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Abstract— Extensible Messaging and Presence Protocol (XMPP) 
is a popular open-standard protocol for instant messaging (IM) 
widely used in military and commercial applications.  In military 
contexts, as in commercial settings, it is often necessary to 
regulate who may communicate with whom and how.  The 
distributed nature of XMPP makes centralized information 
exchange policy enforcement impossible, however.  We report on 
a technology we have developed, called PolVISor, in which we 
express information exchange policies in a natural language 
formalism (SBVR SE), automatically translate these policies into 
an executable rule language (BaseVISor rule language) and 
enforce and reconcile disparate policies among XMPP servers, 
each with its own policies, using semantic technologies. 

Keywords: XMPP; security policies; policy reconciliation; 
SBVR; ontologies; deontology; modality 

I.  INTRODUCTION  
Policy authoring, representation and enforcement are 

essential components in security systems. As systems grow 
and collaboration becomes more ubiquitous (e.g. via grid 
computing, collaboration among coalitions), the set of security 
policies grows larger. This leads to potentially undetected 
policy conflicts and the need for automated or semi-automated 
policy reconciliation. Our work has resulted in PolVISor, 
which uses ontological reasoning to determine security policy 
compliance and provide policy reconciliation when possible. 
We demonstrated the necessity, feasibility and flexibility of 
PolVISor to constrain information sharing in an XMPP 
(Extensible Messaging and Presence Protocol) environment.  

II.  SECURITY, POLICIES AND RECONCILIATION 
In this project we were concerned with the ability to use 
policies to ensure compliance during runtime as well as with 
the ability to do policy reconciliation. Policy compliance 
involves the run-time process of ensuring that all of the 
conditions defined by a policy hold true; a common example is 
the checking of credentials required before granting access to 
a document. In policy reconciliation, the goal is to take 
multiple polices and, e.g., generate a policy instance that 
simultaneously satisfies all of them; a typical example here is 
determining specific conditions under which a communication 
session can be established between nodes in a VPN where the 

ends of the connection are governed by different policies. 

1.1 Semantic and Non-Semantic Representations of 
Policies 

Policies can be implemented in a system via the hardware (e.g. 
this light will not turn on unless both of these switches are 
turned on); or in software.  In software, a policy can be 
represented either syntactically or semantically.  By a 
semantic representation, we mean a representation in which 
inferences can be made on the basis of a policy instance using 
a domain-generic inference engine.  So, for example, a 
Windows Group Policy instance has a meaning that is clear to 
everyone who knows the semantics of the policy language.  
However, no generic reasoning engine can draw inferences 
from Windows Group Policy instances in their native format.  
The representation has no meaning to those engines. 

A primary objective in our work is to develop the means 
by which operations governing policies can be handled 
automatically by a computer. For this reason it is important to 
be able to describe policies in a formal, declarative way that 
will permit them to be automatically processed by formal 
reasoning engines. 

A formal reasoner or inference engine is a system capable 
of applying the formal axioms of a language to a body of 
data/facts/knowledge resulting in the derivation of additional 
inferable facts. A rule-based system, for example, may be used 
as a formal reasoner if it is provided with a set of axioms for 
the language in which the data/knowledge is represented. Such 
axiom sets are available for a number of ontology languages as 
discussed below.  

An important principle employed by many systems 
including policy-based reasoners is the use of the closed world 
assumption (CWA), which permits systems to assume that 
everything that is known to be true of the “world” is available 
in the facts that have been provided about it; if a fact is not 
explicitly stated it is assumed to be false. The closed world 
defined by a set of facts can be thought of as a “context” in 
which reasoning is to occur.  OWL-based systems, like 
PolVISor, do not adopt the CWA. 

For reconciliation to be possible there should be an 
explicit separation of policies and mechanisms that use the 



policies, and the policies should be first-class objects within 
the security system. In this way, policies will be objects that 
can be represented, stored and manipulated by the security 
system. Moreover, in this way policies will have their own 
interpretation, or semantics. This has a very important impact 
on the accreditation process in that mechanisms can be 
accredited and then policies can be added dynamically. 

1.2 The Policy Reconciliation Problem 

Two systems or elements of a system may impose 
policies on certain operations.  In this paper we define policy 
reconciliation as the determination of a policy that implicitly 
or explicitly satisfies both policies and governs the behavior of 
the interaction of the system(s).  Provisioning policies, 
authorization policies and information exchange policies are 
all types of policies that may require reconciliation. 

In this project, we have bounded the problem of policy 
reconciliation in several ways. First, we assume that all 
partners in the policy negotiation process are equals. 
Therefore, we have chosen not to incorporate policy deference 
mechanisms saying that if System 1 and System 2 have 
different policies, then one of the system’s policies overrides 
the other. While such meta-policies are widespread in practice, 
they do not pose an interesting conceptual problem.   

Secondly, we have not dealt with preferences among 
policies.  Thus, a system might allow distinct set of actions A 
or B (distinguished by their participants, say, or by other 
parameter settings), but it would prefer one set to the other. 
We have not addressed this issue because it essentially 
involves a different kind of modal reasoning: reasoning that 
ranks some situations as more desirable than others, although 
each is permissible.  This is the logic of “should” and “should 
not”, as opposed to the logic of “may (not)” and “must (not)” 
as described in the section on our deontic ontology of actions 
below.  The considerations involved in modal reasoning about 
‘should’ involves a higher-order reasoning than the logic of 
‘may’ and ‘must’, and we have not addressed this in this 
project.  In particular, we have not addressed what might be 
called “consequentialist” policies, where a policy is preferred 
based on its outcome.  For example, one might say, choose 
policy A or policy B based on which one allows the most (or 
fewest) users (perhaps meeting some other criteria) to access 
some set of files.  Such a system would require some kind of 
modeling and simulation step to determine how many users 
have access, and thus determine the policy choice. 

Finally, we have not concerned ourselves with situations in 
which the policies to be reconciled cannot be completely 
disclosed between the interested parties.  There are 
undoubtedly situations in which the policies that govern some 
action are themselves proprietary and sensitive in that they 
reveal, with contextual information, proprietary information.  
For example, suppose a University had a policy in which 
admitted students could sign up for a campus bulletin board 
system.  If prospective students learned about this policy, they 
could potentially find out who had been admitted to the 
university before the official announcement had been made by 
trying to register on the bulletin board.  In such a case, the 

university might want to avoid making such a policy known to 
other users or systems in order not to disclose unwanted 
information.  We have not focused on such situations of policy 
reconciliation where trust is an issue since trust management is 
beyond the scope of our current investigations. 

1.2.1 Information Exchange Policies 

In this paper, we examine enforcing and reconciling 
information exchange policies.  Information exchange policies 
are important in military and intelligence situations, where 
cross-organizational collaboration is required but strict 
policies restrict who can communicate with whom and what 
information they can exchange.  For example, a military 
coalition might allow members of different national forces to 
collaborate on some tasks within certain channels and with 
certain information, but not others.  The same is true of 
financial services and health care industries, which both 
regulate information exchange.  For example, in financial 
services, so-called Chinese Wall policies regulate 
communication between analysts and traders. In health care, 
privacy and confidentiality policies regulate what information 
can be shared between health care providers and patients.  
Information sharing between social networking sites and other 
sites is another current example, particularly where single 
sign-on schemes like OpenID (http://openid.net) are involved. 

In the military and intelligence community, information 
exchange policies are labeled “Cross Domain Solutions”:  
“Cross Domain Solutions (CDS) are controlled interfaces that 
provide the capability to access or transfer information across 
different security domains.” 1  The eXtensible Markup 
Language (XML) Data Flow Configuration File (DFCF) 
format specification2 was developed to provide a common 
format for defining, validating, and approving XML data 
flows for use in XML cross domain solutions. DCDF is 
specified syntactically in XML in terms of information sharing 
system endpoints, where a complete policy specifies, for each 
endpoint pair, what information can be sent from an endpoint, 
and what information may be received by an endpoint.  Such 
comprehensive policies are difficult to set up, are likely to 
become obsolete as the contents of the endpoint systems 
change, and are not flexible.  Finally, they are not reconciled, 
across all endpoints because one system cannot impose any 
limitations on another system, only on itself. However, they 
can be implicitly reconciled at run time when two endpoints 
try to exchange information. 

III. POLICY LANGUAGES 
In our project, we use SBVR Structured English (SE) for 
authoring policies in an English-like formalism.  SBVR SE 
policies are then automatically translated into BaseVISor Rule 
Language (BVR) for execution and policy reconciliation. 

                                                             
1  Unified Cross Domain Management Office, What is a cross domain 

solution?, http://www.ucdmo.gov/faqs.html. 
2 XML Data Flow Configuration File Format Specification Version 1.2.11 19 
December 2008 http://iase.disa.mil/cds/helpful_tools/dfcf-specification-1-2-
11.pdf 



1.2.2 SBVR Structured English 

Semantic of Business Vocabulary and Business Rules (SBVR) 
[1] is an OMG standard introduced in 2008 that aims at a more 
natural format for expressing rules. Business rules are 
expressed in a subset of natural language that is readily 
understandable by business people, instead of at an 
implementation level, such as rules that are processable by a 
formal reasoning engine. The vocabulary represents the 
concepts used in the rules and can also express facts and 
relations between concepts (e.g. that Fido is a dog). The 
specification is based on first order modal logic and captures 
the semantics of implementation-independent business 
models. Figure 1 locates SBVR in the Business Model (also 
called the Computation-Independent Model) level in OMG’s 
Model Driven Architecture (MDA) [2] and is meant to be 
translatable to a Platform-Independent Model (PIM) that 
describes the structure and behavior of the model, and 
subsequently to a Platform-Specific Model (PSM) that 
includes all the platform dependent information necessary for 
a developer to implement executable code, such as specific 
programming language packages. SBVR is mapped to the 
Meta-Object Facility (MOF) [3] metamodel – a useful feature 
for transformations of an SBVR model to other models. 

 

 

Figure 1: SBVR in OMG’s MDA. 

SBVR distinguishes between alethic and deontic constraints. 
Alethic rules are categorized as structural business rules, 
which are rules that must necessarily be true as part of the 
business organization. Deontic rules are operative business 
rules that should be obeyed but which can be violated in 
practice.  

SBVR has two common notations: Structured English 
and RuleSpeak®. Structured English (SBVR SE) is a 
controlled English vocabulary and grammar that uses font 
styling and color to indicate SBVR concepts. term represents a 
noun concept such as rule and action. Name is an individual 
concept and usually is a proper noun, e.g. California. verb is 
part of a SBVR construct called a fact type and is usually a 
verb, preposition or combination of preposition and verb. 
Lastly, SBVR SE defines a set of keywords that are reserved 
words or phrases with special meaning. Examples of keywords 
are the articles a and the, modality phrases It is necessary that, 
and quantifications every and at most one. An example of a 
SBVR SE rule is:  

 

It is obligatory that a driver is qualified if the driver rents a car 
that is owned by EU-Rent 
 

SBVR RuleSpeak® [4] is a proprietary variant developed 
by Business Rule Solutions, LLC (BRS) [5]. RuleSpeak® 
provides templates for business rules based on the category or 
subcategory that applies to the rule.  We did not use the 
RuleSpeak format and will not address it here. 

Like the other languages discussed, SBVR is domain and 
application independent. The SBVR specification includes a 
proposal relating SBVR concepts to equivalent OWL 
expressions, so clearly some consideration was given to how 
SBVR should work with semantic languages. Its main strength 
over the other languages is its user friendliness. Because 
SBVR SE is an almost-natural language, it is suitable for 
expressing high-level rules. Among available editors are 
SBVR-VE (SBVR Visual Editor) [7], a graphical drag-and-
drop editor where attempts to create links between boxes 
containing, say, a modality and a term, would often not work; 
Sepiax-Web [8], an Ajax-based web editor with WordNet and 
SBVR integration; SBeaVer [9], an Eclipse plugin that 
provides syntax highlighting for SBVR SE; and a proposed 
SBVR tool component [10], including an editor, as part of 
Eclipse’s Modeling Development Tools (MDT) [11] that has 
been in development for the past few years. There are also 
enterprise editors that support RuleSpeak®. 

SBVR is sufficiently expressive for representing high level 
rules but because SBVR is at the business model level, it 
suffers from the common problem that most business model 
level components do: translation to a PIM and especially to a 
PSM requires additional details about computations and 
platform-specific information, usually supplied by an IT 
person. The SBVR vocabulary can be expanded to include 
platform vocabulary, but SBVR is meant to be a high level 
language and is not executable, so SBVR is most useful when 
translated into a lower level executable language like 
BaseVISor Rule Language (BVR), as we have done.  

1.2.3 BaseVISor Rule Language (BVR) 

BaseVISor (http://www.vistology.com/basevisor),  a versatile 
forward-chaining rule engine specialized for handling facts in 
the form of RDF triples (i.e., subject, predicate, and object), 
expresses rules in BaseVISor Rule language (BVR). The 
BaseVISor engine implements OWL 2 RL inference rules in 
BVR and supports XML Schema Data Types.  

Generally speaking, rules are expressed in the form of 
if/then statements. The ‘if’ part of the statement is represented 
by the ‘body’ or ‘antecedent’ of the rule; the ‘then’ part is 
represented by the ‘head’ or ‘consequence’. In BVR the 
contents of rule heads and bodies are made up of triple 
patterns (i.e., triples that may contain variables) and 
procedural attachments, i.e. functions such as add, assert, and 
println (print line). Users can add user-defined procedural 
attachments for use in rules. BaseVISor also supports queries, 
which are special cases of rules with empty heads, and are 
useful for retrieving information from the resulting fact base. 



BVR is domain and application independent, compatible 
with the semantic languages OWL and RDF, designed for 
formal reasoning and executable in the BaseVISor 
environment.  It is very expressive, especially since the 
language is extensible via user-defined procedural 
attachments. A BVR editor is available as an Eclipse plugin to 
aid in composing BVR rules.  

Translation of SBVR SE into BVR makes use of  
metamodels for both languages.  First, SBVR SE expressions 
of policies are saved as XMI, then a proprietary metamodel-to-
metamodel mapping is used to translate the SBVR XMI into a 
corresponding BVR rule, preserving its semantics. 

IV.  SECURITY POLICY ONTOLOGIES 
We developed two OWL ontologies to encapsulate our 
treatment of policies as classes and to represent concepts and 
their relations that we have determined to be essential for 
security scenarios, including information exchange. These 
“core” ontologies are the basis for any domain-specific 
application of PolVISor, i.e. domain-specific scenarios should 
extend these ontologies with their domain-specific knowledge 
and rules. The design of the ontologies, such as treating 
actions and operations as first-class entities, are grounded in 
our study and investigation of formal security models. 

1.2.4 Representing Modal Notions in OWL 

PolVISor, as we have said, involves two kinds of modality, 
deontic and alethic.  Modal expressions qualify the truth of a 
statement.  For example, to say that “John is possibly 
dyslexic” is not to assert that “John is dyslexic”, but a more 
qualified statement that the statement might be true.  Modality 
is expressed logically as operators over propositions.  Op(p) 
means that some modal operator Op is being asserted of the 
proposition p:  It is Op that p.  The operator identifies the way 
in which the truth of the bare proposition p is being qualified. 

Alethic modality is the logic of possibility (it is 
possible that p) and necessity (it is necessary that p).  As 
specified by SBVR, alethic notions are encoded directly in the 
ontology.  Necessity relations between classes are expressed in 
terms of subclass relations that apply to all instances.  Thus, to 
say that “necessarily, all bachelors are unmarried” or 
“necessarily, all cats are mammals” is to say that the class 
Bachelor is a subclass of Unmarried Things and that Cat is a 
subclass of Mammal.  Without such a subclass relation, it 
might be that all of the instances of Bachelor are instances of 
Unmarried, but that would be a contingent coincidence, not a 
necessary truth, with respect to that ontology.   We encode that 
it is possible that (some) Fs are Gs (e.g. that some File Clerks 
are Dyslexic) in the ontology by failing to have class F (File 
Clerk) and G (Dyslexic) as disjoint classes.  If F and G are 
marked as disjoint classes, then necessarily, no Fs are Gs, 
(and, necessarily, no Gs are Fs), according to that ontology. 

“It is necessary that a user has a password” expresses 
a necessity relation between the class of Users and the class of 
things that have a password.  This necessity relation would be 
expressed by saying that the class of Users is a subclass of the 
class of things that have Passwords.  This encodes the 

necessity relation in the ontology directly. Ontologies, after 
all, express constraints on how the world can be.  To say that 
users may have a password is expressible by saying that the 
class of Users and the class of things that have a password are 
not disjoint. 

Deontic Logic [12] is the study of the logic of the 
concepts “may” (or deontic ‘can’) and “must” and their duals 
“may not” and “must not”.  These concepts are crucial in 
expressing policies: policies express what may or may not be 
done, under certain conditions, and what must and must not be 
done, again under certain conditions. May and must are modal 
notions. Sentences employing modal notions do not express 
the way the actual world is, but qualify the truth of the 
proposition they modify, in this case expressing conditions on 
how possible worlds should be if they are to comply with the 
policies our ontology encodes.  That is, if I say that “John may 
go to the store” or “John must (not) go to the store”, I do not 
say anything about how the actual world is with respect to 
John’s going to the store.  What I express has to do with the 
consistency of John’s going to the store with the ways in 
which John is permitted to act or with the ways in which John 
must act. 

In our inference engine, BaseVISor, propositions are 
expressed as triples (subject, predicate, object). BaseVISor 
does not allow for modal operators over triples. Therefore, 
rather than give modal operators their usual semantics as 
quantifiers over possible worlds or ways the world could be or 
ways a person could act, we treat Actions as a class that can be 
subdivided into Permissible (may), Omissible (may not), 
Optional (may and may not), Obligatory (must) and Prohibited 
(must not) subclasses. 

The structure of the ontology is represented in Figure 2: 
 

Figure 2. Classes and subclasses of Deontic Ontology 
 

First, Actions are subclassified as Permissible or Omissible.  
An action is Permissible if it may be done.  For example, 
getting married is permissible, so the class of actions that is 
getting married could be represented as a subset of the class of 
permissible actions.    

An action is Omissible if it is permissible not to do it.  
For example, eating okra is omissible.  One may abstain from 
eating okra.   The class of actions that is okra-eating could 
thus be represented as a subset of the Omissible actions. 

In fact, one both may and may not eat okra (and one 
may or may not get married), so instances of both of these 
types of actions would be instances of the intersection of the 
Omissible and Permissible classes: the Optional actions. 

Obligatory actions (actions one must do) are a subset 
of the Permissible actions.  If an action must be done, then it 
may be done. The Obligatory actions and the Omissible 



actions are disjoint: if an action must be done, it is not the case 
that it may not be done. 

Similarly, Prohibited actions (actions one must not 
do) are a subset of the Omissible actions (actions one may not 
do). The Prohibited actions and the Permissible actions are 
disjoint: if an action must not be done, then it is not the case 
that it may be done. 

We have expressed these relations in an OWL 
ontology.  The ontology may be downloaded at 
http://vistology.com/ont/2010/secpol/Deontic.owl.  

By means of this ontology, one can state that all 
instances of actions of a certain type are, for example, 
prohibited (e.g. theft, murder) or permissible (e.g. expressing 
one’s opinion, forming associations) across the board. Policy 
rules allow one to express conditions under which actions of a 
certain type are classified as permissible or prohibited or 
optional based on additional facts about them.  For example, 
one could express the policy that it is permissible to marry 
only if one is at least a certain age, not already currently 
married, and so on. 

1.2.5 Upper Policy Ontology 

We developed a policy ontology to serve as the base of all 
application- or domain-specific ontologies, available at 
http://vistology.com/ont/2010/secpol/UpperSecPolOnt.owl. It 
was derived by starting with the Naval Research Laboratory’s 
(NRL) Security Ontology [25]. The NRL ontology was 
primarily designed for annotating resources with security-
related metadata in order to facilitate the discovery of 
resources that meet security requirements.   

In our ontology, a Policy consists of one or more 
Rules, associated with a SecurityPurpose (e.g. Data Integrity, 
Confidentiality). Rules are expressed in SBVR SE and 
translated into BaseVISor rule language. Rules govern 
Operations (Actions), i.e. operations performed by an element 
in the system (e.g. reading a file). Each Operation has an agent 
who originates the operation and an object that is the target of 
the operation. In the example of Bob reading a file foo.txt, the 
operation is a Reading with agent Bob and object foo.txt. 

These Operations are declared to be owl:sameAs the 
class of Actions in the Deontic ontology, and thus, 
subclassified as Permissible and Omissible, and so on.  They 
can also be equated to some other ontological representation 
of operations.  Here we assert our Operation class to be 
owl:sameAs the class of UCore-SL Acts, indicated by the 
namespace sl.  UCore-SL is an OWL version of the UCore 
[13][14] messaging format adopted for information sharing 
among the defense and intelligence communities.  

For Security Markings, we have employed Richard Lee’s 
ISM Ontology v. 0.7 [15]. This ontology is described as “a 
rendering of the IC-ISM XML spec for security markings. It is 
based on the IC-ISM v5 XSD, updated thru 2010-09-25.  
Although this ontology provides a complete taxonomy of 
security markings in use by US and Coalition partners, it does 
not generally order security markings from high to low within 
a markup scheme.  We have added axioms to encode these 
facts as needed. 

V. INFORMATION SHARING IN XMPP 
Extensible Messaging and Presence Protocol (XMPP) [16] is a 
popular open-standard protocol for instant messaging (IM) 
widely used in military applications. There are a number of 
extensions to the protocol that define protocols for other 
functionality, like Voice Over IP (VoIP). Each user signs into 
his XMPP account identified by a jid, commonly of the form 
name@domain.server, e.g. juliet@montague.net. Each jid has 
a contact list called a roster. Figure 3 illustrates the process 
when a user signs on. The server hosting the user 
automatically sends a presence to each of his contacts, except 
for those he has blocked, to indicate that he is now online. The 
contact’s server forwards the presence to the receiver, unless 
she specified that she does not wish to receive presences from 
the sender. The contact’s server also sends back a presence to 
the sender if she has not blocked presence-outs to the sender. 
Now the two clients can start chatting with each other. Users 
can also join chatrooms, participate in conversations as a 
group, and send messages to individuals in the room. 

Privacy lists allow users to specify contacts with whom 
he wishes to restrict contact. However, there are currently no 
methods for server to specify policies to restrict users’ chat, 
except by name. Using Openfire [17], an open source XMPP 
server available from Ignite Realtime [18], for our server, we 
developed an Openfire plugin that intercepts incoming and 
outgoing XMPP stanzas. The stanzas of interest in our 
scenarios are presences and messages, but all stanzas are 
intercepted so our implementation is extensible. Users connect 
to servers via Spark IM Client [19], an open source IM client 
application also provided by Ignite Realtime.  

The Openfire plugin plays the role of the context handler 
here. It invokes an XSLT script to translate the XMPP stanzas 
to RDF and passes the RDF version of the stanza to PolVISor. 
PolVISor analyzes the stanza and returns to the plugin a 
decision to allow or deny the stanza. We chose to implement a 
deny-overrides approach, where if any applicable rule denies 
the stanza, the stanza is denied. If the stanza is allowed, the 
plugin forwards the original stanza to Openfire, which 
processes it as usual. If the stanza is denied, the plugin drops 
the stanza and the server does not see it. The behavior of the 
plugin can be changed to modify the stanza instead, for 
example if dropped stanzas should be logged by the server. 

We developed an XMPP ontology with the core concepts 
such as jid and presence. The scenarios below build upon this 
base ontology. Because of our action-oriented approach in the 
upper ontology, actions like Sends are subclasses of Operation. 
BVR rules convert the stanza information to match the 
ontology, e.g. based on a presence stanza from 
juliet@montague.net to romeo@capulet.com, a Sends instance 
is generated that has agent the sender juliet@montague.net and 
has object the presence stanza, and the presence stanza has 
“to” romeo@capulet.com and “from” juliet@montague.net. 

A. XMPP Presence Scenario 
To demonstrate server policies that limit who can 
communicate with whom, based on facts about the persons 
involved, we implemented rules and ontologies for one server 



that restricts chat based on gender and another server that 
restricts chat based on the first letter of the jid. Gender is used 
for simplicity, but any class of persons could be used here, for 
example, filtering users by any combination of role or 
nationality or location. Because chatting depends on the initial 
sending of presences to contacts, the rules analyze presence 
stanzas and apply to incoming and outgoing presences. The 
rules state: 

 

 
Figure 3: XMPP sequence diagram for sign in and roster 

retrieval. 

Server 1 Policies: 

Allow presences to/from Males on Mondays, Wednesdays 
and Fridays. 

Allow presences to/from Females on Tuesdays, Thursdays 
and Saturdays.  

Each user’s gender is encoded using the FOAF (Friend of a 
Friend) vocabulary, and the information is available to Server 
1. Because the FOAF gender is an untyped literal, a helper 
BVR rule determines whether a jid is an instance of the class 
Male or Female accordingly. 

Server 2 Policies: 

Allow presences to/from contacts whose jid start with A-L 
on Mondays, Tuesdays and Wednesdays. 

Allow presences to/from contacts whose jid start with M-Z 
on Thursdays, Fridays and Saturdays.  

Server 2’s rules take advantage of BaseVISor’s built-in regular 
expression procedural attachments. 

All other stanzas that are not allowed explicitly are 
denied, e.g. no one hosted on either Server 1 or Server 2 can 
chat with others on Sundays. Here, policy reconciliation is 
implicit; a presence successfully sent from a user on Server 1 
to a user on Server 2 means that both Server 1 and Server 2 
allow the stanza. Therefore, amy@server1.com who is Female 
on Server 1 can chat with brenda@server2.com who is Female 
on Tuesdays because of Server 1’s second rule and Server 2’s 
first rule. 

B. XMPP Security Labels Scenario 
CWID 2010 featured a Cross Domain Collaboration 
implementation [20]. The collaboration scenarios included 
chatting and document sharing using security labels, access 
control and authentication. Clients and servers were modified 
to support security labels, among other functionalities. Boldon 
James’s SAFE IM for XMPP [21] allows users to assign 
security labels to their one-to-one chats, group chats in rooms, 
and file transfers. It checks that receivers of labeled messages 
have sufficient clearance to read the message and that users 
who wish to join a chatroom with a security label have 
sufficient clearance to join. Isode’s M-link server [22] is a 
XMPP server with support for controlling message flow based 
on the security label of the message and the security clearance 
of the sender and recipient.  

We have implemented the same functionality of 
security labels by extending the ontologies and rules for the 
presence scenario outlined previously. Both sets of ontologies 
and rules for Server 1 and Server 2 have the same extensions 
and use the security levels from Intelligence Community 
Information Security Marking (IC-ISM) ontologies [23] for 
security labels and clearance levels. We added reflexivity and 
transitivity to the relevant properties so PolVISor can reason 
that someone with a clearance of TopSecret can send and 
receive messages classified as TopSecret or any lower level 
like Secret or Unclassified. This scenario considers one-to-one 
labeled chat messages but can be easily extended to group chat 
messages sent to a labeled chatroom so that no messages with 
a label at a higher level than the chatroom’s maximum allowed 
label could be sent. Clients set the level by enclosing the label 
in brackets in the beginning of the message body, e.g. 
[RESTRICTED]. 

The rules state: 

If a sender sends a labeled message to a recipient on a 
different server and the sender has equal or higher security 
clearance than the security level of the message, then the 
message is permitted to be sent. 

If a recipient of a labeled message from another server has 
equal or higher security clearance than the security level of the 
message, the message is permitted. 

If the sender and recipient of a labeled message are on the 
same server, and if the clearance of the sender and clearance of 
the recipient are equal or higher than the label’s level, the 
message is allowed. 

If a message does not explicitly have a security label, the 
message’s security label is Unclassified. 

All stanzas not explicitly allowed are denied. 

C. XMPP Chatroom Reconciliation Scenario 
To demonstrate explicit reconciliation, we implemented 
another scenario. If a client on Server 1 wants to join a 
chatroom hosted on Server 2 and both Server 1 and Server 2 
have security policies restricting who can join what chatroom, 
then their policies must be successfully reconciled and the 
attempt to join must satisfy the reconciled policy in order for 



the attempt to be allowed. By satisfying the reconciled policy, 
the request also satisfies each server’s policy. A client joins a 
chatroom by sending a presence to the chatroom, so the rules 
analyze presence stanzas. 

The rules state: 

Server 1 Policy: If the client is Male, he can join any 
chatroom.  

Server 2 Policy: Any client can join any chatroom. 

Server 1’s policy is more restrictive than Server 2’s, and 
lacking any other rules that concern clients joining chatrooms, 
ensure that only Males are allowed in chatrooms that involve 
any Server 1 clients. Figure 4 depicts the process. The plugin 
and PolVISor are not explicitly shown, but rather are 
subsumed as part of the server. The reconciled policy in this 
case is logically equivalent to Server 1’s policy since Server 
2’s policy subsumes Server 1’s.  Therefore, reconciling the 
policies is equivalent to adopting the more restrictive policy. 

However, because the servers have their own 
extended ontologies with server-specific classes and 
properties, ontology mapping could be needed for the request 
to satisfy the reconciled policy. An ontology mapping scenario 
is discussed below. 

 
Figure 4: XMPP chatroom reconciliation sequence. 

D. XMPP Ontology Matching Scenario 
So far we assumed that both Server 1 and Sever 2 use 

the same ontology-based vocabulary to describe their clients. 
However, it is possible that the servers use facts expressed in 
different ontologies, in which case before polices can be 
reconciled, ontology matching must be first performed.  

Ontology matching is the process of finding 
relationships between entities in two or more different 
ontologies. The output of matching, called an alignment, is a 
set of correspondences that express the relationship between 
different ontologies. Alignments include, but are not limited 
to, statements such as entity equivalence, sub-super 
relationship between entities, class intersection, or inverse 

relation. Alignments can be used to generate various tools 
used in further automated processing. For instance, a 
translator can translate data instances expressed in one 
ontology to another, or a mediator that can translate queries 
expressed in one ontology to another, and translate answers in 
the opposite direction.  

Despite sophisticated methods from AI, ontology 
matching currently can rarely be fully automated beyond 
relatively simple correspondences, covering syntactic and 
terminological heterogeneity. When the same concepts in 
different ontologies are defined using different axioms, 
matching algorithms often have difficulties identifying any 
correspondences at all, or find ones that are irrelevant. When 
matching is incomplete or incorrect, manual editing is 
necessary. Matching systems typically allow the user to 
specify a threshold for confidence held in the 
correspondences, which allows for eliminating matches that 
are most likely invalid. 

In order to demonstrate the use of automated ontology 
matching in the process of policy reconciliation, we matched 
FOAF and vCard ontologies with the threshold of 0.9 (1 being 
100% confident) using an ontology matching API [24] and 
dynamically found the following relationships: 

 
Equivalent classes:  

Foaf:Organization and vcard:Organization 
Equivalent datatype properties: 

foaf:givenname and vcard:given-name 
foaf:givenName and vcard:given-name 
foaf:nick and vcard:nickname 
foaf:title and vcard:title 
foaf:family_name and vcard:family-name 
foaf:familyName and vcard:family-name 

Equivalent object properties: 
foaf:logo and vcard:logo 

 
Since vCard does not include gender information, we could 
not directly use this property to define policies. Instead, we 
used the nickname information, supported by both ontologies, 
in order to encode the gender of a user. We assumed that all 
nicknames follow a pattern “g_Name”, where “g” can be 
either “F” or “M”, indicating the user’s gender. We designed a 
scenario similar to the XMPP Chatroom Reconciliation 
Scenario, with the following rules: 
 

Server 1 Policy: If the client is Male (i.e. if his foaf:nick 
starts with M_), he can join any chatroom. 

Server 2 Policy: Any client can join the chatroom. 

Reconciled Policy: If the client is Male (i.e. if his foaf:nick 
or vcard: nickname starts with M_), he can join any chatroom. 

While the policies are similar to the previous scenarios, this 
time Server 1 defines its policy using the FOAF vocabulary 
and imports the client’s FOAF file, while Server 2 encodes 
user information in the vCard vocabulary. Thus, before the 
policies can be reconciled, FOAF and vCard need to be first 



matched in order to produce bridge axioms. Once matched, 
PolVISor reconciles the two policies, resulting in the 
reconciled policy equivalent to that of Server 1.  Figure 5 
shows the process. 

 

 
Figure 5: XMPP ontology matching. 

The alignment between FOAF and vCard was used to 
dynamically produce OWL bridge axioms, which allow for 
reconciliation between policies using related, but differently 
named concepts. Thus, Server 2 can determine whether a 
client’s foaf:nick has the required prefix, and subsequently is 
of the necessary gender, based on the “nickname” filed of his 
vCard. Although the scenario used a rather trivial example of 
matching, our design and implementation can support more 
complex alignments, as long as the matcher can first 
automatically align the ontologies. 

VI. CONCLUSIONS 
In this project, we have demonstrated that: 

1. Policies authored in a restricted natural language 
format (SBVR Structured English) can be automatically 
converted to an executable formalism (BaseVISor rule 
language and OWL 2 RL) effectively. 

2. Policies written in the ontology-based rule language 
provide an effective and flexible way to specify expressive 
policies that can be automatically enforced using ontology-
based reasoning. The core ontologies used as the basis for 
domain-specific knowledge are grounded by our investigation 
of established security models. 

3. Policies written in the ontology-based rule language 
can be effectively reconciled to allow for dynamic, policy-
based information exchange between and an open set of 
XMPP servers.    

4. While policy reconciliation typically requires the 
sharing of a common vocabulary, we have shown that 
effective ontology matching can be implemented to allow 
policy reconciliation across different (but similar) 
vocabularies. 
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