
Speech acts and Tokens for Access Control and
Provenance Tracking

Fabian Neuhaus
National Center for Ontological Research

Bill Andersen
Highfleet, Inc.

Abstract—In many applications, ontology-based technologies
will be only only be successful if they support access control and
provenance tracking. In this paper we present a novel approach
to implementation of both access control and provenance in
deductive information systems. A key feature of our approach
is the explicit representation of speech acts as well as sentence
tokens that are used to encode propositions. These are used to
define SupportedBy, a kind of entailment relationship between
sentence tokens and propositions. User queries are phrased in
terms of the SupportedBy relationship and augmented by user-
dependent security and provenance constraints. We note that the
introduction and treatment of SupportedBy makes the resulting
logic an instance of a labeled deductive system, as developed by
Gabbay.

I. INTRODUCTION

To date, ontology-based technologies have been so far
applied most successfully in domains like biological research
where the available knowledge meets two important require-
ments. First, there is a network of trust among users and
builders of the knowledge base that it represents a true picture
of reality. Second, the knowledge in the knowledge base is
open in the sense that anybody who is using the system can
access all the information in the knowledge base.

However, many potential applications ontology-based sys-
tems require multi-level security access control along with
‘need-to-know’ restrictions. Examples include the manage-
ment of the information exchanges within an engineering
production network, patient data within a hospital management
system, and data analysis within an intelligence agency. In
addition, any application of knowledge representation tech-
nologies such applications would require reasoning with in-
formation that might turn out to be wrong, either by mistake
or by ill intent. The available information might even turn
out to be logically inconsistent. Within this context, it is
almost as important to keep track of who provided a piece
of information as keeping track of the information itself. This
enables to evaluate the quality of a given information item
by checking its consistency with information provided by
independent sources.

Provenance tracking comes in two flavors: hearsay tracking
and IT processing tracking. Hearsay tracking is concerned with
the chain of ‘retellings’ of a piece of information before it
is entered into an information technology (IT) system; e.g.,
in ‘Novak reported that a senior official claimed that Plame
suggested that Wilson travels to Niger’ the basic proposition
‘Wilson travels to Niger’ is embedded in three layers of

‘retellings’. IT processing tracking is concerned with how
information is processed within a given set of IT systems.
After the information is entered into an information system, it
might be processed in various ways. It can be copied, recoded,
or used for automatic reasoning, among others. It is important
to track these processes because they can potentially cause
false verifications.

In this paper we discuss the features of an ontology language
that can support provenance tracking. This approach, which is
based on work described in [8] and [1], has already been im-
plemented successfully in Highfleet’s XKS deductive database
system. This paper clarifies the relationship of linguistic tokens
and speech acts in the analysis of provenance tracking, and
widens the scope of the analysis to cover hearsay tracking. As
in previous work, we take a logical-ontological approach that
considers (1) the entities required for an adequate accounting
of access control, (2) provenance in information systems, and
(3) the logical machinery that is needed to get the intended
result. Hence, we will not discuss in this paper the details of
the implementation.

In the next section we provide an extended example from the
intelligence community that illustrates the kind of problems
we intend to address in this paper. Afterward we discuss the
ontological categories involved in our solution. In the last
section we present a first draft of our account.

II. EXAMPLE

In this paper we discuss our approach with the help of
the following scenario. Assume that an Afghan source of a
U.S. intelligence agency reports that Al Qaeda has obtained
a nuclear weapon. The information is represented in the
knowledge repository A and classified as top secret. The
information about the supposed location is shared with another
US agency, but the source of the information is not shared. The
second agency stores the information within their knowledge
repository B and classifies it as secret. Assume further, that
in the same timeframe the New York Times (NYT) reports
that Maulana Masood Azhar claimed in an interview that Al
Qaeda has obtained a nuclear weapon. This is recorded in the
knowledge repository C, which contains information collected
from newspapers and other publicly-available sources. As a
result, all three repositories contain (in some sense) the same
information, namely that Al Qaeda has obtained a nuclear
weapon. However, it is classified differently in the knowledge
repositories A, B, and C (as top secret, secret, and unclassified,

respectively). To further muddy the water, assume that reposi-
tory B also contains reports from other sources that claim that
if Al Qaeda has a nuclear weapon then it has obtained it from
Pakistan; and that in addition no Pakistani nuclear weapon is
missing. Thus, repository B contains conflicting information.1

Assume an analyst queries an information system with
access to all three knowledge repositories with the following
request: Provide all independent records that support that Al
Qaeda possesses weapons of mass destruction. For the sake of
simplicity, let’s further assume that the knowledge repositories
contain no other relevant information. This scenario provides
several challenges: (i) The correct response from the system
depends on the clearance of the analyst. If the analyst has no
access to classified information, he should receive one answer,
namely the one from the NYT report in repository C. The
fact that the information provided by the Afghan source is
classified should not prevent the analyst from accessing the
information based on news reports, although in some sense it
is the same information. (ii) If the analyst has access to top
secret information, the system should provide two answers and
not three: the NYT report and the original record in repository
A. The system should not provide the record in knowledge
base B, since it is based on the one in repository A, and
thus does not provide independent verification. (iii) Inferring
that the report by the Afghan source and the NYT article is
about weapons of mass destruction requires logical reasoning
with content embedded in some additional information about
provenance. (iv) The available information is logically incon-
sistent; a fact that seems to render the classical entailment
relationships useless.

We have addressed the first two challenges in [1]. In this
paper we extend our solution to hearsay provenance tracking
and address the problem of inconsistent information in more
detail.

III. ONTOLOGY OF ACCESS CONTROL AND PROVENANCE

Our approach to a theory of access control is ontological
rather than procedural.2 By first examining and fixing the
relevant kinds of entities involved in access control and prove-
nance, we hope to provide a firm foundation for an evolving
formal theory for handling these phenomena in information
systems.

A. Information, Proposition, Sentence Types, and Tokens

According to the U.S. government the object of access
control is information [9]. While an analysis of the ontological
nature of information is beyond the scope of this paper, we
are convinced that according to any reasonable account of
information (e.g., [12]) a unit of information is an ‘abstract
entity’ in the same sense that integers or geometric shapes are
abstract entities. That is, they do not have a spatio-temporal
location and are not participating in causal interactions that

1For the sake of simplicity, we do not treat time explicitly and just assume
that the statements are valid during the same time period.

2The Bell-La Padula security model is one example where secure states of
a system are defined by a state machine model [3].

shape our physical world. Based on this view, it is hard to
imagine how we might control directly access to anything
abstract. What we can control, though, is access to physical
entities that encode information. For example, it is impossible
to lock a piece of information in a safe for the same reasons it
is impossible to lock up the integer 3. We are able, however, to
lock up a paper document that encodes the information. In the
case of IT systems the computational mechanisms have causal
influence over objects that are encoded ultimately as patterns
of electrons or some other physical mechanism. We argue that
the objects of access control are thus spatio-temporal objects
that participate in the causal structure of information systems.

Although we are confident that our approach can be ex-
tended to information encoded in images, video, audio and
other like forms of common digitally encoded media, but
in this paper we will focus on information systems dealing
with propositions encoded in formal language expressions.
A proposition is a unit of information that is either true or
false. A well-formed expression of a (formal) language that
expresses a proposition is a sentence type. We note that ’formal
language’ is not intended to be restricted to logical languages
but is intended to cover any kind of syntax including graphical
notations, tables, tree structures, and barcodes.

Since sentence types and propositions are abstract entities
they cannot be objects of access control and provenance
tracking for the reasons given above. In contrast, sentence
tokens are physical entities that instantiate sentence types [13].
The same sentence type can be instantiated by a large range of
physical objects; a sentence token on a printed newspaper is a
distribution of ink, in the case of a spoken sentence the token
is a complex movement of air, and in the case of information
systems the tokens are arrangements of electric charges in a
chip.

Different tokens of the same types might not only differ
with respect to the kind of material they consist of and other
physical qualities, but, more importantly for our purposes,
different tokens of the same type can differ with respect to their
security properties: one encoding of a proposition P might be
unclassified while another encoding of the same proposition
one is classfied.

A sentence token might come into existence by accident.
If you spill your coffee on a sheet of paper and it reads
”It was the best of times”, then this distribution of coffee
on this sheet of paper is an instance of the sentence type.
However, usually sentence tokens are brought into existence
by a person in an attempt to communicate with somebody else,
a speech act [2], [11]. A speech act is a kind of intentional
act performed by a person (the speaker) typically involving
one or more listeners, a sentence token, a proposition, and the
illocutionary force of the speech act. For example, utterances
of the assertion ‘You are late’, the question ‘Are you late?’
and the command ‘Be late!’ involve the same proposition but
vary in their illocutionary force – the first makes a statement
about reality, the second seeks verification, and the third seeks
to bring about the truth of a proposition. While these examples
might suggest that illocutionary force is aligned with syntactic

distinctions in English, this is not the case. E.g., the utterance
of ‘I’ll be back’ might be a promise, a prediction, a warning,
or a threat – depending on the circumstances and the intentions
of the speaker. This example shows that while under normal
circumstances the proposition of a speech act is straightfor-
wardly encoded in the sentence token, the illocutionary force
might be harder to determine. For the sake of simplicity, we
will in the following widely ignore the differences between the
illocutionary forces of the various types of speech acts and
treat them either as assertive speech acts or as queries. For
example, promises, warnings, and threats will all be treated
equally as assertions.

We are concerned with speech acts for two reasons. First,
if a sentence token in an IT system is the result of an entry
by a human, then the sentence token is the result of a speech
act. Second, we need to deal with sentence tokens that encode
propositions about speech acts. In our example an analyst has
read in the NYT that Maulana Masood Azhar claimed that Al
Qaeda owns a nuclear weapon, and creates a corresponding
entry in a knowledge repository. Creating this entry is a speech
act by the analyst. The token in the knowledge repository does
encode the proposition that the NYT performed a reporting
speech act. The propositional content of the speech act by the
NYT is that Maulana Masood Azhar has performed another
speech act, namely an announcement. The proposition of that
last speech act is that Al Qaeda owns a nuclear weapon. Thus,
the propositions of all three speech acts are nested within each
other.

B. Manipulation of tokens in IT systems

By IT system we mean a physical object that is capable
of (1) accepting information encoded in tokens of some
appropriate language and (2) accepting and responding to
queries posed as tokens in some appropriate language with the
result being a release of tokens encoding the query response.
In this paper we are interested in IT systems with access
control, that is systems that allow access to stored information
only through specified processes and through no other means.

On a token-based view of access control, the policies that
guide whether a given token can be released by an IT system is
based on its access control properties. Thus, we must account
for the causal history of tokens in an information system from
the moment that information bearing tokens enter a system
to when (other) tokens are released from the system. This
causal history will take the form of a chain of events (copying,
synthesis, and recoding) that make new tokens from old ones.
Depending on the type of event, properties relevant to access
control will need preservation.3

In this paper we consider a security labeling system that
consists of a totally-ordered set of levels L and a set of partially
ordered compartments C. Each token is assigned a security
level and a (potentially empty) set of compartments. Security
levels express the sensitivity of a given piece of information.

3We discuss IT systems and their boundaries, as well as the the manipula-
tion of tokens within IT systems in greater length in [1].

Compartments are used to limit access channels independent
of the security levels. The partial order on the set of com-
partments ranks the compartments along their specificity (e.g.,
the compartment Al Qaeda would be more specific than the
compartment terrorist group). Ontologically speaking, security
levels and compartments are social artifacts that are dependent
upon a community of agents that mutually agrees to the storage
and access of tokens using the labeling system.

IV. FORMALIZATION OF ACCESS CONTROL AND
PROVENANCE

A. The representation in a formal language

In this section we will sketch an axiomatic approach that
allows us to reason under multi-level security access control
and enables provenance tracking. We are not suggesting that
the logical language below is supposed to be used within a
knowledge repository, nor do we suggest that the end users of
the system shall be confronted with such a language. Our main
concern is that the features of the implemented knowledge
representation language enable queries and logical reasoning
in a way that supports access control and provenance tracking
as described here.

As mentioned in the introduction, Highfleet has already
implemented a system with these features successfully. How-
ever, the goal of this paper is not describe a specific imple-
mentation or to discuss how the approach we are suggesting
can be implemented efficiently. Our goal is just to outline
the underlying logical-ontological approach. For this reason
we just assume that we have a reasoner that supports a
very expressive language, at least as expressive as IKRIS
Knowledge Language (IKL) [5], [6] extended by two modal
operators: ♦ is read as ‘it is logically possibly true that’ and
� is read as ‘it is logically necessarily true that’.4 IKL is
an extension of CLIF which itself is the interchange format
of the ISO standard Common Logic [7]. CLIF differs from
many first-order languages by not assigning a fixed arity to its
predicates and by adding sequence variables to the language.
In the following we will use x, y, z as ordinary first-order
variables and s, s1, s2 as sequence variables – variables that
range over finite sequences of objects.

One basic idea of our approach is to treat tokens that reside
in the repositories and the speech acts they encode as first
class citizens in the domain of discourse. In this way the
so-called ‘metainformation’ about security and provenance
can be treated in the same logical framework as regular
object-level information. Let’s return to the example from
the introduction. The knowledge repository A of the first
agency contains a token that expresses Source007 asserted on
October 20th, 2011 that Al Qaeda owns nuclear weapons.
The most important aspects of assertive speech acts are its
speaker as well as the proposition that is asserted. The example

4The intended semantics is the following: �A is true if and only if A is
logical truth of classical first-order logic. ♦A is true if and only ∼A is is
not a logical truth of classical first-order; i.e. A is satisfiable. The details of
the extension of IKL by these modal operators are beyond the scope of this
paper.

includes also the date of the speech act. Potentially other
relevant information about the speech act might be available
(e.g., its location or the listeners that participated in it). This
‘metadata’ about the speech act needs to be distinguished from
the ‘metadata’ about the token that encodes the speech act
itself. Examples for ‘metadata’ about tokens include the type
of the token (e.g., record, audio file, picture), the name of the
repository where the token resides, the security classification
of the token, its security compartments, and the person who
created the entry in the system, the date when the entry was
created, a list of people who accessed the information in the
system, and so on.

This ‘metadata’ can be represented in the same framework
as the ‘normal’ data in the following way, where ‘token001’
is a name of the record that resides in the repository A:

Tok1

Record(token001) &
ResidesIn(token001) = repository A &
ClassifiedAs (token001 top secret) &
Compartment (token001 alQaeda cmpt) &
Compartment (token001 proliferation cmpt) &
CreatedBy(token001) = agent1234 &
PropositionalContent(token001) =

(that (∃x (AssertionAct(x) &
Speaker(x source007) &
Date(x) = 20.10.2011) &
PropositionalContent(x) = (that(
∃y (Owns (alQaeda y) & NuclWeap(y)))))

We use IKL’s mechanism for expression of propositions – the
that-operator. It is applied to a formula and the result is a name
that refers to a proposition. Its logical counterpart in IKL is
a syntactic variant of a truth-predicate: if p is a proposition,
then the formula (p) is the assertion of the proposition. Thus,
(A ↔ ((that A))) is a logical truth in IKL, for any formula
A.

In our example, the agency that owns repository A shares
the information with another agency. As a result a ‘write down’
token is created within repository B; that is the propositional
content of the speech act encoded in token001 is preserved, but
the additional information about the speech act is removed. As
a result the newly created token is reclassified as secret. The
information about the token in repository B can be represented
in the following way:

Tok2

Record(token002) &
ResidesIn(token002) = repository B &
ClassifiedAs(token002 secret) &
BasedOn(token002, token001) &
ResidesIn(token001) = repository A &
PropositionalContent(token002) =

(that (∃x (AssertionAct(x) &
PropositionalContent(x) = (that(
∃y (Owns (alQaeda y) & NuclWeap(y)))))

The fact that the entry in knowledge base B originated
from repository A is expressed explicitly by asserting that
token002 is based on token001 and that token001 resides

in the repository A. Using the ’BasedOn’ relationship in
this way enables provenance tracking across the knowledge
repositories, and enables a reasoner to detect that token001
and token002 do not provide independent verification of the
information concerning Al Qaeda’s access to nuclear weapons.
This example points to a further advantage of our approach –
namely that it provides a principled way of performing ’write-
down’ operations, enabling more flexible sharing of informa-
tion without compromising sensitive meta-information. Such
operations are typically not allowed by traditional security
models, e.g., [3].

The entry based on the NYT report is distinguished from the
previous examples by an additional layer of indirectness: the
token encodes a proposition about a speech act about a speech
act. Each of the speech acts has a propositional content and
a speaker; in this example the dates of the speech acts are
provided as well.

Tok3

Record(token003) &
ResidesIn(token003) = repository C &
ClassifiedAs(token003 unclassified) &
PropositionalContent(token003) =
∃x (AssertionAct(x) &
Speaker(x nyt) &
Date(x) = 23.10.2011 &
PropositionalContent(x) =

(that (∃y AssertionAct(y) &
Speaker(y MasoodAzhar) &
Date(y) = 22.10.2011 &
PropositionalContent(y) = (that(
∃z (Owns (alQaeda z) & NuclWeap(z)))))

B. The support relationship

We now add another relationship ”SupportedBy” between
a proposition and a sequence of zero or more records. The
goal of this relation is to capture not only the propositional
content that is captured in one record, but what is logically
entailed by the sequence of these records. One problem we
need to address is that in the framework of a classical logic
a contradiction logically entails any proposition. Assume we
have an ontology-based information system with a classical
reasoner. In our example, the knowledge base B contains
records that encode the following propositions: (i) Al Qaeda
owns a nuclear weapon; (ii) if Al Qaeda owns a nuclear
weapon, then Pakistan is missing it, and (iii) the Pakistanis
are not missing a nuclear weapon. If we were to provide
these propositions in an unaugmented way to this system, the
reasoner would ‘use’ these contradictory assumptions to prove
any query – and thus the IT system would become useless.
Our goal is to enable limited reasoning with contradictory
information, but to prevent the system from ‘exploding’.5 This

5This goal is the driving force behind the development of paraconsistent
logics. Since we are defining a (object language) relationship between tokens
and propositions our goal is slightly different than the one in paraconsistent
logic which is concerned with the (meta language) entailment relationship.
The ”SupportedBy” could be briefly characterized as a paraconsistent variant
of the strict implication with a closure on embedded propositions.

is achieved with the help of the two modal operators ♦ and
� introduced above.

Instead of SupportedBy((that A), s) we write A[s] as a
shorthand. In particular, we write A[] to express that A
is supported by the empty sequence. We axiomatize the
SupportedBy relationship recursively with the following axiom
schemata:

Ax1 (Record(x) & ♦(PropositionalContent(x)))→
SupportedBy(PropositionalContent(x), x)

Ax2 A→ A[]

Ax3 (A[s1]&B[s2]&♦(A&B))→ (A&B)[s1 s2]

Ax4 (A[s]&�(A→ B))→ B[s]

Ax5 (♦A & (∃x((AssertionAct(x)&
(PropositionalContent(x) = (that A))))[s])→ A[s]

Ax1 expresses that every record supports its (own) proposi-
tional content – under the condition that assertion of the propo-
sitional content is possibly true. Further, every proposition that
is already known to be true is supported by the empty sequence
(Ax2). According to Ax3 the following holds: if a proposition
A is supported by a sequence of records s1 and a proposition
B is supported by a sequence of records s2 and (A & B) is
possibly true, then the proposition (A & B) is supported by the
sequence that is the result of concatenating s1 and s2. Note that
if A and B are logically contradictory, it is not possible that (A
& B) is true; thus in this case A[s1] & B[s2] do not imply (A
& B)[s1 s2]. Without this constraint a sequence of assertions
of contradictory information would support every proposition
because, as discussed above, in classical logic a logically false
formula will entail any formula. Ax4 expresses the following:
if the sequence s supports a proposition A and A necessarily
implies B, then the sequence s also supports the proposition
B. The axiom ensures that a sequence of records does not only
support a conjunction of their propositional contents but also
the logical consequences of the propositions. Ax5 ensures that
a token does not only support the proposition it encodes but
also all propositions that are embedded in that proposition –
provided that they are logically possible.

We made a few simplifications in these axioms. First of all,
we axiomatized SupportedBy based on sequences of tokens.
Sequences that consist of the same components in differ-
ent order are different sequences; e.g. (token001 token005)
and (token005 token001) are two different sequences. Con-
sequently, an IKL reasoner will consider them as different
answers to a query. However, for SupportedBy the order of
the sequence elements does not matter, any permutation is
as good as another. Further, the approach delivers sequences
that contain tokens that are not necessary to support the
proposition. For example, the answer (token001 token005)
would be a valid answer to query Que1, in spite of the fact that
token001 supports the proposition on its own and token005

does not contribute anything to the answer. Thus, the axioms
as presented above would deliver redundant answers. It is
possible to avoid these problems, but for the sake of brevity
we present a simplified account.

C. Reasoning with SupportedBy

The support relationship is used to enable queries for
information that support a given hypothesis. In the rest of
this section we will show how that works with the help of the
example from the introduction. However, within this section
we will ignore that Tok2 is based on Tok1; this will be the
subject of the next section. Let’s assume that the system has
access to an ontology that either contains or logically entails
the background information Bgnd1: A nuclear weapon is a
weapon of mass destruction (WMD).

Bgnd1 ∀x(NuclWeap(x)→ WMD(x))

In our example, the analyst is interested in the question
whether Al Qaeda possesses WMD. For starters, we can
represent the query ‘Find all sequences of records that are
supporting the proposition Al Qaeda owns WMD.’ in the
following way:

Que1 ∃x(Owns(alQaeda x) & WMD(x))[?s]

Note that IKL itself does not provide any convention to express
queries; hence, we use question marks in front of variables to
mark variables to be bound by a reasoner.

When the analyst enters the query Que1 into the system,
it tries to find a sequence of tokens that enables it to prove
the query. For example, the system would try to prove that
token001 supports this proposition. Example1 shows how a
proof could look like.

Example1
1) ∀x(NuclWeap(x)→ WMD(x))[]
2) ∃x(AssertionAct(x) & Speaker(x source007) &

Date(x) = 20.10.2011) & PropositionalContent(x) =
(that(∃y(Owns(alQaeda y)&NuclWeap(y)))[token001]

3) �((∃x(A & B & C & D))→ ∃x(A & D))
4) ∃x(AssertionAct(x) & PropositionalContent(x) =

(that(∃y(Owns(alQaeda y)&NuclWeap(y)))[token001]
5) ♦(∃y(Owns(alQaeda y)&NuclWeap(y)))
6) ∃y(Owns(alQaeda y) & NuclWeap(y))[token001]
7) ♦(∀x(NuclWeap(x)→ WMD(x))&

∃y(Owns(alQaeda y) & NuclWeap(y)))
8) (∀x(NuclWeap(x)→ WMD(x)) &

∃y(Owns(alQaeda y) & NuclWeap(y)))[token001]
9) �((∀x(NuclWeap(x)→ WMD(x)) &

∃y(Owns(alQaeda y) & WMD(y)))
→ ∃x(Owns(alQaeda x) & NuclWeap(x)))

10) ∃x(Owns(alQaeda x) & NuclWeap(x))[token001]

Line 1 of the proof is an immediate consequence of Bgnd1
and Ax2. Line 2 follows from Tok1 and Ax1. Line 3 is a
modal theorem schema, and the proposition of line 2 matches
the antecedent. Thus, line 3 in combination with Ax4 can be
used to remove the information about the speaker and the date
from line 2, the result is line 4. Lines 5, 7, and 9 are theorems

under the intended interpretation of the modal operators. Lines
4, 5, and Ax5 give rise to line 6. Lines 1, 6, 7, and Ax3 entail
line 8 of the proof. Line 8, 9, and Ax4 entail line 10. Q.E.D.

Example1 shows that (token001) (the sequence consisting
only of token001) is one possible answer to query Que1. In a
similar fashion one can prove that (token002) and (token003)
answer the query. While Example1 is admittedly rather simple,
it is sufficient to show how these proofs work and what role
the axioms play: the ‘background information’ that is provided
to the system as truths (e.g., nuclear weapons are WMD),
lead to SupportedBy-statements with an empty sequence by
axiom Ax2. Formulas that express the content of records (like
Tok1) lead to SupportedBy-statements via axiom Ax1 that
contain lists with only one element. In our example we use
these axioms only once each, but in more complex examples
one would have to use these axioms repeatedly. The resulting
SupportedBy-statements can be combined with more complex
ones with the help of axioms Ax3. The role of Ax4 is to ensure
that consistent lists of tokens support all logical consequences
of their propositions. If a proposition is embedded in another
proposition, then Ax5 (in combination with Ax4) allows us
to show that the former proposition is supported by the same
sequence of tokens as the latter.

Example2
1) ∀x(Owns(alQaeda x) & NuclWeap(x))→

Misses(Pakistan x))[token004]
2) ∼∃x(Misses(Pakistan x) & NuclWeap(x))[token005]
3) ∼∃x(Owns(alQaeda x) & NuclWeap(x))[token004 token005]

In Example1 the proposition in the last line is only sup-
ported by one token, but a proposition can be supported by
an arbitrary long list of tokens. Let token004 encode the
proposition ‘if Al Qaeda owns a nuclear weapon, then Pakistan
misses it’, and let token005 encode ‘Pakistan is not missing a
nuclear weapon’. By applying Ax1 we get the first two lines
of Example2. They in combination with Ax3 and Ax4 entail
the third line: an example for a proposition supported by two
records.

Note that it is not possible to combine the last lines of
Example1 and Example2 with Ax3, because ♦(A & ∼A) is
not provable, for any given formula A and any given set of
consistent assumptions. This is an example how the axioms of
the SupportedBy relationship block unwanted reasoning with
inconsistent information.

So far, in all examples that we discussed the provenance
of the information has been ignored. So what is the benefit
to represent the speech acts explicitly within the formulas?
First of all, the analyst does need to know who provided the
information and whether it is hearsay or the result of direct
observation. In addition, it allows us to support queries that
mix ‘normal’ queries with ‘metainformation’ about security
classification and provenance. For example, the analyst might
ask the following additional query: Find all top secret records
that involve an assertion by Masood Azhar that entail the
existence of nuclear weapons. This query can be represented
as follows:

Que2 Record(?x) &
ClassifiedAs(?x top secret) &
(∃y(AssertionAct(y) &Speaker(y MasoodAzhar) &

�((PropositionalContent(y))→
∃zNuclWeap(z)))[?x]

D. IT processing tracking and access control

In the last section we addressed hearsay tracking which is
one aspect of provenance tracking. We did not address prove-
nance tracking of tokens within IT systems. In our example
token002 resides in knowledge repository B. It is based on
token001, which resides in knowledge repository A. If an
analyst queries the system that has access to the knowledge
repositories A and B, then the information of token002 has to
be ignored, since it provides no independent confirmation of
the information. However, it might be the case that knowledge
repository B but not repository A is available for queries;
for example because of technical difficulties or because the
agency of the analyst is not allowed to use repository A. In this
case the system is supposed to use the information encoded
in token002.

To support this functionality, for example, the query Que1
would have to be rephrased in the following way: Find
sequences s of tokens that support the proposition that Al
Qaeda owns WMD, which meets the following additional
requirement: there are no tokens y, z such that: (a) y resides
in a repository that is available, (b) z is an element of the
sequence s, (c) z is a copy of y, and (d) the sequence that is
the result of replacing all occurrences of z in s by occurrences
of y supports the proposition.

Access control adds another layer of complexity. The query
changes from ‘Find me a sequence of tokens that support X’
to ‘Find me a sequence of tokens that the user has access to
that support X’. Whether a user has access to a given token is
determined by its security level and its security departments.
We provide a detailed analysis of how to represent process
tracking and access control in [1].

As we have seen in the case of Que2, the treatment
of information about provenance on the same level as any
other information enables queries that otherwise would not
be possible. So far we looked at use cases that provided
information for end-users. However, it is also useful for system
administrators. For example, Que3 represents the query: Find
all secret records within repository B that are based on top
secret records of repository A.

Que3

Record(?x) &
ResidesIn(?x) = repository B &
ClassifiedAs(?x secret) &
∃y(BasedOn(?x y) &
ResidesIn(y) = repository A &
ClassifiedAs(y top secret))

Tok4

Record(token005) &
ClassifiedAs(token005 secret) &
PropositionalContent(token005) =

(that (∃x (QueryAct(x) &
AskedBy(x analyst1234) &

Date(x) = 12.11.2011 &
PropositionalContent(x) = (that(
∃y (Owns (alQaeda y) & NuclWeap(y)))))

Another use case is to track which analyst accesses which
data from which system. For example, assume that an analyst
asks the query whether Al Qaeda owns nuclear weapons. At
the same time the system answers the query, the system could
generate Tok4, which records that the analyst asked a query,
its date, as well as its propositional content. This information
can be used to monitor who accesses which data from what
sources and on what security level. It is also enables systems
administrators to recognize if two independently working
analysts are interested in the same content.

E. Non-propositional information

As mentioned above, the main focus of this paper is
propositional information. However, it seems that our approach
of treating tokens as first-class citizens in the domain of
quantification could work not only for records but also for
other tokens, for example pictures and audio files. Here is
an example how one could represent the information about a
picture that shows Maulana Masood Azhar visiting Baba Saab
in Kandahar.

Tok5

Picture(token006) &
ResidesIn(token006) = repository A &
ClassifiedAs (token006 top secret) &
CreatedBy(token006) = agent1234 &
Source(token006) = source007 &
LocationDepicted(token006 babaSaab) &
About(token006 MasoodAzhar) &
About(token006 Shrine)

Security classification, the location of the token, and other
‘meta-information’ are provided in the same way as in pre-
vious examples. The main difference is that pictures do not
encode propositional content. To tag the picture with key-
words we are using the ‘About’ relationship (and subtypes of
About like LocationDepicted). Since IKL lacks a syntactical
distinction between predicates and individual constants, the
second argument of the About-relationship can be filled by an
individual (e.g, Masood Azhar) or a type (e.g., shrine). We are
planning to further investigate the potential of our approach
for the representation of non-propositional information in the
future.

F. Treatment as a labeled deductive system

We note briefly here that the logic we have described may
be considered a type of labeled deductive system [4]. The
concept of a labeled deductive system is a generalization of the
traditional notion of a logical system in which the consequence
relation is defined relative to a system (algebra) of labels that

modulate consequences that may be drawn in such systems.
These systems have the advantage of incorporating what are
traditionally viewed as meta-logical concepts (e.g. the rules
for creating a proof) into the object language. Not only does
this make, in many cases, for a more elegant description of
the logic under consideration, it provides a unified description
for logics that seem dissimilar on the surface but are in fact
quite similar in terms of their underlying behavior.

The logic we describe can be considered a labeled deductive
system for three reasons. First, the (sequences of) sentence
tokens act as the labels of the system. Second, the operations
on the labels encoded in the axioms for the SupportedBy rela-
tion define an algebra over the labels. Finally, the entailment
relation for the system depends both on the content as well as
the labels.

In fact, the application of labeled deduction to access control
was proposed by Obrst and Nichols in [10], wherein they
suggest (but did not develop) a labeled deductive system
that operates over security labels in defining the consequence
relation. Their proposal differs from our approach in two major
ways. Our system quantifies over tokens, and enables multiple
tokens of the same type to co-exist. Further, we pay specific
attention to speech acts that assert tokens into a information
system.

V. DISCUSSION AND FUTURE WORK

In this paper, we presented an ontologically-motivated
approach to multi-level access control and provenance for
information systems. We extended our previous work by
widening the scope of the analysis to different use cases,
most importantly hearsay provenance. Critical to our analysis
is the role of linguistic tokens as the fundamental bearers
of information and as the only entities capable of playing
the causal role required to enforce access controls and track
provenance within IT systems. These linguistic tokens might
be bearers of information about speech acts with propositional
content; these are used to enable hearsay provenance. We
offered a formalized example of reasoning with provenance
under multi-level access control. While the presentation was
limited to access control and provenance in systems using
overt logical reasoning processes, we would argue that the
approach is applicable generally to information systems of all
kinds (e.g., relational database systems or web-services).

In the future we are planning to extend this work to
a theory of access control and provenance for non-overtly
linguistic information bearing objects, such as audio, images,
or video, and to account for effects of intentional degradation
of information for “write-down” releases of information.

ACKNOWLEDGEMENTS

We thank Leo Obrst for his helpful comments and sugges-
tions.

REFERENCES

[1] B. Andersen, F. Neuhaus. An Ontological Approach to Information
Access Control and Provenance. In P. Costa, K. Laskey, L. Obrst (eds.):
Proceedings of the 2009 International Conference on Ontologies for
the Intelligence Community Fairfax, VA, USA, October 21-22, 2009.
http://CEUR-WS.org/Vol-555/paper7.pdf.

[2] J.L. Austin. How To Do Things With Words 2nd Ed. Harvard University
Press, Cambridge, 1975.

[3] D.E. Bell. Looking Back at the Bell-La Padula Model In Proceedings,
Annual Computer Security Applications Conference, Tucson, 2005.

[4] D. Gabbay. Labelled Deductive Systems; Principles and Applications.
Vol 1: Introduction. Oxford University Press, 1996

[5] P. Hayes. IKL Guide. http://www.ihmc.us/users/phayes/IKL/
GUIDE/GUIDE.html

[6] P. Hayes, C. Menzel. IKL Specification Document.
http://www.ihmc.us/users/phayes/IKL/SPEC/SPEC.html

[7] ISO/IEC 24707. Information technology – Common Logic (CL): a
framework for a family of logic-based languages.

[8] F. Neuhaus, B. Andersen. The Bigger Picture – Speech Acts in
Interaction with Ontology-based Information Systems. In M. Okada,
B. Smith (eds): Interdisciplinary Ontology Vol. 2 (Proceedings of the
Second Interdisciplinary Ontology Meeting), 2009, 45-56.

[9] United States Office of the Director of National Intelligence. Intelligence
Community Directive Number 501. January, 2009.

[10] L. Obrst, D. Nichols. Context and Ontologies: Contextual Indexing of
Ontological Expressions. Poster: AAAI 2005 Workshop on Context and
Ontologies. AAAI, Pittsburgh, PA, 2005.

[11] J. Searle. Speech acts: An Essay in the Philosophy of Language.
Cambridge University Press, New York, 1970.

[12] C.E. Shannon, W. Weaver. The Mathematical Theory of Communication.
Urbana, Ill.: University of Illinois Press, 1975.

[13] L. Wetzel. Types and Tokens. The Stanford Encyclopedia of
Philosophy (Winter 2008 Edition), Edward N. Zalta (ed.), URL =
http://plato.stanford.edu/archives/win2008/entries/types-tokens/

