
Semantic Policy Enforcement and Reconciliation for
Information Exchange in XMPP

Brian Ulicny, Won Ng, Oleg Simakoff, Jakub
Moskal

VIStology, Inc.
Framingham, MA USA

{bulicny, wng, osimakoff, jmoskal}@vistology.com

Mieczyslaw M. Kokar
Department of Electrical and Computer Engineering

Northeastern University
Boston, MA USA

m.kokar@neu.edu

Abstract— Extensible Messaging and Presence Protocol (XMPP)
is a popular open-standard protocol for instant messaging (IM)
widely used in military and commercial applications. In military
contexts, as in commercial settings, it is often necessary to
regulate who may communicate with whom and how. The
distributed nature of XMPP makes centralized information
exchange policy enforcement impossible, however. We report on
a technology we have developed, called PolVISor, in which we
express information exchange policies in a natural language
formalism (SBVR SE), automatically translate these policies into
an executable rule language (BaseVISor rule language) and
enforce and reconcile disparate policies among XMPP servers,
each with its own policies, using semantic technologies.

Keywords: XMPP; security policies; policy reconciliation;
SBVR; ontologies; deontology; modality

I. INTRODUCTION
Policy authoring, representation and enforcement are

essential components in security systems. As systems grow
and collaboration becomes more ubiquitous (e.g. via grid
computing, collaboration among coalitions), the set of security
policies grows larger. This leads to potentially undetected
policy conflicts and the need for automated or semi-automated
policy reconciliation. Our work has resulted in PolVISor,
which uses ontological reasoning to determine security policy
compliance and provide policy reconciliation when possible.
We demonstrated the necessity, feasibility and flexibility of
PolVISor to constrain information sharing in an XMPP
(Extensible Messaging and Presence Protocol) environment.

II. SECURITY, POLICIES AND RECONCILIATION
In this project we were concerned with the ability to use
policies to ensure compliance during runtime as well as with
the ability to do policy reconciliation. Policy compliance
involves the run-time process of ensuring that all of the
conditions defined by a policy hold true; a common example is
the checking of credentials required before granting access to
a document. In policy reconciliation, the goal is to take
multiple polices and, e.g., generate a policy instance that
simultaneously satisfies all of them; a typical example here is
determining specific conditions under which a communication
session can be established between nodes in a VPN where the

ends of the connection are governed by different policies.

1.1 Semantic and Non-Semantic Representations of
Policies

Policies can be implemented in a system via the hardware (e.g.
this light will not turn on unless both of these switches are
turned on); or in software. In software, a policy can be
represented either syntactically or semantically. By a
semantic representation, we mean a representation in which
inferences can be made on the basis of a policy instance using
a domain-generic inference engine. So, for example, a
Windows Group Policy instance has a meaning that is clear to
everyone who knows the semantics of the policy language.
However, no generic reasoning engine can draw inferences
from Windows Group Policy instances in their native format.
The representation has no meaning to those engines.

A primary objective in our work is to develop the means
by which operations governing policies can be handled
automatically by a computer. For this reason it is important to
be able to describe policies in a formal, declarative way that
will permit them to be automatically processed by formal
reasoning engines.

A formal reasoner or inference engine is a system capable
of applying the formal axioms of a language to a body of
data/facts/knowledge resulting in the derivation of additional
inferable facts. A rule-based system, for example, may be used
as a formal reasoner if it is provided with a set of axioms for
the language in which the data/knowledge is represented. Such
axiom sets are available for a number of ontology languages as
discussed below.

An important principle employed by many systems
including policy-based reasoners is the use of the closed world
assumption (CWA), which permits systems to assume that
everything that is known to be true of the “world” is available
in the facts that have been provided about it; if a fact is not
explicitly stated it is assumed to be false. The closed world
defined by a set of facts can be thought of as a “context” in
which reasoning is to occur. OWL-based systems, like
PolVISor, do not adopt the CWA.

For reconciliation to be possible there should be an
explicit separation of policies and mechanisms that use the

policies, and the policies should be first-class objects within
the security system. In this way, policies will be objects that
can be represented, stored and manipulated by the security
system. Moreover, in this way policies will have their own
interpretation, or semantics. This has a very important impact
on the accreditation process in that mechanisms can be
accredited and then policies can be added dynamically.

1.2 The Policy Reconciliation Problem

Two systems or elements of a system may impose
policies on certain operations. In this paper we define policy
reconciliation as the determination of a policy that implicitly
or explicitly satisfies both policies and governs the behavior of
the interaction of the system(s). Provisioning policies,
authorization policies and information exchange policies are
all types of policies that may require reconciliation.

In this project, we have bounded the problem of policy
reconciliation in several ways. First, we assume that all
partners in the policy negotiation process are equals.
Therefore, we have chosen not to incorporate policy deference
mechanisms saying that if System 1 and System 2 have
different policies, then one of the system’s policies overrides
the other. While such meta-policies are widespread in practice,
they do not pose an interesting conceptual problem.

Secondly, we have not dealt with preferences among
policies. Thus, a system might allow distinct set of actions A
or B (distinguished by their participants, say, or by other
parameter settings), but it would prefer one set to the other.
We have not addressed this issue because it essentially
involves a different kind of modal reasoning: reasoning that
ranks some situations as more desirable than others, although
each is permissible. This is the logic of “should” and “should
not”, as opposed to the logic of “may (not)” and “must (not)”
as described in the section on our deontic ontology of actions
below. The considerations involved in modal reasoning about
‘should’ involves a higher-order reasoning than the logic of
‘may’ and ‘must’, and we have not addressed this in this
project. In particular, we have not addressed what might be
called “consequentialist” policies, where a policy is preferred
based on its outcome. For example, one might say, choose
policy A or policy B based on which one allows the most (or
fewest) users (perhaps meeting some other criteria) to access
some set of files. Such a system would require some kind of
modeling and simulation step to determine how many users
have access, and thus determine the policy choice.

Finally, we have not concerned ourselves with situations in
which the policies to be reconciled cannot be completely
disclosed between the interested parties. There are
undoubtedly situations in which the policies that govern some
action are themselves proprietary and sensitive in that they
reveal, with contextual information, proprietary information.
For example, suppose a University had a policy in which
admitted students could sign up for a campus bulletin board
system. If prospective students learned about this policy, they
could potentially find out who had been admitted to the
university before the official announcement had been made by
trying to register on the bulletin board. In such a case, the

university might want to avoid making such a policy known to
other users or systems in order not to disclose unwanted
information. We have not focused on such situations of policy
reconciliation where trust is an issue since trust management is
beyond the scope of our current investigations.

1.2.1 Information Exchange Policies

In this paper, we examine enforcing and reconciling
information exchange policies. Information exchange policies
are important in military and intelligence situations, where
cross-organizational collaboration is required but strict
policies restrict who can communicate with whom and what
information they can exchange. For example, a military
coalition might allow members of different national forces to
collaborate on some tasks within certain channels and with
certain information, but not others. The same is true of
financial services and health care industries, which both
regulate information exchange. For example, in financial
services, so-called Chinese Wall policies regulate
communication between analysts and traders. In health care,
privacy and confidentiality policies regulate what information
can be shared between health care providers and patients.
Information sharing between social networking sites and other
sites is another current example, particularly where single
sign-on schemes like OpenID (http://openid.net) are involved.

In the military and intelligence community, information
exchange policies are labeled “Cross Domain Solutions”:
“Cross Domain Solutions (CDS) are controlled interfaces that
provide the capability to access or transfer information across
different security domains.” 1 The eXtensible Markup
Language (XML) Data Flow Configuration File (DFCF)
format specification2 was developed to provide a common
format for defining, validating, and approving XML data
flows for use in XML cross domain solutions. DCDF is
specified syntactically in XML in terms of information sharing
system endpoints, where a complete policy specifies, for each
endpoint pair, what information can be sent from an endpoint,
and what information may be received by an endpoint. Such
comprehensive policies are difficult to set up, are likely to
become obsolete as the contents of the endpoint systems
change, and are not flexible. Finally, they are not reconciled,
across all endpoints because one system cannot impose any
limitations on another system, only on itself. However, they
can be implicitly reconciled at run time when two endpoints
try to exchange information.

III. POLICY LANGUAGES
In our project, we use SBVR Structured English (SE) for
authoring policies in an English-like formalism. SBVR SE
policies are then automatically translated into BaseVISor Rule
Language (BVR) for execution and policy reconciliation.

1 Unified Cross Domain Management Office, What is a cross domain

solution?, http://www.ucdmo.gov/faqs.html.
2 XML Data Flow Configuration File Format Specification Version 1.2.11 19
December 2008 http://iase.disa.mil/cds/helpful_tools/dfcf-specification-1-2-
11.pdf

1.2.2 SBVR Structured English

Semantic of Business Vocabulary and Business Rules (SBVR)
[1] is an OMG standard introduced in 2008 that aims at a more
natural format for expressing rules. Business rules are
expressed in a subset of natural language that is readily
understandable by business people, instead of at an
implementation level, such as rules that are processable by a
formal reasoning engine. The vocabulary represents the
concepts used in the rules and can also express facts and
relations between concepts (e.g. that Fido is a dog). The
specification is based on first order modal logic and captures
the semantics of implementation-independent business
models. Figure 1 locates SBVR in the Business Model (also
called the Computation-Independent Model) level in OMG’s
Model Driven Architecture (MDA) [2] and is meant to be
translatable to a Platform-Independent Model (PIM) that
describes the structure and behavior of the model, and
subsequently to a Platform-Specific Model (PSM) that
includes all the platform dependent information necessary for
a developer to implement executable code, such as specific
programming language packages. SBVR is mapped to the
Meta-Object Facility (MOF) [3] metamodel – a useful feature
for transformations of an SBVR model to other models.

Figure 1: SBVR in OMG’s MDA.

SBVR distinguishes between alethic and deontic constraints.
Alethic rules are categorized as structural business rules,
which are rules that must necessarily be true as part of the
business organization. Deontic rules are operative business
rules that should be obeyed but which can be violated in
practice.

SBVR has two common notations: Structured English
and RuleSpeak®. Structured English (SBVR SE) is a
controlled English vocabulary and grammar that uses font
styling and color to indicate SBVR concepts. term represents a
noun concept such as rule and action. Name is an individual
concept and usually is a proper noun, e.g. California. verb is
part of a SBVR construct called a fact type and is usually a
verb, preposition or combination of preposition and verb.
Lastly, SBVR SE defines a set of keywords that are reserved
words or phrases with special meaning. Examples of keywords
are the articles a and the, modality phrases It is necessary that,
and quantifications every and at most one. An example of a
SBVR SE rule is:

It is obligatory that a driver is qualified if the driver rents a car
that is owned by EU-Rent

SBVR RuleSpeak® [4] is a proprietary variant developed
by Business Rule Solutions, LLC (BRS) [5]. RuleSpeak®
provides templates for business rules based on the category or
subcategory that applies to the rule. We did not use the
RuleSpeak format and will not address it here.

Like the other languages discussed, SBVR is domain and
application independent. The SBVR specification includes a
proposal relating SBVR concepts to equivalent OWL
expressions, so clearly some consideration was given to how
SBVR should work with semantic languages. Its main strength
over the other languages is its user friendliness. Because
SBVR SE is an almost-natural language, it is suitable for
expressing high-level rules. Among available editors are
SBVR-VE (SBVR Visual Editor) [7], a graphical drag-and-
drop editor where attempts to create links between boxes
containing, say, a modality and a term, would often not work;
Sepiax-Web [8], an Ajax-based web editor with WordNet and
SBVR integration; SBeaVer [9], an Eclipse plugin that
provides syntax highlighting for SBVR SE; and a proposed
SBVR tool component [10], including an editor, as part of
Eclipse’s Modeling Development Tools (MDT) [11] that has
been in development for the past few years. There are also
enterprise editors that support RuleSpeak®.

SBVR is sufficiently expressive for representing high level
rules but because SBVR is at the business model level, it
suffers from the common problem that most business model
level components do: translation to a PIM and especially to a
PSM requires additional details about computations and
platform-specific information, usually supplied by an IT
person. The SBVR vocabulary can be expanded to include
platform vocabulary, but SBVR is meant to be a high level
language and is not executable, so SBVR is most useful when
translated into a lower level executable language like
BaseVISor Rule Language (BVR), as we have done.

1.2.3 BaseVISor Rule Language (BVR)

BaseVISor (http://www.vistology.com/basevisor), a versatile
forward-chaining rule engine specialized for handling facts in
the form of RDF triples (i.e., subject, predicate, and object),
expresses rules in BaseVISor Rule language (BVR). The
BaseVISor engine implements OWL 2 RL inference rules in
BVR and supports XML Schema Data Types.

Generally speaking, rules are expressed in the form of
if/then statements. The ‘if’ part of the statement is represented
by the ‘body’ or ‘antecedent’ of the rule; the ‘then’ part is
represented by the ‘head’ or ‘consequence’. In BVR the
contents of rule heads and bodies are made up of triple
patterns (i.e., triples that may contain variables) and
procedural attachments, i.e. functions such as add, assert, and
println (print line). Users can add user-defined procedural
attachments for use in rules. BaseVISor also supports queries,
which are special cases of rules with empty heads, and are
useful for retrieving information from the resulting fact base.

BVR is domain and application independent, compatible
with the semantic languages OWL and RDF, designed for
formal reasoning and executable in the BaseVISor
environment. It is very expressive, especially since the
language is extensible via user-defined procedural
attachments. A BVR editor is available as an Eclipse plugin to
aid in composing BVR rules.

Translation of SBVR SE into BVR makes use of
metamodels for both languages. First, SBVR SE expressions
of policies are saved as XMI, then a proprietary metamodel-to-
metamodel mapping is used to translate the SBVR XMI into a
corresponding BVR rule, preserving its semantics.

IV. SECURITY POLICY ONTOLOGIES
We developed two OWL ontologies to encapsulate our
treatment of policies as classes and to represent concepts and
their relations that we have determined to be essential for
security scenarios, including information exchange. These
“core” ontologies are the basis for any domain-specific
application of PolVISor, i.e. domain-specific scenarios should
extend these ontologies with their domain-specific knowledge
and rules. The design of the ontologies, such as treating
actions and operations as first-class entities, are grounded in
our study and investigation of formal security models.

1.2.4 Representing Modal Notions in OWL

PolVISor, as we have said, involves two kinds of modality,
deontic and alethic. Modal expressions qualify the truth of a
statement. For example, to say that “John is possibly
dyslexic” is not to assert that “John is dyslexic”, but a more
qualified statement that the statement might be true. Modality
is expressed logically as operators over propositions. Op(p)
means that some modal operator Op is being asserted of the
proposition p: It is Op that p. The operator identifies the way
in which the truth of the bare proposition p is being qualified.

Alethic modality is the logic of possibility (it is
possible that p) and necessity (it is necessary that p). As
specified by SBVR, alethic notions are encoded directly in the
ontology. Necessity relations between classes are expressed in
terms of subclass relations that apply to all instances. Thus, to
say that “necessarily, all bachelors are unmarried” or
“necessarily, all cats are mammals” is to say that the class
Bachelor is a subclass of Unmarried Things and that Cat is a
subclass of Mammal. Without such a subclass relation, it
might be that all of the instances of Bachelor are instances of
Unmarried, but that would be a contingent coincidence, not a
necessary truth, with respect to that ontology. We encode that
it is possible that (some) Fs are Gs (e.g. that some File Clerks
are Dyslexic) in the ontology by failing to have class F (File
Clerk) and G (Dyslexic) as disjoint classes. If F and G are
marked as disjoint classes, then necessarily, no Fs are Gs,
(and, necessarily, no Gs are Fs), according to that ontology.

“It is necessary that a user has a password” expresses
a necessity relation between the class of Users and the class of
things that have a password. This necessity relation would be
expressed by saying that the class of Users is a subclass of the
class of things that have Passwords. This encodes the

necessity relation in the ontology directly. Ontologies, after
all, express constraints on how the world can be. To say that
users may have a password is expressible by saying that the
class of Users and the class of things that have a password are
not disjoint.

Deontic Logic [12] is the study of the logic of the
concepts “may” (or deontic ‘can’) and “must” and their duals
“may not” and “must not”. These concepts are crucial in
expressing policies: policies express what may or may not be
done, under certain conditions, and what must and must not be
done, again under certain conditions. May and must are modal
notions. Sentences employing modal notions do not express
the way the actual world is, but qualify the truth of the
proposition they modify, in this case expressing conditions on
how possible worlds should be if they are to comply with the
policies our ontology encodes. That is, if I say that “John may
go to the store” or “John must (not) go to the store”, I do not
say anything about how the actual world is with respect to
John’s going to the store. What I express has to do with the
consistency of John’s going to the store with the ways in
which John is permitted to act or with the ways in which John
must act.

In our inference engine, BaseVISor, propositions are
expressed as triples (subject, predicate, object). BaseVISor
does not allow for modal operators over triples. Therefore,
rather than give modal operators their usual semantics as
quantifiers over possible worlds or ways the world could be or
ways a person could act, we treat Actions as a class that can be
subdivided into Permissible (may), Omissible (may not),
Optional (may and may not), Obligatory (must) and Prohibited
(must not) subclasses.

The structure of the ontology is represented in Figure 2:

Figure 2. Classes and subclasses of Deontic Ontology

First, Actions are subclassified as Permissible or Omissible.
An action is Permissible if it may be done. For example,
getting married is permissible, so the class of actions that is
getting married could be represented as a subset of the class of
permissible actions.

An action is Omissible if it is permissible not to do it.
For example, eating okra is omissible. One may abstain from
eating okra. The class of actions that is okra-eating could
thus be represented as a subset of the Omissible actions.

In fact, one both may and may not eat okra (and one
may or may not get married), so instances of both of these
types of actions would be instances of the intersection of the
Omissible and Permissible classes: the Optional actions.

Obligatory actions (actions one must do) are a subset
of the Permissible actions. If an action must be done, then it
may be done. The Obligatory actions and the Omissible

actions are disjoint: if an action must be done, it is not the case
that it may not be done.

Similarly, Prohibited actions (actions one must not
do) are a subset of the Omissible actions (actions one may not
do). The Prohibited actions and the Permissible actions are
disjoint: if an action must not be done, then it is not the case
that it may be done.

We have expressed these relations in an OWL
ontology. The ontology may be downloaded at
http://vistology.com/ont/2010/secpol/Deontic.owl.

By means of this ontology, one can state that all
instances of actions of a certain type are, for example,
prohibited (e.g. theft, murder) or permissible (e.g. expressing
one’s opinion, forming associations) across the board. Policy
rules allow one to express conditions under which actions of a
certain type are classified as permissible or prohibited or
optional based on additional facts about them. For example,
one could express the policy that it is permissible to marry
only if one is at least a certain age, not already currently
married, and so on.

1.2.5 Upper Policy Ontology

We developed a policy ontology to serve as the base of all
application- or domain-specific ontologies, available at
http://vistology.com/ont/2010/secpol/UpperSecPolOnt.owl. It
was derived by starting with the Naval Research Laboratory’s
(NRL) Security Ontology [25]. The NRL ontology was
primarily designed for annotating resources with security-
related metadata in order to facilitate the discovery of
resources that meet security requirements.

In our ontology, a Policy consists of one or more
Rules, associated with a SecurityPurpose (e.g. Data Integrity,
Confidentiality). Rules are expressed in SBVR SE and
translated into BaseVISor rule language. Rules govern
Operations (Actions), i.e. operations performed by an element
in the system (e.g. reading a file). Each Operation has an agent
who originates the operation and an object that is the target of
the operation. In the example of Bob reading a file foo.txt, the
operation is a Reading with agent Bob and object foo.txt.

These Operations are declared to be owl:sameAs the
class of Actions in the Deontic ontology, and thus,
subclassified as Permissible and Omissible, and so on. They
can also be equated to some other ontological representation
of operations. Here we assert our Operation class to be
owl:sameAs the class of UCore-SL Acts, indicated by the
namespace sl. UCore-SL is an OWL version of the UCore
[13][14] messaging format adopted for information sharing
among the defense and intelligence communities.

For Security Markings, we have employed Richard Lee’s
ISM Ontology v. 0.7 [15]. This ontology is described as “a
rendering of the IC-ISM XML spec for security markings. It is
based on the IC-ISM v5 XSD, updated thru 2010-09-25.
Although this ontology provides a complete taxonomy of
security markings in use by US and Coalition partners, it does
not generally order security markings from high to low within
a markup scheme. We have added axioms to encode these
facts as needed.

V. INFORMATION SHARING IN XMPP
Extensible Messaging and Presence Protocol (XMPP) [16] is a
popular open-standard protocol for instant messaging (IM)
widely used in military applications. There are a number of
extensions to the protocol that define protocols for other
functionality, like Voice Over IP (VoIP). Each user signs into
his XMPP account identified by a jid, commonly of the form
name@domain.server, e.g. juliet@montague.net. Each jid has
a contact list called a roster. Figure 3 illustrates the process
when a user signs on. The server hosting the user
automatically sends a presence to each of his contacts, except
for those he has blocked, to indicate that he is now online. The
contact’s server forwards the presence to the receiver, unless
she specified that she does not wish to receive presences from
the sender. The contact’s server also sends back a presence to
the sender if she has not blocked presence-outs to the sender.
Now the two clients can start chatting with each other. Users
can also join chatrooms, participate in conversations as a
group, and send messages to individuals in the room.

Privacy lists allow users to specify contacts with whom
he wishes to restrict contact. However, there are currently no
methods for server to specify policies to restrict users’ chat,
except by name. Using Openfire [17], an open source XMPP
server available from Ignite Realtime [18], for our server, we
developed an Openfire plugin that intercepts incoming and
outgoing XMPP stanzas. The stanzas of interest in our
scenarios are presences and messages, but all stanzas are
intercepted so our implementation is extensible. Users connect
to servers via Spark IM Client [19], an open source IM client
application also provided by Ignite Realtime.

The Openfire plugin plays the role of the context handler
here. It invokes an XSLT script to translate the XMPP stanzas
to RDF and passes the RDF version of the stanza to PolVISor.
PolVISor analyzes the stanza and returns to the plugin a
decision to allow or deny the stanza. We chose to implement a
deny-overrides approach, where if any applicable rule denies
the stanza, the stanza is denied. If the stanza is allowed, the
plugin forwards the original stanza to Openfire, which
processes it as usual. If the stanza is denied, the plugin drops
the stanza and the server does not see it. The behavior of the
plugin can be changed to modify the stanza instead, for
example if dropped stanzas should be logged by the server.

We developed an XMPP ontology with the core concepts
such as jid and presence. The scenarios below build upon this
base ontology. Because of our action-oriented approach in the
upper ontology, actions like Sends are subclasses of Operation.
BVR rules convert the stanza information to match the
ontology, e.g. based on a presence stanza from
juliet@montague.net to romeo@capulet.com, a Sends instance
is generated that has agent the sender juliet@montague.net and
has object the presence stanza, and the presence stanza has
“to” romeo@capulet.com and “from” juliet@montague.net.

A. XMPP Presence Scenario
To demonstrate server policies that limit who can
communicate with whom, based on facts about the persons
involved, we implemented rules and ontologies for one server

that restricts chat based on gender and another server that
restricts chat based on the first letter of the jid. Gender is used
for simplicity, but any class of persons could be used here, for
example, filtering users by any combination of role or
nationality or location. Because chatting depends on the initial
sending of presences to contacts, the rules analyze presence
stanzas and apply to incoming and outgoing presences. The
rules state:

Figure 3: XMPP sequence diagram for sign in and roster

retrieval.

Server 1 Policies:

Allow presences to/from Males on Mondays, Wednesdays
and Fridays.

Allow presences to/from Females on Tuesdays, Thursdays
and Saturdays.

Each user’s gender is encoded using the FOAF (Friend of a
Friend) vocabulary, and the information is available to Server
1. Because the FOAF gender is an untyped literal, a helper
BVR rule determines whether a jid is an instance of the class
Male or Female accordingly.

Server 2 Policies:

Allow presences to/from contacts whose jid start with A-L
on Mondays, Tuesdays and Wednesdays.

Allow presences to/from contacts whose jid start with M-Z
on Thursdays, Fridays and Saturdays.

Server 2’s rules take advantage of BaseVISor’s built-in regular
expression procedural attachments.

All other stanzas that are not allowed explicitly are
denied, e.g. no one hosted on either Server 1 or Server 2 can
chat with others on Sundays. Here, policy reconciliation is
implicit; a presence successfully sent from a user on Server 1
to a user on Server 2 means that both Server 1 and Server 2
allow the stanza. Therefore, amy@server1.com who is Female
on Server 1 can chat with brenda@server2.com who is Female
on Tuesdays because of Server 1’s second rule and Server 2’s
first rule.

B. XMPP Security Labels Scenario
CWID 2010 featured a Cross Domain Collaboration
implementation [20]. The collaboration scenarios included
chatting and document sharing using security labels, access
control and authentication. Clients and servers were modified
to support security labels, among other functionalities. Boldon
James’s SAFE IM for XMPP [21] allows users to assign
security labels to their one-to-one chats, group chats in rooms,
and file transfers. It checks that receivers of labeled messages
have sufficient clearance to read the message and that users
who wish to join a chatroom with a security label have
sufficient clearance to join. Isode’s M-link server [22] is a
XMPP server with support for controlling message flow based
on the security label of the message and the security clearance
of the sender and recipient.

We have implemented the same functionality of
security labels by extending the ontologies and rules for the
presence scenario outlined previously. Both sets of ontologies
and rules for Server 1 and Server 2 have the same extensions
and use the security levels from Intelligence Community
Information Security Marking (IC-ISM) ontologies [23] for
security labels and clearance levels. We added reflexivity and
transitivity to the relevant properties so PolVISor can reason
that someone with a clearance of TopSecret can send and
receive messages classified as TopSecret or any lower level
like Secret or Unclassified. This scenario considers one-to-one
labeled chat messages but can be easily extended to group chat
messages sent to a labeled chatroom so that no messages with
a label at a higher level than the chatroom’s maximum allowed
label could be sent. Clients set the level by enclosing the label
in brackets in the beginning of the message body, e.g.
[RESTRICTED].

The rules state:

If a sender sends a labeled message to a recipient on a
different server and the sender has equal or higher security
clearance than the security level of the message, then the
message is permitted to be sent.

If a recipient of a labeled message from another server has
equal or higher security clearance than the security level of the
message, the message is permitted.

If the sender and recipient of a labeled message are on the
same server, and if the clearance of the sender and clearance of
the recipient are equal or higher than the label’s level, the
message is allowed.

If a message does not explicitly have a security label, the
message’s security label is Unclassified.

All stanzas not explicitly allowed are denied.

C. XMPP Chatroom Reconciliation Scenario
To demonstrate explicit reconciliation, we implemented
another scenario. If a client on Server 1 wants to join a
chatroom hosted on Server 2 and both Server 1 and Server 2
have security policies restricting who can join what chatroom,
then their policies must be successfully reconciled and the
attempt to join must satisfy the reconciled policy in order for

the attempt to be allowed. By satisfying the reconciled policy,
the request also satisfies each server’s policy. A client joins a
chatroom by sending a presence to the chatroom, so the rules
analyze presence stanzas.

The rules state:

Server 1 Policy: If the client is Male, he can join any
chatroom.

Server 2 Policy: Any client can join any chatroom.

Server 1’s policy is more restrictive than Server 2’s, and
lacking any other rules that concern clients joining chatrooms,
ensure that only Males are allowed in chatrooms that involve
any Server 1 clients. Figure 4 depicts the process. The plugin
and PolVISor are not explicitly shown, but rather are
subsumed as part of the server. The reconciled policy in this
case is logically equivalent to Server 1’s policy since Server
2’s policy subsumes Server 1’s. Therefore, reconciling the
policies is equivalent to adopting the more restrictive policy.

However, because the servers have their own
extended ontologies with server-specific classes and
properties, ontology mapping could be needed for the request
to satisfy the reconciled policy. An ontology mapping scenario
is discussed below.

Figure 4: XMPP chatroom reconciliation sequence.

D. XMPP Ontology Matching Scenario
So far we assumed that both Server 1 and Sever 2 use

the same ontology-based vocabulary to describe their clients.
However, it is possible that the servers use facts expressed in
different ontologies, in which case before polices can be
reconciled, ontology matching must be first performed.

Ontology matching is the process of finding
relationships between entities in two or more different
ontologies. The output of matching, called an alignment, is a
set of correspondences that express the relationship between
different ontologies. Alignments include, but are not limited
to, statements such as entity equivalence, sub-super
relationship between entities, class intersection, or inverse

relation. Alignments can be used to generate various tools
used in further automated processing. For instance, a
translator can translate data instances expressed in one
ontology to another, or a mediator that can translate queries
expressed in one ontology to another, and translate answers in
the opposite direction.

Despite sophisticated methods from AI, ontology
matching currently can rarely be fully automated beyond
relatively simple correspondences, covering syntactic and
terminological heterogeneity. When the same concepts in
different ontologies are defined using different axioms,
matching algorithms often have difficulties identifying any
correspondences at all, or find ones that are irrelevant. When
matching is incomplete or incorrect, manual editing is
necessary. Matching systems typically allow the user to
specify a threshold for confidence held in the
correspondences, which allows for eliminating matches that
are most likely invalid.

In order to demonstrate the use of automated ontology
matching in the process of policy reconciliation, we matched
FOAF and vCard ontologies with the threshold of 0.9 (1 being
100% confident) using an ontology matching API [24] and
dynamically found the following relationships:

Equivalent classes:

Foaf:Organization and vcard:Organization
Equivalent datatype properties:

foaf:givenname and vcard:given-name
foaf:givenName and vcard:given-name
foaf:nick and vcard:nickname
foaf:title and vcard:title
foaf:family_name and vcard:family-name
foaf:familyName and vcard:family-name

Equivalent object properties:
foaf:logo and vcard:logo

Since vCard does not include gender information, we could
not directly use this property to define policies. Instead, we
used the nickname information, supported by both ontologies,
in order to encode the gender of a user. We assumed that all
nicknames follow a pattern “g_Name”, where “g” can be
either “F” or “M”, indicating the user’s gender. We designed a
scenario similar to the XMPP Chatroom Reconciliation
Scenario, with the following rules:

Server 1 Policy: If the client is Male (i.e. if his foaf:nick
starts with M_), he can join any chatroom.

Server 2 Policy: Any client can join the chatroom.

Reconciled Policy: If the client is Male (i.e. if his foaf:nick
or vcard: nickname starts with M_), he can join any chatroom.

While the policies are similar to the previous scenarios, this
time Server 1 defines its policy using the FOAF vocabulary
and imports the client’s FOAF file, while Server 2 encodes
user information in the vCard vocabulary. Thus, before the
policies can be reconciled, FOAF and vCard need to be first

matched in order to produce bridge axioms. Once matched,
PolVISor reconciles the two policies, resulting in the
reconciled policy equivalent to that of Server 1. Figure 5
shows the process.

Figure 5: XMPP ontology matching.

The alignment between FOAF and vCard was used to
dynamically produce OWL bridge axioms, which allow for
reconciliation between policies using related, but differently
named concepts. Thus, Server 2 can determine whether a
client’s foaf:nick has the required prefix, and subsequently is
of the necessary gender, based on the “nickname” filed of his
vCard. Although the scenario used a rather trivial example of
matching, our design and implementation can support more
complex alignments, as long as the matcher can first
automatically align the ontologies.

VI. CONCLUSIONS
In this project, we have demonstrated that:

1. Policies authored in a restricted natural language
format (SBVR Structured English) can be automatically
converted to an executable formalism (BaseVISor rule
language and OWL 2 RL) effectively.

2. Policies written in the ontology-based rule language
provide an effective and flexible way to specify expressive
policies that can be automatically enforced using ontology-
based reasoning. The core ontologies used as the basis for
domain-specific knowledge are grounded by our investigation
of established security models.

3. Policies written in the ontology-based rule language
can be effectively reconciled to allow for dynamic, policy-
based information exchange between and an open set of
XMPP servers.

4. While policy reconciliation typically requires the
sharing of a common vocabulary, we have shown that
effective ontology matching can be implemented to allow
policy reconciliation across different (but similar)
vocabularies.

ACKNOWLEDGMENT
This work was performed under US Army contract

W91260-09-C-0037 “Security Policy Reconciliation”.

REFERENCES
[1] Semantics of Business Vocabulary and Business Rules v1.0.

http://www.omg.org/spec/SBVR/1.0/ . May 2011.
[2] MDA Home Page. www.omg.org/mda/ . May 2011.
[3] MOF Home Page. www.omg.org/mof/ . May 2011.
[4] R. G. Ross. Basic RuleSpeak® Guidelines: Do’s and Don’ts in

Expressing Natural-Language Business Rules in English.
http://www.rulespeak.com/en/Basic%20RuleSpeak%20Dos%20and%20
Donts%20v2-2-5.pdf

[5] Business Rule Solutions, LLC. Home Page. http://www.brsolutions.com/
. May 2011M. Young, The Technical Writer's Handbook. Mill Valley,
CA: University Science, 1989.

[6] P. McDaniel and A. Prakash. Methods and Limitations of Security
Policy Reconciliation. ACM Transactions on Information and System
Security (TISSEC), Association for Computing Machinery, 9(3):259-
291, 2006

[7] SBVR Visual Editor Home Page. http://sourceforge.net/projects/sbvrve/
. May 2011

[8] Sepiax-Web Page. http://www.sepiax.org/index.php?id=93 . May 2011
[9] M. De Tommasi, A. Corallo. SBEAVER: A Tool for Modeling Business

Vocabularies and Business Rules. In Proc. 10th Int. Conf. on
Knowledge-Based Intelligent Information and Engineering Systems
(KES'06), LNCS Vol. 4253, 2006, 1083–1091

[10] MDT/SBVR Proposal Page. http://wiki.eclipse.org/MDT-SBVR-
Proposal . May 2011.

[11] Eclipse Model Development Tools (MDT) Home Page.
http://www.eclipse.org/modeling/mdt/ . May 2011.

[12] P. McNamara, Deontic Logic. The Stanford Encyclopedia of Philosophy
(Fall 2010 Edition), Edward N. Zalta (ed.).
http://plato.stanford.edu/archives/fall2010/entries/logic-deontic/

[13] UCore Specification Page. https://www.ucore.gov/ . May 2011.
[14] B. Smith, L. Vizenor, J. Schoening. Universal Core Semantic Layer.

Ontologies in the Intelligence Community Conference, 2007.
[15] Lee, R. Using New Standards to Develop IC Ontologies. In Proc. of the

Fifth International Conference on Semantic Technologies for
Intelligence, Defense, and Security. (STIDS’10). Fairfax, VA, USA,
October 27-28, 2010.

[16] XMPP Standards Foundation. www.xmpp.org/ . May 2011.
[17] Openfire Home Page. http://www.igniterealtime.org/projects/openfire/
[18] Ignite Realtime Home Page. http://www.igniterealtime.org/ . May 2011.
[19] Spark Home Page.

http://www.igniterealtime.org/projects/spark/index.jsp . May 2011.
[20] CWID 2010 UK Cross Domain Chat. Enclosure 1 to Cross Domain Chat

Point Brief. July 2010.
[21] Boldon, James – Military Messaging and Secure Information Exchange

Software Page. http://www.army-
technology.com/contractors/navigation/boldonjames/ . May 2011.

[22] Isode Whitepaper: Using Security Labels to Control Message Flow in
XMPP Services. http://www.isode.com/whitepapers/controlling-
message-flow.html . May 2011.

[23] Common Information Sharing Standard for Information Security
Marking: XML Implementation Implementation Guide. Office of the
Director of National Intelligence Chief Information Officer. Release
2.0.3, February 2006.

[24] J. Euzenat, F. Scharffe, and A. Zimmermann, “Expressive alignment
language and implementation,” deliverable, Knowledge Web NoE,
2007. Available at http:// ftp//ftp.inrialpes.fr/pub/exmo/reports/kweb-
2210.pdf..

[25] Kim, J. Luo, and M. Kang, "Security Ontology for Annotating
Resources," Proceedings of 4th International Conference on Ontologies,
Databases, and Applications of Semantics (ODBASE'05), Agia Napa,
Cyprus, 2005.

