C) we denote the
description tree of the concept description (or concept pattern) C while con(G) denotes
the concept description obtained from the tree G. For every node n in the description
tree tree(C) of C we denote by C|n the subdescription obtained by translating the
subtree of tree(C) induced by n back into a concept description.



Definition 2 A mapping ϕ : NH → NG from an ALE-description tree H := (NH , EH ,

m0, `H) to an ALE-description tree G := (NG, EG, n0, `G) is called homomorphism if
and only if the following conditions hold:

1. ϕ(m0) = n0;

2. for all nodes n ∈ NH it holds that `H(n) \NX ⊆ `G(ϕ(n)) or ⊥ ∈ `G(ϕ(n));

3. For all edges (nQrm) ∈ EH , either (ϕ(n)Qr ϕ(m)) ∈ EG, or ϕ(n) = ϕ(m) and
⊥ ∈ `G(ϕ(n)).

It has been shown in [6] that C v D for two concept descriptions C and D iff
there exists a homomorphism ϕ from tree(D>) onto tree(C). Note, however, that
the above definition includes homomorphisms from a description tree representing a
concept pattern onto one representing a concept description.

For the ALE-matching algorithm we also need to introduce the least common sub-
sumer of ALE-concept descriptions.

Definition 3 (lcs) Given ALE-concept descriptions C1, . . . , Cn, the ALE-concept de-
scription C is the least common subsumer (lcs) of C1, . . . , Cn (C = lcs{C1, . . . , Cn}
for short) iff (i) Ci v C for all 1 ≤ i ≤ n, and (ii) C is the least concept description
with this property, i.e., if C ′ satisfies Ci v C ′ for all 1 ≤ i ≤ n, then C v C ′.

It has been shown in [6] that in the DL ALE the lcs of two or more concept descriptions
always exists and is uniquely determined up to equivalence. Moreover, it can be
computed in exponential time.

3 Matching in ALE

In order to define matching problems we first need to introduce substitutions on
concept patterns. A substitution σ is a mapping from NX into the set of all ALE-
concept descriptions. Substitutions are extended to concept patterns by induction on
the structure of the pattern, thus modifying only the occurrences of variables in the
pattern. The notion of subsumption is extended to substitutions in the following way.
A substitution σ is subsumed by a substitution τ (σ v τ) iff σ(X) v τ(X) for all
X ∈ NX . With these preliminaries we can define matching problems.

Definition 4 Let C be an ALE-concept description and D be an ALE-concept pattern.
Then, C ≡? D is a ALE-matching problem. A substitution σ is a matcher iff C ≡
σ(D). A set S of matchers to C ≡? D is called s-complete iff for every matcher τ to
C ≡? D there exists an element σ ∈ S with σ v τ .

In general a solvable matching problem has several matchers. One way to restrict
the attention to ‘interesting’ sets matchers is to compute s-complete sets of matchers
as defined above. Figure 1 shows the relevant ALE-matching algorithm originally
presented in [2, 3]. It has been shown that it in fact computes s-complete sets of
matchers, that the number of returned matchers is at most exponential, and that
each matcher is of size at most exponential in the size of the matching problem.

In [3] it is also shown that the matching algorithm is in expspace. It is still open
how ‘tight’ this upper bound is, and especially, if sets of s-complete matchers can
also be computed in exptime—currently the best lower bound for this computation
problem.



Input: ALE-matching problem C ≡? D

Output: s-complete set C of matchers for C ≡? D

C := ∅
For all >-patterns D′ of D do

For all homomorphisms ϕ from H := tree(D′>) into tree(C)

Define σ by σ(X) :=

{

lcs{C|ϕ(m) | m ∈ NH, X ∈ `H(m)} if X ∈ var(D′)

> otherwise

If C w σ(D) then C := C ∪ {σ}

Figure 1: The ALE-Matching Algorithm

Example 5 Let NC := {A} and NR := {r}. Consider the matching problem Cex ≡
?

Dex with Cex := ∃r.(A u ∃r.A) and Dex := X u Y u ∃r.(A u Y u ∀r.X). The relevant
description trees are shown below:

In order to apply the matching algorithm shown in Figure 1 we have to start by
computing all >-patterns D′

ex of Dex. Apart from Dex itself, these are Y u∃r.(AuY u
∀r.X) =: D′

ex, X u ∃r.(A u ∀r.>) =: D′′
ex, and ∃r.(A u ∀r.>) =: D′′′

ex The next step is
to compute the respective >-normal forms. It is easy to see that the >-normal form
of Dex and D′

ex is equivalent to the original concepts. For D′′
ex and D′′′

ex, however, the
value restriction ∀r.> is removed. The description trees of the relevant normalized
concepts are shown below.
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Because of the universal r-edge in tree(D>
ex) and tree(D′>

ex ) which is missing in
tree(Cex) it is easy to see that no homomorphism exists from tree(D>

ex) or tree(D′>
ex )

onto tree(Cex). However, by mapping m′′
0 onto n0 and m′′

1 onto n1 we find a homomor-
phism ϕ from tree(D′′>

ex ) onto tree(Cex). Hence, the next step is to construct a substi-
tution σ according to the definition in Figure 1. Since X is no element of var(D′′

ex) we
obtain σ(X) = >. Moreover, we find that Y occurs in m′′

0 and m′′
1. Hence, we have to

compute the lcs of Cex|ϕ(m′′
0
) and Cex|ϕ(m′′

1
). Since ϕ(m′′

0) = n0 and ϕ(m′′
1) = n1 this

means to compute the lcs of Cex and ∃r.A. Thus, we obtain σ(Y ) = ∃r.A. In the next
step of the algorithm we find that σ(D) = ∃r.Au∃r.(Au∃r.A) which is subsumed by
the input concept Cex. Thus, σ is added to the list C of solutions.

For the >-pattern D′′′
ex it is easy to see that the only homomorphism ϕ from

tree(D′′′>
ex ) onto tree(Cex) also mapsm′′′

0 onto n0 andm′′′
1 ontom1. However, sinceD′′′>

ex

contains no variables, we immediately obtain the substitution σ′ = {X 7→ >, Y 7→ >}.



In this case, however, the final subsumption test does not hold, i.e., Cex 6w σ′(D).
As a result, σ = {X 7→ >, Y 7→ ∃r.A} is returned as the only matcher for the

matching problem Cex ≡
? Dex.

4 Implementation

Considering the matching algorithm in Figure 1 we can identify three major tasks to
be solved by an implementation. Firstly, all >-patterns D′ of the input pattern D

must be generated; secondly, all homomorphisms ϕ from tree(D′) onto tree(C) must
be found; and thirdly, for every variable X we must compute the lcs of all subconcepts
C|ϕ(m) for which X occurs at position m in tree(D′>).

The first task regards only the input concept pattern and requires only some
simple syntactical replacements. Even the computation of the >-normal form D′> of
a >-pattern D′ can be done in a straightforward way in polynomial time. As (even
optimized) implementations of the lcs algorithm for ALE exist [8] the third task is
simple as soon as D′ and ϕ are determined. The final subsumption test C w σ(D)
can also be carried out by a standard reasoner, such as FaCT [13] or Racer [12].

The crucial task, however, is the second one. An obvious approach to constructing
homomorphisms between two description trees is the usual top-down strategy known
from lcs algorithms. Starting at the root nodes of the source and the destination tree
in question, one could test for all pairs of edges respecting Condition 3 whether or
not a homomorphism exists between the subtrees induced by the endpoints of these
edges. Recursively descending in such a way, all homomorphisms between source
and destination tree could be computed. The problem with this approach is that
subproblems may be solved several times over—for instance if two homomorphisms
are equal w.r.t. some subtrees of the original description tree.

To overcome this problem, we have chosen a dynamic-programming strategy to
compose homomorphisms in a bottom-up fashion, thereby storing and re-using sets of
admissible destination nodes for every source node. As a consequence, only polynomi-
ally many subproblems have to be solved for the computation of one homomorphism.
The dynamic-programming approach, however, suggests a more sophisticated data
structures for the representation of description trees. It proved expedient not to
choose an algebraic data structure (as used in the lcs implementations), but to repre-
sent a description tree by a set of arrays indexed either by the nodes of the tree, by
the role names occurring in the edge labels, or by the occurring variable names. As a
result, all aspects important for the computation of homomorphisms can be retrieved
instantly.

In our implementation, the composition of a homomorphism is done in two steps.
In the first step—the actual bottom-up computation—a set of admissible destination
nodes is computed for every node of the source description tree. The results are then
used in the second one to compute the actual homomorphisms.

The crucial part in the first step is to determine whether or not a certain node is
an admissible destination node. This part is shown in further detail in Figure 2. The
idea is to test for stricter conditions than Definition 1 suggests in order to detect pairs
of nodes which cannot be part of a homomorphism as soon as possible. For instance,
according to Definition 1, a leaf labeled with ⊥ is always an admissible destination



Input: description trees Gs =: (Ns, Es, ns0, `s),Gd =: (Nd, Ed, nd0, `d),
ns ∈ Ns, nd ∈ Nd

Output: nd admissible destination of ns? True iff:

• ⊥ ∈ `d(nd) and
– depth(ns) > depth(nd) or

– depth(ns) = depth(nd) and either ns = ns0 and ns = ns0 or both nodes
are successors w.r.t. the same quantor and role name

• ⊥ 6∈ `d(nd)
– depth(ns) = depth(nd)

– for every successor n′
s of ns there exists at least one successor n′

d of nd

as admissible destination for n′
s.

Figure 2: Test for admissible destination nodes

node. However, if its depth exceeds that of the source node then every mapping
containing this pair at some node on the path from the root to the source node
violates Condition 4. Note that in the second case shown in Figure 2 the test for the
successor n′

s only ends in a recursive call if n′
s has never been considered beforehand.

Note also that the dynamic programming strategy implies that no backtracking is
necessary.

In comparison to the theoretical algorithm the implemented one contains some
mentionable optimizations:

• Preprocessing
The input concept pattern and concept description is simplified to keep the
relevant description trees as small as possible.

• Necessary conditions
Let >(D) and ⊥(D) denote the concept obtained from the pattern D by replac-
ing all variables in D by > and ⊥, respectively. If C 6v >(D) or ⊥(D) 6v C then
the matching problem C ≡? D has no solution.

• >-patterns
In many cases it is not necessary to generate all top-patternsD′ ofD. This is only
promising when replacing variables by > leads to a removal of subterms in the
>-normal form D′> and hence to a removal of edges in the relevant description
tree tree(D′>). Moreover, if one >-pattern D′> does admit of a homomorphism
then any specialization of D′ does also, leading only to a solution not minimal
w.r.t. v.

In the following section shows some first performance tests for the implemented
algorithms with the optimizations discussed above.

5 Benchmarks

An obvious approach to benchmarking our implementation of ALE-matching is to test
the performance on randomly generated matching problems. Nevertheless, if C and
D are generated independently of each other then it is unlikely that a matcher for



C ≡? D exists. In particular, in the second optimization (necessary conditions) is
likely to solve such matching problems without even invoking the actual matching
algorithm.

To overcome this difficulty, we randomly generate a concept C and then construct a
concept pattern D from C by randomly replacing subconcepts of C by variables. Note
that matching problems obtained in this way are not necessarily solvable because of
multiple occurrences of variables. As a simple example, consider C := ∃r.Au∀r.B and
D := ∃r.Xu∀r.X. The matching problem C ≡? D has no solution. As a consequence,
the second optimization is not reflected in the results.

Our benchmarks were taken on a standard PC with one 1.7GHz Pentium-4 pro-
cessor and 512MB of memory. A total of 1200 matching problems (in 10 groups,
using different parameters for the random generation) was examined. Taking overall
averages, the concept description C had an average size of 518 with a maximum of
992, and the concept pattern D had size 185 with a maximum of 772. The matching
algorithm on average took 1.2 seconds to solve the problem, the observed maximum
was 58.2 seconds.

6 Conclusion

In the present paper we have presented first experiences with an implementation of
the ALE-matching algorithm as proposed by Baader and Küsters [3]. The algorithm is
based on a tree representation of the involved concept description and concept pattern.
The main problem for the implementation is posed by that step of the algorithm in
which all homomorphisms between the relevant description trees must be generated.
Here we have chosen a dynamic programming approach which avoids solving identical
subproblems several times. In addition to that, the implementation includes some
straightforward optimizations aimed at identifying cases which have no solution as
soon as possible.

The benchmarks have shown that despite the high theoretical upper bound cur-
rently known for the ALE-matching algorithm the implementation performs well even
on relatively large randomly generated concepts.

Obviously, our next step is to confirm our findings by further testing. Firstly, a
greater variety of randomly generated matching problems could be considered. Sec-
ondly, if available, matching problems resulting from realistic applications might give
further insight into the practical benefit of our implementation.

In case the current implementation performs well under the above circumstances,
the next step could be an extension to matching under side conditions.



References
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[2] F. Baader and R. Küsters. Matching in Description Logics with Existential Re-
strictions. In Proc. of DL 1999, number 22 in CEUR-WS, Sweden, 1999.
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[10] A. Borgida and R. Küsters. What’s not in a name: Some Properties of a Purely
Structural Approach to Integrating Large DL Knowledge Bases. In Proc. of
DL2000, number 33 in CEUR-WS, Aachen, Germany, 2000. RWTH Aachen.

[11] S. Brandt and A.-Y. Turhan. Using non-standard inferences in description
logics—what does it buy me? In Proc. of KIDLWS’01, number 44 in CEUR-WS,
Vienna, Austria, September 2001. RWTH Aachen.
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