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Abstract

UML is the de-facto standard formalism for software design and analysis. One
of the most important components of UML are class diagrams, which model the
information on the domain of interest in terms of objects organized in classes and
relationships between them. To support the design of large-scale industrial appli-
cations, CASE tools should be equipped with automated reasoning capabilities
in order to detect relevant formal properties of UML diagrams, such as incon-
sistencies or redundancies. However, reasoning on UML class diagrams is fairly
complex: in this paper we show that it is EXPTIME-hard.

1 Introduction

UML (Unified Modeling Language) [25] is the de-facto standard formalism for the
analysis and design of software. One of the most important components of UML are
class diagrams, which model the information on the domain of interest in terms of
objects organized in classes and relationships between them1.

Several works propose to describe UML class diagrams using various kinds of
formal systems [18, 17, 22, 10]. Using such formal systems, one can potentially reason
on UML class diagrams, and formally prove properties of interest through inference.
In order to select the appropriate kind of formal tool for UML class diagrams, a
fundamental question needs to be addressed: What is the computational complexity
of reasoning on UML class diagrams? That is, independently of the particular formal
tool adopted for describing such diagrams, how difficult is it to reason about them
from the computational point of view?

In this paper we address this question resorting to results developed through the
years in Description Logics (DLs) [1]. It is well known that DLs are logics that admit
decidable reasoning and that are specifically designed for the conceptual representa-
tion of an application domain in terms of classes and relationships between classes.
Representing conceptual data models by means of DLs has gathered consensus over
the years, cf. [6, 7, 15, 24, 26, 13, 16, 12, 20, 21, 14, 23].

Our contribution is to show that reasoning on UML class diagrams is EXPTIME-
hard even under fairly restrictive assumptions, namely: only binary associations, only

1In this paper we deal with UML class diagrams for the conceptual perspective, as opposed to the
implementation perspective, see, e.g., [19].



minimal multiplicity constraints, generalizations with disjointness and covering con-
straints. We get this result by exhibiting a polynomial reduction from reasoning in the
basic DL ALC2 [1], which is EXPTIME-complete. In particular, we show that every
ALC knowledge base can be expressed as a UML class diagram preserving soundness
and completeness of reasoning. This possibility is quite surprising, since UML class
diagrams apparently have very limited means to express negative and disjunctive in-
formation, namely disjointness and covering constraints in generalization hierarchies.
Note that we do not consider arbitrary OCL [25] constraints, which in their full gen-
erality have the same power of full first-order logic and hence lead to undecidability.
Instead, ALC is equipped with unrestricted negation and disjunction. That is, it is
able to treat negative information in the same way as positive one, and to reason by
cases to fully take into account disjunctive information.

The rest of the paper is organized as follows. In Section 2 we give some preliminary
notions on DLs that we use later on. In Section 3 we present our EXPTIME-hardness
result for reasoning on UML class diagrams. Finally, in Section 4, we draw some
conclusions. Throughout the paper we assume that the reader is familiar with UML
class diagrams [25].

2 The Description Logics ALC and ALC−

ALC is a standard DL, that represents knowledge in terms of concepts (classes) and
roles (binary relations). Let A and P denote atomic concepts and atomic roles respec-
tively. An ALC concept C is built according to the following syntax:

C ::= A | ¬C | C1 u C2 | ∃P .C

We also introduce the standard abbreviations: C1 t C2 for ¬(¬C1 u ¬C2) and ∀P .C
for ¬∃P .¬C. An ALC Knowledge Base (KB) is constituted by a finite set of inclusion
assertions of the form C1 v C2, with C1 and C2 arbitrary concept expressions. We
also consider primitive inclusions assertions, i.e., assertions of the form A v C, where
A is an atomic concept and C is an arbitrary concept. A primitive KB is constituted
by a finite set of primitive inclusion assertions.

As usual in DLs, the semantics of ALC is specified through the notion of inter-
pretation. An interpretation I = (∆I , ·I) of an ALC KB K is constituted by an
interpretation domain ∆I and an interpretation function ·I that assigns to each con-
cept C a subset CI of ∆I and to each role P a subset P I of ∆I ×∆I), such that the
following conditions are satisfied:

AI ⊆ ∆I

(¬C)I = ∆I \ CI

(C1 u C2)
I = CI

1
∩ CI

2

(∃P .C)I = {a ∈ ∆I | ∃b. (a, b) ∈ P I ∧ b ∈ CI}

An interpretation I satisfies an inclusion assertion C1 v C2 if CI
1
⊆ CI

2
. An inter-

pretation that satisfies all assertions in a KB K is called a model of K. A KB K is
satisfiable if there exists a model of K. A concept C is satisfiable in a KB K if there
is a model I of K such that CI is non-empty. An assertion α is logically implied by

2In this paper when we mention reasoning in a DL, we always intend reasoning over a knowledge
base expressed in that DL.



K if all models of K satisfy α. It can be shown that all these reasoning tasks, namely
KB satisfiability, concept satisfiability in a KB, and logical implication, are mutually
reducible (in polynomial time). In spite of its simplicity, reasoning in ALC KBs is
EXPTIME-complete [1].

The DL ALC− is obtained from ALC by dropping intersection, and restricting the
assertions to be primitive. Therefore, an ALC− concept C is built as follows:

C ::= A | ¬A | A1 t A2 | ∃P .A | ∀P .A

where A denotes an atomic concept and P denotes an atomic role. An ALC− KB is a
finite set of primitive ALC− inclusion assertions, i.e., inclusion assertions of the form
A v C where C is an ALC− concept. The semantics of ALC− constructs and KBs
is that of ALC. For ALC−, we can define KB satisfiability, concept satisfiability in a
KB, and logical implication, as for ALC.

3 Hardness of reasoning on UML class diagrams

The design quality of UML class diagrams can be improved by checking relevant prop-
erties, such as, for example, consistency of the whole class diagram, class consistency,
class subsumption, class equivalence [7, 15, 8]. From the formal point of view, the
reasoning tasks necessary for checking these properties are mutually reducible to each
other. Hence in the following, without loss of generality, we focus on class consistency
only. Specifically, we show that class consistency in UML class diagrams with only
disjointness and covering constraints is EXPTIME-hard. We prove the claim by a
reduction from concept satisfiability in ALC KBs, which is EXPTIME-hard [1]. For
lack of space we report only proof sketches. The full proofs may be found in [4]. We
proceed in two steps:

1. First, we show that we can restrict the attention to atomic concept satisfiability
in ALC− KBs.

2. Then, we describe a reduction from atomic concept satisfiability in ALC− KBs
to class consistency in UML class diagrams.

For point (1), we resort to known results [9, 11].

Lemma 3.1 ([9]) Concept satisfiability in an ALC KB can be linearly reduced to
atomic concept satisfiability in a primitive ALC KB.

Proof (sketch). Let K be an ALC KB and C an ALC concept. It is easy to see
that C is satisfiable in K if and only if AC is satisfiable in the KB consisting of the
following two assertion:

AT v u
C1vC2∈K

(¬C1 t C2) u u
1≤i≤n

∀Pi.AT

AC v AT u C

where AC and AT are new atomic concepts and P1, . . . , Pn are all atomic roles ap-
pearing in K and C.



A

O

{disjoint}

B

Figure 1: UML encoding of the assertion A v ¬B

Below we assume, without loss of generality, that primitive ALC KBs are in nega-
tion normal form. Indeed, every primitive ALC KB can be put in negation normal
form in linear time.

Given a primitive ALC KB K (in negation normal form), we construct a primitive
ALC− KB K′ by recursively replacing each ALC assertion in K that is not already a
(primitive) ALC− assertion as follows:

• A v C1 u C2 is replaced by A v C1 and A v C2;

• A v C1 t C2 is replaced by A v A1 t A2, A1 v C1 and A2 v C2, where A1 and
A2 are new atomic concepts;

• A v ∀P .C is replaced by A v ∀P .A1 and A1 v C, where A1 is a new atomic
concept;

• A v ∃P .C is replaced by A v ∃P .A1 and A1 v C, where A1 is a new atomic
concept.

Notice that the number of such replacements is linear, since for each occurrence of an
ALC construct in K at most one replacement is done. The following result holds.

Lemma 3.2 ([11]) An atomic concept A0 is satisfiable in a primitive ALC KB K if
and only if A0 is satisfiable in the (primitive) ALC− KB K′ obtained as above.

Next, we reduce concept satisfiability in a primitive ALC− KB K′ to class consis-
tency in an UML class diagram D. For each atomic concept A in K′, we introduce
a class A in D. Additionally, we add a class O that generalizes (possibly indirectly)
all classes in D. O is also used to specify disjointness among classes (see later). For
each atomic role P , we introduce an association P , involving the class O twice. In-
tuitively, using O in such a way, we do not constrain in any way the classes to which
the component instances of P may belong. More classes and associations, as well as
generalizations between O and the new classes, are added below as needed.

The assertions in the ALC− KB K′ are encoded in the class diagram D as follows:

B1 B2

B

A

{covering}

Figure 2: UML encoding of the assertion A v B1 t B2
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Figure 3: UML encoding of the assertion A v ∀P .B

A B
1..∗

PAB

P

O

Figure 4: UML encoding of the assertion A v ∃P .B

• For each assertion of the form A v B, we introduce a generalization between
the classes A and B (where A is the subclass).

• For each assertion of the form A v ¬B, we construct the hierarchy in Figure 1,
exploiting the superclass O to express disjointness between A and B.

• For each assertion of the form A v B1 t B2, we introduce an auxiliary class B,
and construct the hierarchy in Figure 2. Intuitively, being B a covering of B1

and B2, and A a subclass of B, it follows that A is a subclass of the union of B1

and B2.

• For each assertion of the form A v ∀P .B, we introduce a new class A and two
new binary associations PA and P

A
and we construct the portion of diagram

in Figure 3, where A and A are disjoint and there is a generalization with
covering constraint between P and its children PA and P

A
. Note that A and

B are the components of PA, whereas A and O are the components of P
A
.

Intuitively, the diagram enforces that each instance of A participating to P is in
fact participating to PA, and hence associated via P to an instance of B.

• For each assertion of the form A v ∃P .B, we introduce a new binary association
PAB and we construct the portion of diagram shown in Figure 4. Note the proper



multiplicity constraint 1..∗ on the participation of A to PAB
3. Intuitively, this

implies that for each instance of A, there exists an instance of B related to it
through PAB, and hence through P .

Lemma 3.3 Given a primitive ALC− KB K′, the size of the UML class diagram D
constructed as above is linear in the size of K′.

Lemma 3.4 An atomic concept A is satisfiable in an ALC− KB K′ if and only if the
class A is consistent in the UML class diagram D constructed as above.

Proof (sketch). We detail the proof only for ALC− assertions of the form A v
∀P .B and A v ∃P .B.

“⇐” Let J = (∆J , ·J ) be an instantiation for D. We show that J is also a model
of all assertions in K′.

• Each assertion of the form A v ∀P .B in K′ corresponds, in D, to the sub-diagram
in Figure 3. J populates it according to the following constraints:

AJ ⊆ OJ

A
J

⊆ OJ

AJ ∩ A
J

= ∅
BJ ⊆ OJ

PJ ⊆ OJ × OJ

PJ

A
⊆ A

J
× OJ

PJ
A

⊆ AJ × BJ

PJ
A

⊆ PJ

PJ

A
⊆ PJ

PJ ⊆ PJ
A

∪ PJ

A

From the constraints above, we get that P J
A

∩ PJ

A
= ∅. Therefore, if x ∈ AJ

then for all x′ ∈ OJ if (x, x′) ∈ PJ then (x, x′) ∈ PJ
A

and therefore x′ ∈ BJ ,
i.e., AJ ⊆ {x ∈ OJ | ∀x′ ∈ OJ . (x, x′) ∈ PJ ⊃ x′ ∈ BJ }.

• Each assertion of the form A v ∃P .B in K′ corresponds, in D, to the sub-diagram
shown in Figure 4. J populates it and satisfies the constraints AJ ⊆ OJ , BJ ⊆
OJ , PJ ⊆ OJ ×OJ , PJ

AB
⊆ PJ , PJ

AB
⊆ AJ ×BJ , and for each x ∈ AJ we have

that ]{x′ ∈ ∆I | (x, x′) ∈ PJ
AB

} ≥ 1 (mandatory participation constraint). From
these we get that for each x ∈ AJ there exists x′ ∈ OJ such that (x, x′) ∈ PJ

and x′ ∈ BJ , i.e., AJ ⊆ {x ∈ OJ | ∃x′ ∈ OJ . (x, x′) ∈ PJ ∧ x′ ∈ BJ }.

“⇒” Let I = (∆I , ·I) be a model of K′ with AI 6= ∅. We show that it can be seen
as an instantiation of D, once we assign a suitable extension to the auxiliary classes
and roles introduced in the construction of D. First, we define OI = ∆I .

• For each assertion of the form A v ∀P .B in K′, we have a fragment of D as in
Figure 3. Let us define:

– A
I

= ∆I \ AI

– P I
A

= {(x, x′) ∈ P I | x ∈ AI}

– P I

A
= {(x, x′) ∈ P I | x ∈ A

I
}

3In fact, in the case where we also have the assertion A v ∀P .B for some B, instead of proceeding
as in Figure 4, we can simply add the cardinality constraint 1..∗ to the association PAB in Figure 3.



Then, by AI ⊆ {x ∈ ∆I | ∀x′ ∈ ∆I . (x, x′) ∈ P I ⊃ x′ ∈ BI}, we get:

AI ⊆ OI

A
I

⊆ OI

AI ∩ A
I

= ∅
BI ⊆ OI

P I ⊆ OI × OI

P I
A

⊆ AI × BI

P I ⊆ P I
A
∪ P I

A

P I
A

⊆ P I

P I

A
⊆ P I

thus correctly capturing the fragment of D.

• For each assertion of the form A v ∃P .B in K′, we have a fragment of D as in
Fig. 4. Let us define P I

AB
= {(x, x′) ∈ P I | x ∈ AI}. Then, by AI ⊆ {x ∈

∆I | ∃x′ ∈ ∆I . (x, x′) ∈ P I ∧ x′ ∈ BI}, we get that for each x ∈ AI we have
]{x′ ∈ ∆I | (x, x′) ∈ P I

AB
} ≥ 1, and we have that such an instantiation is correct

for the fragment of D.

By Lemmata 3.1, 3.2, 3.3, 3.4, and EXPTIME-hardness of reasoning in ALC
knowledge bases [1], we get our hardness result.

Theorem 3.5 Class consistency in UML class diagrams is EXPTIME-hard.

To show our hardness result, we have made no closure assumptions on the diagram.
In UML class diagrams, closure assumptions of two forms are considered: (i) all
classes not in the same hierarchy are a priori disjoint, and (ii) each object must be
an instance of a single most specific class. Instead, in our framework we allow for two
classes (possibly in a hierarchy) to have common instances, even when they do not
have a common subclass.

It is easy to see that the results above continue to hold even if in UML class
diagrams we make the assumption of mutual disjointness of classes that are not in a
hierarchy. Indeed, it suffices to add to the diagram an auxiliary subclass for each pair
of classes that correspond to concepts that are not trivially disjoint (here multiple
inheritance is called in). In this way the default disjointness assumption will have no
impact on the instantiation of the part of the diagram that is built as above.

4 Conclusions

We have shown that reasoning on UML class diagrams can be quite a complex task,
since it is EXPTIME-hard. In [4] we show also that it can be reduced to reasoning in
a DL KB, and thus is also in EXPTIME. Note that, in doing this, we have considered
restricted forms of OCL constraints, which in their full generality have the same power
of full first-order logic and hence lead to undecidability. This result suggests that it is
highly desirable to provide automated reasoning support for detecting relevant prop-
erties of the diagram. The experimental results we reported in [3, 5, 4], while certainly
limited and not providing a definitive answer, indicate that current state-of-the-art
DL-based systems could serve as a core reasoning engine in advanced CASE tools, even
if more research is needed in order to deal with complex UML class diagrams, and to
perform reasoning tasks that involve reasoning on keys and identification constraints.

Finally, it is worth noting that the results presented here hold also for other con-
ceptual modeling formalisms typically used in software engineering and databases.



In particular, the EXPTIME-completeness result applies to the Entity-Relationship
model enhanced with ISA on entities and relationships [2].
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