
e-Service Composition by Description Logics Based

Reasoning

Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo,

Maurizio Lenzerini, and Massimo Mecella

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy

lastname @dis.uniroma1.it

Abstract

Composition of e-Services is the issue of synthesizing a new composite e-
Service, obtained by combining a set of available component e-Services, when a
client request cannot be satisfied by available e-Services. In this paper we propose
a general framework addressing the problem of e-Service composition. We then
show that, under certain assumptions, composition can be realized through DL-
based reasoning.

1 Introduction

The spreading of network and business-to-business technologies [13] has changed the
way business is performed, giving rise to the so called virtual enterprises and commu-
nities [8]. Companies are able to export services as semantically defined functionalities
to a vast number of customers, and to cooperate by composing and integrating services
over the Web. Such services, usually referred to as e-Services or Web Services, are
available to users or other applications and allow them to gather data or to perform
specific tasks.

Research on e-Services considers, as fundamental, service composition, i.e., how
to compose and coordinate different services, to be assembled together in order to
support more complex services and goals. Interestingly, many contributions on this
issue come from the AI community [1, 11, 2, 15]. Despite the work done so far,
composition is still largely unexplored and to the best of our knowledge an overall
agreed upon comprehension of what e-Service and e-Service composition are, in an
abstract and general fashion, is still lacking.

In this paper, we formalize the problem of composition in a general and formal
framework. Then, we instantiate such a general framework to a specific formalism for
Reasoning about Actions, that of Situation Calculus, and show that composition can
be characterized as logical satisfiability under certain assumptions. Finally, resorting
to DL basic reasoning, we provide algorithms for performing e-Services composition
and show EXPTIME decidability of such a problem (under certain assumptions).

2 Framework

Generally speaking, an e-Service is a software artifact (delivered over the Internet)
that interacts with its clients (possibly in a repeated way), which can be either human
users or other e-Services [1, 11, 2, 15]. An interaction consists of a client invoking a
command, i.e., an atomic action, and waiting for the fulfillment of the specific tasks
and (possibly) the return of some information. Under certain circumstances, i.e., when
the client has reached his goal, he may terminate the interactions. However, in prin-
ciple, a given e-Service may need to interact with a client for an unbounded, or even
infinite, number of steps, thus providing the client with a continuous service. There-
fore, an e-Service can be characterized in terms of the sequences of actions it is able
to execute, i.e., its behavior. In what follows, we refer to this conceptual vision of an
e-Service as e-Service schema. An e-Service instance is an occurrence of an e-Service
effectively running and interacting with a client. In general, several running instances
corresponding to the same e-Service schema exist, each one executing independently
from the others.

When a client invokes an e-Service E, it may happen that E does not execute all of
its actions on its own, since it delegates some or all of them to other e-Services. All this
is transparent to the client. To precisely capture such a situation, we introduce the
notion of community of e-Services, which is formally characterized by: (i) a common
set of actions, called the alphabet of the community; (ii) a set of e-Services specified
in terms of the common set of actions. Hence, to join a community, an e-Service
needs to export its service(s) in terms of the alphabet of the community. The added
value of a community of e-Services is the fact that an e-Service of the community may
delegate the execution of some or all of its actions to other instances of e-Services in
the community.

The behavior of an e-Service can be analyzed from two different points of view.
From the external point of view, i.e., that of a client, an e-Service is seen as a “black
box” that executes sequences of atomic actions with constraints on their invocation
order. From the internal point of view, i.e., that of an application running an instance
of E, it is important to specify whether each action is executed by E itself or whether
its execution is delegated to another e-Service belonging to the same community C of
E, transparently to the client of E. Therefore, it is natural to consider the e-Service
schema as constituted by two different parts, called external schema and internal
schema, abstractly1 representing an e-Service from its external and its internal point
of view, respectively.

The external schema specifies the behavior of an e-Service in terms of a tree of
actions, called external execution tree. Each node x of the tree represents the history of
the sequence of interactions between the client and the e-Service executed so far. For
every action a that can be executed at the point represented by x, there is a (single)
successor node ya with the edge (x, ya) labeled by a. ya represents the fact that, after
performing the sequence of actions leading to x, the client chooses to execute the
action a, among those possible. Some nodes of the execution tree are final : when a
node is final, and only then, the client can end the interaction2.

1We are not concerned with any specification formalism, here.
2Observe that non final states are common in interactive e-Services (for humans) over the web.

There, however, it is always possible to abort the entire transaction. Here, we consider the abortion

The internal schema maintains, besides the behavior of the e-Service, the informa-
tion on which e-Services in the community execute each given action of the external
schema. Uniformly with the external schema, the internal schema is specified as an
internal execution tree. Formally, each edge of an internal execution tree of an e-
Service E is labeled by (a, I), where a is the executed action and I is a nonempty set
of (identifiers of) e-Service instances3. The special instance identifier this indicates
the actions that are executed by the running instance of E itself.

An internal execution tree ti conforms to an external execution tree te if te is
equal to the external execution tree obtained from ti by projecting out the part of the
labeling denoting the e-Service instances.

The internal execution tree ti of an e-Service E is coherent with a community C

if: (i) for each edge labeled with (a, I), the action a is in the alphabet of C, and for
each e′ in I, e′ is an instance of a member of the community C; (ii) for each path p

in ti from the root of ti to a node x, and for each e′ appearing in p, where e′ is an
instance, different from this, of an e-Service E ′, the projection4 of p on e′ is a path
in the external execution tree t′e of E′ from the root of t′e to a node y, and moreover,
if x is final in ti, then y is final in t′e.

When a client requests a certain service (from an e-Service community), there
may be no e-Service (in the community) that can deliver it directly. However, it may
happen that composite e-Service, obtained by combining a set of available component
e-Services, might be used. Composition deals with such a problem, namely synthesiz-
ing a new e-Service starting from available ones, thus producing a composite e-Service
specification. In our framework, this formally correspond to say: given an e-Service
community C and the external execution tree te of a target e-Service E expressed in
terms of the alphabet of C, synthesize an internal execution tree ti such that (i) ti
conforms to te, (ii) ti delegates all actions to the e-Services of C, and (iii) ti is coher-
ent with C. When such an internal tree exists we say that E can be composed using
C.

Example 1 Figure 1(a) shows an external execution tree of an e-Service E that al-
lows for searching and buying mp3 files. After an authentication step (action auth),
in which the client provides userID and password, the e-Service asks for search param-
eters (e.g., author or group name, album or song title) and returns a list of matching
files (action search); then, the client can: (i) select and listen to a song (action
listen), and choose whether to perform another search or whether to add the se-
lected file to the cart (action add to cart); (ii) add to cart a file without listening
to it. Then, the client chooses whether to perform those actions again. Finally, by
providing its payment method details the client buys and downloads the content of
the cart (action buy).

Figure 1(b)5 shows an internal execution tree, conforming to the external execu-

mechanism as orthogonal to the e-Service specification.
3Note that the execution of actions labeling edges of the execution tree can be delegated in parallel

to more than one e-Service instance.
4The projection of a path p on an instance e′ of an e-Service E′ is the path obtained from p by

removing each edge whose label (a, I) is such that I does not contain e′, and collapsing start and end
node of each removed edge [4].

5Note that each action of E is delegated to exactly one other instance. Hence, for simplicity, in
the figure we have denoted a label (a, {e}) simply by (a, e).

a = auth

s = search

l = listen

c = add to cart

b = buy

.

.

.

.

.

.

s

a

l c

s

l

c

c

c

b s

l

b s

b

l

c

s

.

.

.

.

.

.

.

.

.

b

(a) external

E′

1
: e′

1

E′

2
: e′

2
, e′

22

.

.

.

.

.

.

(a, e′
1
)

(c, e′
1
)

(s, e′
1
)

(l, e′
2
)

.

.

.

.

.

.

(l, e′
2
)

(l, e′
22

)

.

.

.

(c, e′
1
)

(b, e′
1
)

(c, e′
1
)

(b, e′
1
)

(s, e′
1
)

(c, e′
1
)(b, e′

1
)

(s, e′
1
)

(s, e′
1
)

(c, e′
1
)

(b, e′
1
)

(l, e′
22

)

(s, e′
1
)

(b) internal

Figure 1: Example of e-Service schema

tion tree in Figure 1(a). In particular, the figure explicits the assignment of actions
to component e-Services E ′

1 and E′
2 of e-Service E, where, intuitively, e-Service E ′

1

behaves like E except that it allows only for (possibly) listening to a sample of a song:
such an action does not appear in the execution tree of E; and E ′

2 consists of the
action listen done just once: therefore in E this action is executed each time by a
new instance.

3 Characterizing e-Service Composition in Situation

Calculus

We have characterized e-Service behavior and composition in general terms by means
of execution trees. This abstract view needs to be refined in order to get a finite
representation of e-Services that can be concretely manipulated.6 Therefore, in what
follows, we address e-Services whose execution trees have a finite representation. Here,
we propose to use formalisms developed for Reasoning about Actions to represent
e-Services, and show that we can use logical reasoning, in particular, satisfiability,
to characterize the problem of e-Service composition. This approach gives us the
ability of dealing with a large class of e-Services, including those formalized by finite
state machine-based formalisms such as UML statecharts, using a compact and high-
level representation. There are many possible action languages that can be used for
representing e-Services (including some tightly related to DL [7, 10]). Here we focus

6Obviously, not all execution trees can be represented in a finite way.

on Reiter’s Situation Calculus Basic Action Theories [14], which are widely known
and allow us to concentrate on the aspects specific to our problem. Since we aim at
actually computing the compositions we will deal with the propositional variant of
the Situation Calculus (in which fluents are propositions). We also make the following
assumptions: (i) the action alphabet of the community is finite; (ii) for each e-Service
there is only a fixed finite number of active instances, and, in fact, wlog, we assume
that there is only one, so that we can omit the term “instance” when referring to an e-
Service. Within this setting, in the next section, we show how to solve the composition
problem. Instead, how to deal with an unbounded number of instances remains open
for future work.

We will not go over the Situation Calculus here, except to note the following com-
ponents: there is a special constant S0 used to denote the initial situation, namely
that situation in which no actions have yet occurred; there is a distinguished binary
function symbol do, where do(a, s) denotes the successor situation to s resulting from
performing the action a; propositions whose truth values vary from situation to situ-
ation are called (propositional) fluents, and are denoted by predicate symbols taking
a situation term as their last argument; and there is a special predicate Poss(a, s)
used to state that action a is executable in situation s. Within this language, we can
formulate domain theories that describe how the world changes as the result of the
available actions. One possibility are Reiter’s Basic Action Theories, which have the
following form [14]:

• Axioms describing the initial situation, S0.

• Action precondition axioms, one for each primitive action a, of the form
∀s.Poss(a, s) ≡ Ψa(s), where Ψa(s) is a Situation Calculus formula (uniform
in s) with s as the only free variable and in which Poss does not appear.

• Successor-state axioms, one for each fluent F , of the form ∀a, s.F (do(a, s)) ≡
ΦF (a, s), where ΦF (a, s) is a Situation Calculus formula (uniform in s) with a

and s as the only free variables. These axioms take the place of effect axioms,
but also provide a solution to the frame problem.

• Unique names axioms for the primitive actions plus some foundational, domain
independent axioms.

In order to characterize composition in this setting, we first show how a Basic
Action Theory can represent the external execution tree of an e-Service. We represent
the external schema of an e-Service eS as a Basic Action Theory Γ, where each action
is represented by a Situation Calculus action. Γ includes among its fluents a special
fluent Final , denoting that the e-Service execution can stop in that situation. Also,
Γ fully specifies the value of each fluent in the initial situation S0. Technically, this
means that we have complete information on the initial situation, and, because of
the action precondition and successor-state axioms, we have complete information in
every situation.

Observe that the fluents used in Γ have a meaning only wrt to the e-Service
community, since they are not attached in any way to the actual e-Service instance
the client interacts with. In contrast, actions represent interactions meaningful both
to the client and the e-Service instance.

Intuitively, the part of the situation tree [14] formed only by the actions that are
possible (as specified by Poss) directly corresponds to the external execution tree of
the e-Service, where the final nodes are the situations in which Final is true. To
formally define such an execution tree, we first inductively define a function n(·) from
situations to sequences of actions union a special value undef :

• n(S0) = ε;

• n(do(a, s)) = n(s) · a if n(s) 6= undef and Poss(a, s) holds;

• n(do(a, s)) = undef otherwise.

The execution tree T eS generated by Γ is defined over the set of nodes {n(s) |
n(s) 6= undef }, such that a node n(s) is final if and only if Final(s) holds. It is easy
to check that T eS is indeed an execution tree.

Next, we turn to the problem of characterizing e-Service composition. Let
Γ1, . . . , Γn, be the theories for the component e-Services, and let Γ0 be the theory
for the target e-Service. The basic idea is to represent which e-Services are executed
when an action of the target e-Service is performed. We do this by means of special
predicates Stepi(a, s), denoting that e-Service eSi executes action a in situation s.
Formally, we construct a Situation Calculus theory ΓC formed by the union of the
axioms below:

• Γ0;

• Γ′
i
, for i = 1, . . . , n, where Γ′

i
is obtained from Γi:

1. by renaming each fluent F , including Final , to Fi;

2. by renaming Poss to Poss i;

3. by modifying the successor-state axioms as follows:
∀a, s.Fi(do(a, s)) ≡ (Stepi(a, s) ∧ ΦFi

(a, s)) ∨ (¬Stepi(a, s) ∧ Fi(s));

• ∀a, s.(Poss(a, s) ∧ ¬Final(s)) ⊃
∨

n

i=1 Stepi(a, s) ∧ Poss i(a, s);

• ∀s.Final(s) ⊃
∧

n

i=1 Final i(s).

Observe that, due to the last two axioms, the resulting theory ΓC is not a Basic
Action Theory. In ΓC , we do not have anymore complete knowledge on the value of
the fluents of the various e-Services. This is due to the new form of the successor-
state axioms, which make fluents depend on the predicates Step i, whose value is not
determined uniquely by ΓC . Note however that if we did know such values in every
situation, then the value of all the fluents would be determined. Note also that the
value of Stepi is constrained by the last two axioms so that, in every situation that is
not final for the target e-Service eS0, at least one of the component e-Services steps
forward. Finally, the last axiom states that, if eS0 is final, then so are all component
e-Services.

It can be shown that ΓC (i) characterizes all the internal execution trees that
conform to the external execution tree generated by Γ0; (ii) delegates all actions to
eS1, . . . , eSn; (iii) is coherent with eS1, . . . , eSn. More precisely it can be shown that

from each model of ΓC one can construct one such internal execution tree and that
on the other hand starting from each such internal execution tree one can construct
a model of ΓC .

This characterization allow us to reduce checking for the existence of a composition
to checking satisfiability of a propositional Situation Calculus theory.

Theorem 1 Let Γ0, Γ1, . . . , Γn be the Basic Action Theories representing the e-
Services eS0, eS1, . . . , eSn respectively, and let ΓC be the theory defined as above.
Then, ΓC is satisfiable if and only if eS0 can be composed using eS1, . . . , eSn.

4 Computing e-Service Composition

Next we turn to the problem of actually synthesizing a composite e-Service. To do
so, we will re-express Situation Calculus Action Theories as an ALU knowledge base.
ALU concepts are built by starting from atomic concepts and atomic roles as follows:

C −→ A | ¬A | C1 u C2 | C1 t C2 | ∀R.C | ∃R.>

where A is an atomic concept and R is an atomic role. An ALU knowledge base is a
set of inclusion assertions of the form

C1 v C2

where C1, C2 are arbitrary ALU concepts. We also use the abbreviation C1 ≡ C2 for
C1 v C2 and C2 v C1. As for reasoning service we concentrate on concept satisfiability
in a knowledge base, which is easily shown to be EXPTIME-complete for ALU , since
concept satisfiability in a knowledge base is already EXPTIME-hard for AL and is
EXPTIME-complete for ALC which includes ALU (see [3] for details).

ALU (as well as ALC) enjoys three properties that are of particular interest for our
aims. The first is the tree model property, which says that every model of a concept
in a knowledge base can be unwound to a (possibly infinite) tree. The second is the
small model property, which says that every satisfiable concept in a knowledge base
admits a finite model of size at most exponential in the size of the concept and the
knowledge base itself. The third is the single successor property that says that every
model of a concept in a knowledge base can be transformed in such a way that in
each object there is at most a unique R-successor for each role R. Moreover such a
transformation does not increase the size of the model.

We define a mapping δ from (uniform) Situation Calculus formulas (wlog in nega-
tion normal form) with a free situation variable s to boolean combination of concepts
as follows:

δ(F (s)) = F, for each fluent F

δ(Poss(a, s)) = Poss a, (similarly for Poss i(a, s))

δ(Stepi(a, s)) = Step ai, for each i ∈ 1..n

δ(¬ϕ(s)) = ¬δ(ϕ(s)) (ϕ is an atomic proposition)

δ(ϕ1(s) ∧ ϕ2(s)) = δ(ϕ1(s)) u δ(ϕ2(s))

δ(ϕ1(s) ∨ ϕ2(s)) = δ(ϕ1(s)) t δ(ϕ2(s))

Also, we consider an ALU role for each atomic action in Σ.
Next, we define the ALU counterpart ∆C of ΓC as the following knowledge base.

• to model the situation tree, we add the assertion > v ua∈Σ ∃a.>, and implicitly
take into account the tree model property and the unique successor property;

• to model the initial situation Φ0, we add the assertion Init v δ(Φ0), where Init
is a new atomic concept denoting the initial situation;

• for each precondition axiom ∀s.Poss(a, s) ≡ Ψa(s), we add the assertion
δ(Poss(a, s)) ≡ δ(Ψa(s)); similarly for the modified precondition axioms in
Γ′

1, . . . , Γ
′
n;

• for each successor-state axiom ∀a, s.F (do(a, s)) ≡ ΦF (a, s), we first instantiate
the axiom for each action in Σ and we simplify the equalities on actions. Then,
for each instantiated successor-state axiom F (do(ā, s)) ≡ Φā

F
(s) – where Φā

F
(s) is

what we obtain from ΦF (a, s) once we instantiate it on the action ā and resolve
the equalities on actions – we add the assertion ∀ā.F ≡ δ(Φā

F
(s));

• for the last two axioms of ΓC , we add the assertions Poss a ∧ ¬Final v
⊔

n

i=1 Step ai u Poss ai and Final v un

i=1 Final i.

Note that, in the above construction, it is necessary to instantiate the successor-
state axioms for each action, since, contrary to the Situation Calculus, ALU does not
admit quantification over actions.

Theorem 2 The Init concept is satisfiable in the ALU-counterpart ∆C of ΓC if and
only if ΓC is satisfiable.

Observe that the size of ∆C is at most equal to the size of ΓC times the number
of actions in Σ. Hence, from the EXPTIME-completeness of concept satisfiability in
ALU knowledge bases and from Theorem 2 we get the following complexity result.

Theorem 3 Checking the existence of an e-Service composition can be done in EX-
PTIME.

Observe that, because of the small model property and the single successor prop-
erty, if Init is indeed satisfiable in ∆C one can always obtain a model which is single
successor and of size at most exponential. From such a model one can immediately
extract a finite (possibly exponential) representation of the internal execution tree con-
stituting the composition. Also from such a representation one can build a Situation
Calculus Basic Action Theory (or its counterpart in ALU if needed) that generates
exactly such a internal execution tree.

From a practical point of view, one can use current highly optimized Description
Logic systems [3, 9] to check the existence of e-Service compositions. Since these
systems are based on tableaux techniques that construct a model when checking for
satisfiability, one can, with minor modifications, also return such a model, which
correspond to the internal execution tree constituting the composition.

5 Conclusion

In this paper we have studied e-Services and their composition in an abstract frame-
work, that of the execution trees, which on the one hand has allowed us to avoid the
peculiarities of any particular representational formalism. Then we have instantiated
our framework to a Propositional Situation Calculus setting, a well-known formalism
for reasoning about actions. In such a setting we have given a characterization of the
problem of finding a composition in terms of satisfiability of a certain action theory.
Finally, resorting to a translation of such a Situation Calculus theory in a Description
Logic we have shown that such a problem is EXPTIME, and that current tableaux
based DL-reasoning procedures can be used to actually obtain the composition.

We want to observe that what our Propositional Situation Calculus setting can
capture is essentially a description of e-Services given in terms of finite state machines
(compactly represented by resorting on propositional fluents). This is a particularly
interesting class of descriptions since it is one of the classes most commonly used to
describe e-Services in the literature [12, 6, 5].

Developments of the work presented here can go in several directions. First, a main
open question remains, namely whether composition in our setting is EXPTIME-hard.
Second, among others, we mention two of them, both of which deal with incomplete
information. First, we may relax the assumption that an e-Service that joins a com-
munity must declare exactly its executions in terms of the external execution tree, and
instead accept that they give a partial description of such executions. This would cor-
respond to having several –possibly infinite– external execution trees for an e-Service
joining the community, and the community should use such an incomplete specifica-
tion so as to be compatible with all possible external execution trees it represents.
Second, it is also interesting to consider a setting where the target e-Service is un-
derspecified, so that several external execution trees are compatible with it. In this
case however one may assume that since the client of the community has not provided
an exact specification of the external execution tree, then the community is free to
choose any of the execution trees. Observe that these are very different way to deal
with incomplete information, both of which of interest for e-Service composition.

References

[1] M. Aiello, M. P. Papazoglou, J. Yang, M. Carman, M. Pistore, L. Serafini, and
P. Traverso. A request language for web-services based on planning and constraint
satisfaction. In Proc. of the 3rd VLDB Int. Workshop on Technologies for e-
Services (VLDB-TES 2002), 2002.

[2] A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, T. Payne, and K. Sycara. DAML-S:
Web service description for the semantic web. In Proc. of the 1st Int. Semantic
Web Conf. (ISWC 2002), 2002.

[3] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, 2003.

[4] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M. Mecella. A
foundational vision of e-services. In Proc. of the CAiSE 2003 Workshop on Web
Services, e-Business, and the Semantic Web (WES 2003), 2003.

[5] D. Berardi, F. De Rosa, L. De Santis, and M. Mecella. Finite state automata as
conceptual model for e-services. In Proc. of the IDPT 2003 Conference, 2003. To
appear.

[6] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: A new approach
to design and analysis of e-service composition. In Proc. of the 12th Int. World
Wide Web Conference (WWW 2003), 2003.

[7] G. De Giacomo and M. Lenzerini. PDL-based framework for reasoning about
actions. In Proc. of the 4th Conf. of the Ital. Assoc. for Artificial Intelligence
(AI*IA’95), volume 992 of Lecture Notes in Artificial Intelligence, pages 103–
114. Springer, 1995.

[8] D. Georgakopoulos, editor. Proc. of the 9th Int. Workshop on Research Issues
on Data Engineering: Information Technology for Virtual Enterprises (RIDE-
VE’99), 1999.

[9] V. Haarslev and R. Möller. Description of the RACER system and its applica-
tions. In Proc. of the 2001 Description Logic Workshop (DL 2001), pages 132–141.
CEUR Electronic Workshop Proceedings, http://ceur-ws.org/Vol-49/, 2001.

[10] C. Lutz and U. Sattler. A proposal for describing services with DLs. In Proc. of the
2002 Description Logic Workshop (DL 2002), pages 128–139. CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-53/, 2002.

[11] S. McIlraith and T. Son. Adapting Golog for composition of semantic web ser-
vices. In Proc. of the 8th Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR 2002), pages 482–493, 2002.

[12] M. Mecella and B. Pernici. Building flexible and cooperative applications based on
e-services. Technical Report 21-2002, Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, 2002. Available on line at http://www.dis.
uniroma1.it/~mecella/publications/mp_techreport_212002.pdf.

[13] B. Medjahed, B. Benatallah, A. Bouguettaya, A. Ngu, and A. Elmagarmid.
Business-to-business interactions: Issues and enabling technologies. Very Large
Database J., 12(1), 2003.

[14] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press, 2001.

[15] J. Yang and M. Papazoglou. Web components: A substrate for web service
reuse and composition. In Proc. of the 14th Int. Conf. on Advanced Information
Systems Engineering (CAiSE 2002), 2002.

