
J. Cardiff, T. Catarci, G. Santucci 2-1

Exploitation of Interschema Knowledge in a
Multidatabase System

John Cardiff Tiziana Catarci, Giuseppe Santucci
Department of Computing Dipartimento di Informatica e Sistemistica

RTC Tallaght Università degli Studi di Roma "La Sapienza"
Dublin 24 Via Salaria 113
IRELAND I-00198 Roma, ITALY

john.cardiff@rtc-tallaght.ie [catarci/santucci]@infokit.ing.uniroma1.it

Abstract

We describe a logic language to formally
express interdependencies between classes
belonging to different schemas, the so-
called interschema knowledge. These
interdependencies allow a designer of a
multidatabase (MDB) to establish
relationships between both the intensional
definition and the set of instances of classes
represented in different schemas. These
assertions form the „backbone“ of the MDB
and we may benefit in several ways from
the possibility of reasoning about them. In
this paper, we present two applications of
interschema knowledge, namely schema
integration and global query processing and
optimization.

1. Introduction

Over the past few years, our research efforts have
been inspired by two different needs. On one side
the number of non-expert users accessing databases
is largely growing. On the other side, information
systems tend to be no longer composed by a single
centralised architecture, but rather by several
heterogeneous component systems. In order to
address such needs we have designed a new query
system, having both user-oriented and multidatabase

Research supported by the EEC under Esprit Project
6398, „VENUS“, and by the Irish Government under
Forbairt Project ST/94/720 „LIOM“.

The copyright of this paper belongs to the paper’s authors.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage.
Proceedings of the 4th KRDB Workshop
Athens, Greece, 30-August-1997
(F. Baader, M.A. Jeusfeld, W. Nutt, eds.)
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-8/

features. The system main components are an
adaptive visual interface, providing the user with
different and interchangeable interaction modalities,
and a „translation layer“, which creates and offers to
the user the illusion of a single homogeneous
schema out of several heterogeneous components.
Both components are founded on a common ground,
i.e. a formally defined and semantically rich data
model, the Graph Model [Catarci Santucci
Angelaccio 1993], and a minimal set of Graphical
Primitives (GPs), in terms of which general query
operations may be visually expressed. The Graph
Model has a visual syntax, so that graphical
operations can be applied on its components without
unnecessary mappings, and an object-based
semantics.

The generality of our approach allows the
representation of a wide class of models, such as
relational, semantic, and object-oriented models, in
terms of the Graph Model constructs. Moreover, the
GPs defined on the Graph Model can be effectively
used for characterizing the semantics of the most
popular visual query languages defined on both
semantic and object-oriented data models. In
principle, the Graph Model can be used as the
internal model of any visual query system, providing
a sound formalism useful to characterize the
semantics of the visual operations defined on the
external model. We have shown ([Catarci Santucci
Cardiff 1997]) how to map databases expressed in
several data models, namely relational, semantic,
object-oriented, into Graph Model Databases
(GMDBs). Furthermore, the translation algorithm
between relational databases and GMDBs can be
used for showing the relational completeness of the
GPs.

This paper outlines some of our research efforts
in the multidatabase environment that is „behind“
the Graph Model. Specifically we describe the
following aspects of our work which we believe are
of most interest to the workshop audience:
• a logic language necessary for expressing

assertions that hold between intensions and
extensions of the component schemas,

• the application of assertions in this language for
performing certain key multidatabase

J. Cardiff, T. Catarci, G. Santucci 2-2

functionalities, viz. optimization of
multidatabase queries, and integration of
component schemas.

2. Representation of Interschema
Knowledge

The notion of interschema knowledge is crucial for
the development of cooperating heterogeneous
information systems. Recent work on
interoperability points out that two individual
information systems can interoperate on the basis of
a mutual understanding of the information resources
they provide. Obviously, in order to achieve this
mutual understanding, several forms of interschema
knowledge must be expressed and reasoned upon.

We have developed a logic language to express
interdependencies between classes belonging to
different schemas. These interdependencies allow a
designer of an MDB to establish several
relationships between both the intensional definition
and the set of instances of classes represented in
different schemas. Once we have a set of assertions
of the above-mentioned kinds, we may benefit in
several ways from the possibility of reasoning about
them. One distinguishing feature of our work is to
provide inference mechanisms that allow such
reasoning to be carried out. Based on the formal
semantics of the language, we can indeed devise
suitable reasoning procedures that allow one to draw
useful inferences on interschema knowledge. For
example, one can check whether one class
represented in the MDB is incoherent, i.e. it has an
empty extension in every state, or can deduce that
the extension of a class A in the schema Si is always
a subset of the extension of the class B in Sj, so that
accessing Si is useless if we want to retrieve all the
instances (stored in any of the information systems)
of the concept represented by B. One distinguishing
feature of our work is to provide inference
mechanisms that allow such reasoning to be carried
out. Such inference mechanisms can play an
important role in both checking for interschema
consistency, and in providing integrated access to
the MDB.

We assume that the individual information
systems which are the components of the
heterogeneous information system are defined in
terms of the same data model, i.e. the Graph Model,
which is a class-oriented model. We summarise
below our efforts in developing the formal
translations between virtually all data models (and
their query languages) and the Graph Model, so this
assumption is not a limit to the generality of our
approach.

2.1 The adopted formalism

In the formalism we adopt, the basic structure of a
schema is expressed as a so called Typed Graph.

Moreover, a logic-based language can be used for
specifying properties and constraints of the database
components, by means of class and role expressions.
Central to this language is the notion of class and
role, which corresponds to the concept of class-node
and role-node in the Typed Graph. Analogously, a
role can be either functional or non-functional. Also,
there is a distinction between classes and domains
equivalent to the division between unprintable class-
nodes and printable class-nodes in the Typed Graph.
The main idea is that all the knowledge about the
basic elements in the Typed Graph can be specified
in terms of a set of assertions. Syntactically, an
assertion is a statement of the form L1 isa L2, where
L1 and L2 are expressions of the language.
Informally, an assertion of the above form states that
every instance of the class (denoted by the
expression) L1 is also an instance of the class L2
(for a formal treatment of this subject see [Catarci
Lenzerini 1993]).

Suppose we are given an alphabet B of symbols
for a GMDB D, including:

- the node labels L1, the set of elementary values

D;
- two special class symbols ⊥ and T;
- the special symbols ∩ ,∪ ,∃ ,∀ ,(,),{,} .

We use the term class expression over B to
denote any expression that is formed using the
symbols in B according to some syntactic rules (see
[Catarci Lenzerini 1993]). For instance, the simplest
class expression is the one formed by the name of a
class-node. Intuitively, the expression R:C denotes
the restriction of the relationship represented by the
role-node R to those pairs whose second component
is an instance of the concept C. Moreover, the
symbol • denotes composition of relationships, the

symbol -1 is used to denote the inverse of a

relationship, and symbol * is used to denote the
transitive closure of a relationship.

With regard to domains, i.e., the unprintable
class-nodes, the expression {e1,...,en} denotes the
concept whose interpretation is the set of values
corresponding to e1,...,en.

With regard to concept expressions, the meaning
of the constructor ¬ , ∩, ∪ , is simply that of set
complement, set intersection and set union,
respectively. For instance, C ∩ F (where C and F are
class-nodes) represents the set of instances of both C
and F. The constructors ∃ and ∀ are used to describe
concepts on the basis of their linking to
relationships: intuitively, ∃ R.C denotes the set of
objects that are linked by the role-node R to at least
one instance of the class-node C, whereas ∀ R.C
denotes the set of objects which are linked by R to
all the objects that are instances of C. The
expression ∃ R denotes the set of objects that are
linked by the role-node R to at least one object.

J. Cardiff, T. Catarci, G. Santucci 2-3

In order to characterize the instances of the
database, the Typed Graph has an associated
Interpretation. We start by considering the set of
constraints to be empty. In this case, the
interpretation for a Typed Graph g is a function
mapping the printable class-nodes of g to a subset of
the set of elementary printable values, the
unprintable class-nodes of g to a subset of the set of
elementary unprintable values, and the role-nodes to
a subset of a set of structured objects, defined as the
smallest set containing the set of elementary values
and all the possible labeled tuples (of any arity). In
particular, given a role-node n, its Interpretation is
constitued by a set of tuples whose arity is equal to
the number of class-nodes adjacent to n, and each
component is labeled with the label of one adjacent
class-node and takes its values in the corresponding
Interpretation. When a set of assertions c is defined
over the nodes of the Typed Graph g, the definition
of interpretation is extended in order to satisfy such
assertions. A formal semantics is defined for the
class expressions, as well as a set of semantic
equations which have to be satisfied in order for a
certain m to be an interpretation for the couple <g,
c> (see [Catarci Lenzerini 1991]). An interpretation
m is called a model of a set of assertions if every
assertion is satisfied by m. Recalling the
correspondance between interpretations and
database states, it is easy to see that the models
correspond to those database states which are legal
with respect to a set of integrity constraints (in our
case, the set of assertions).

2.2 Assertions

The kind of assertions expressible using the logic
language is a superset of those directly expressing
using traditional semantic models, and we will see
that this greater richness can be used once we want
to represent and use interschema knowledge. It is
also worth noting that while the user who wants
simply to query the database does not have to be
overloaded by too detailed information, the designer
who builds the heterogeneous system needs to know
much more about the component systems s/he has to
integrate.

In fact, we can not only express the usual isa
relationships between entities (e.g., Author isa
Person), but also isa relationships on relationships.
Moreover, we can use explicit negation, so stating
that the set of instances of two entities are disjoint.
For example, we can represent that the classes
Author and Referee are disjoint by means of the
assertion: Author isa ¬ Referee. Another example of
negative information is the one stating that a certain
relationship is meaningless for an entity, i.e. that the
instances of the entity cannot participate in the
relationship.

Several kinds of indefinite information can also
be expressed by means of assertions. One of the
most important kind of indefinite assertions is

related to the use of disjunction. For example, one
can assert that persons are either males or females
by writing: Person isa (male ∪ female).

Finally, it is possible to combine necessary and
sufficient conditions, so providing a definition of a
concept in terms of other concepts. For instance, we
can associate a definition to the class-node
ItalianPaper as follows:

ItalianPaper defint Paper
(∀ WrittenBy.(Author(∀ Nationality.Italian)

which means: an Italian paper is a paper whose
authors are all Italians.

2.3 Interschema Knowledge

In this section we describe our approach for
specifying interschema knowledge in terms of
interdependencies between classes belonging to
different schemas.

Suppose that the heterogeneous information
system is constituted by n individual information
systems, called component information systems,
whose schemas are S1,...,Sn with alphabets
B1,...,Bn. We assume that all the schemas are
expressed using the Graph Model and that some
extra assertions are available for the designer. Let S0
be a further schema (having its own alphabet B0 and
set of assertions C0), called the common knowledge
schema of the MDB. Intuitively, S0 represents the
general properties of the classes that should be
considered common knowledge in the
heterogeneous information system. Obviously, in
those applications where such knowledge is not
available, the set of assertions in C0 will be empty.

Interschema knowledge is then specified in
terms of interschema assertions. There are four
kinds of such assertions, whose forms are:

L1 defint L2
L1 isaint L2
L1 defext L2
L1 isaext L2

where in every assertion, L1 represents an Si-class
expression, and L2 represents an Sj-class
expression, in such a way that L1 and L2 are class
expressions of the same types (either entity, domain,
relationship, or attribute expressions), and i ≠ j.
Moreover, if L1 and L2 are relationship expressions,
then there is the constraint that the set of
components appearing in L1 has the same
cardinality as the set of components appearing in L2.
In other words, an interschema assertion represents a
well-typed interdependency between two class
expressions belonging to two different schemas.

J. Cardiff, T. Catarci, G. Santucci 2-4

We now discuss the intuitive meaning of the four
kinds of interschema assertions that we have
introduced by using some examples, and refer to
[Catarci Lenzerini 1993] for their formal semantics.

The first assertion states that the expression L1 is
intensionally equivalent to L2. Intuitively, this
means that, if Si and Sj referred to a unique set of
objects in the real world, then the extension of L1
would be the same as the extension of L2.
Therefore, the above assertion is intended to state
that, although the extension of L1 may be different
from the extension of L2, the concept represented by
L1 is in fact the same as the concept represented by
L2. As a simple example, the S1-entity
UndergraduateStudent can be declared intensionally
equivalent to the S2-entity Student ∩
¬ GraduateStudent, to reflect that, even if the
instances of the two expressions may be different in
the various states of the MDB, the concept of
UndergraduateStudent in the schema S1 is fully
captured by the above entity expression in the
schema S2.

The second assertion states that the entity
expression L1 of schema S1 is intensionally less
general than the entity expression L2 (of schema
S2). This means that there is a sort of containment
between L1 and L2, and this containment is
conceptual, not necessarily being reflected at the
instance level. In other words, the above intensional
relationship is intended to state that, if S1 and S2
referred to a unique set of objects in the real world,
then the extension of L1 would be a subset of L2.
For example, Tutor2 may be declared intensionally
less general than Teacher3, if the concept of tutor as
represented in the schema S2 is subsumed by the
concept of teacher in the schema S3.

The third assertion states that L1 and L2 are
always extensionally equivalent. In this case we are
asserting that in every state of the MDB, the set of
objects that are instances of L1 in S1 is the same as
the set of objects that are instances of L2 in S2.

Finally, the fourth assertion states that the
extension of L1 is always a subset of the extension
of L2. For example, if the entity Student1 refers to
the students of a University Department, and the
schema S2 refers to the whole University, then we
may assert that Student1 is extensionally less general
than Student2.

3. Applications of Interschema
Knowledge

3.1 Global Query Optimization

As the user interacts with a conceptually single
database, s/he is unaware of the existence of the
underlying databases, and needs not be concerned
with their specific storage formats or query
languages. As a consequence, the onus is on the
system to produce an efficient decomposition of the
user’s query to a number of subqueries which are to
be executed on the component databases. The issue
of query processing and optimization in an MDB
has been considered in several research projects (see
for example, [Dayal Landers Yedwab 1982], [Du
Krishnamurthy Shan 1992], [Lu Ooi Goh 1992],
[Florescu Raschid Valduriez 1996]). The central
contribution of this paper is the development of a
methodology to enhance the efficiency of MDB
query decomposition by the exploitation of inter-
and intra-schema knowledge. To the best of our
knowledge, this has not been addressed elsewhere in
the literature, which is somewhat surprising, since
information describing the interrelationships of the
schemas must be represented in some manner to
realize an MDB.

We address this issue by augmenting the
„traditional“ approach to multidatabase query
processing with additional methodologies to exploit
the availability of semantic information that could
simplify the expression of a query. The totality of

schema knowledge on the multidatabase Σ is a set
of schema assertions which we partition into a
number of sets:
• CG which contains assertions relating exclusively

to the global schema,
• CIS which contains assertions describing

relationships between the component schemas
[Sheth Larson 1990], and

• A set of schema assertions {CL1 ... CLn,} , where
CLi contain assertions relating exclusively to the
schema Si, 1 ≤ i ≤ n.

CG and any of the local assertion sets CLi may be
empty.

Interschema assertions are exploited in global
query optimization in a number of ways. We can use
extensional equivalence and assertions to determine
alternative data sources, ie. component databases
containing replicated data, either one of which can
provide the data required to answer the query.
Exclusion assertions determine when no instances
used in computing the result are stored by a
component database, and extensional subset
assertions determine if the set of instances in one
database used in computing the result are a subset of
those stored by another database, which may remove
the need to access the latter. We have defined a
comprehensive set of such transformations which
can reduce the overall cost of the global query
[Cardiff Catarci Santucci 1997].

We use two structures to represent the global
query during the decomposition and transformation

J. Cardiff, T. Catarci, G. Santucci 2-5

process. The first, which we call a Conceptual
Global Query Tree (CGQT) is a generic
representation of the decomposed global query.
There is a single CGQT associated with each global
query. In effect, this information describes the
operations to be effected to compute the result,
without explicitly stating how they will be
implemented. There can be many alternative
strategies for implementing a specific CGQT − an
integration operation can be split over several
queries and each of these can be executed at any
site. We use a structure called an Implementation
Global Query Tree (IGQT) to represent specific
execution strategies.

The transformations summarized above vary
considerably in their effect on the overall cost of the
CGQTs and IGQTs, and so they cannot be applied
indiscriminately to each global query tree under
consideration, since this may impact the overall
execution time. Instead we adopt the following
tactics for application of transformations.

The global query is first considered for semantic
transformations using only the global assertions, CG.
The assertions in CG describe properties relating
exclusively to the global schema GMDBI, and are
useful in identifying redundancy or inconsistencies
in a query specification, due to user ignorance of the
domain, for instance. The output of this phase is a
semantically „relevant“ query, ie. one without
redundancy and inconsistency. In effect, this
analysis is equivalent to semantic query
optimization on a centralized database.

The query is then decomposed from its
specification on GMDBI to component queries on
the underlying Export Schemas GMDB1...n. Query
decomposition has been well explored in the
literature (see for example [Meng Yu 1995]) and is
not considered in our research. The output of this
phase is a Conceptual Global Query Tree (CGQT), a
representation of an execution strategy for the global
query on the component Graph Model databases.

There are several categories of transformations
that can be applied immediately to the canonical
CGQT, however we restrict application initially to
the identification of redundant and alternative
execution sites. This phase performs a series of
initial semantic transformations on the CGQT,
identifying:
• those databases which contain no data relevant

to the result,
• those which need not be queried, due to the

query semantics, and
• those which contain data replicated over two or

more sites, any of which can be used in
computing the result.

 The output is a semantically transformed CGQT.

 The next phase uses the CGQT to derive a
number of potential execution strategies, represented
as IGQTs. Since there is a large number of IGQTs
that can be derived from a given CGQT, heuristics

are used to narrow the search space of candidate
IGQTs chosen.

 Further semantic transformations are then
applied to the candidate IGQTs. The set of IGQTs
still represents a very large search space of potential
execution strategies, and so transformations are
applied selectively using heuristics which are non-
exhaustive, but are designed to identify a reasonably
efficient execution plan. Parallel execution is
exploited where possible, the overall response time
is bound by the longest sequence of subqueries (ie.
that require the output of one subquery as input to
the next). We apply transformations exclusively to
the longest sequence, and successful transformations
will shorten this sequence.

 The methodology is modular, in the sense that
the transformations applied at the external, inter-
schema, and intra-schema levels are independent of
each other and the unavailability of semantic
information at any level will not affect the
application of the methodology to the others. In all
cases, however, our goal is to find a "near optimal"
query that can be derived with minimal overhead.
While the utilization of semantics in query
processing has been successfully applied in
centralized databases, its potential for distributed
and multidatabase systems is enormous, as there is
the potential to eliminate or to simplify inter-site
integration operations, which are the single biggest
cost factor in multidatabase query processing.

 3.2. Schema Integration

 Another important aspect related to the consistency
of interschema knowledge is concerned with schema
integration [Catarci Santucci Cardiff 1995]. If we
want to integrate two or more schemas belonging to
the MDB, we can benefit from the knowledge
expressed in our language, in all the phases of the
integration process. From one point of view, when
performing the integration of two or more schemas
it is possible to exploit the interschema knowledge
in all the activities involved in such a process. On
the other hand, if an integrated schema has been
already built, the choices performed during the
integration can be easily translated into interschema
assertions, so speeding up the production of the
interschema knowledge. Here, we summarise our
work under the activities that are shared by most
proposals ([Batini Lenzerini Navathe 86]), viz.
Schema comparison (checking all conflicts in the
representation of the same objects in different
schemas), Schema conforming (aligning schemas to
make them compatible for integration) and Schema
restructuring (analyzing the integrated schema
against three goals: completeness, minimality, and
understandability).

 Schema comparison

 The fundamental activity in this step consists of
checking all conflicts in the representation of the

J. Cardiff, T. Catarci, G. Santucci 2-6

same objects in different schemas. Schema
integration methodologies broadly distinguish two
types of conflicts:
• Naming conflicts -Schemas in data models

incorporate names for entities, attributes, and
relationships. People from different application
areas of the same organization are used to refer
to the same data using their own different
terminology and names. This results in a
proliferation of names as well as a possible
inconsistency among names in the component
schemas. The problematic relationships among
names are of two types: homonyms: when the
same name describes two different concepts -
giving rise to inconsistency unless detected,
and synonyms: when the same concept is
described by two or more names - giving rise to
a proliferation of names

• Structural conflicts - The term structural
conflicts includes conflicts that arise because of
a different choice of modeling constructs or
integrity constraints. Examples of conflicts
mentioned in different methodologies are: type
inconsistencies: the same concept is represented
by different modeling constructs in different
schemas. (E.g., the use of city as an entity in
one schema and as an attribute in another one);
cardinality ratio conflicts: a group of concepts
are related among themselves with different
cardinality ratios in different schemas. (E.g.,
Man and Woman in the relationship ’Marriage’
are 1:1 in one schema, but m:n in another one,
accounting for a marriage history); and key
conflicts: different keys are assigned to the
same concept in different schemas.

 Schema Conforming

 The goal of this activity is to conform or align
schemas to make them compatible for integration.
Achieving this goal amounts to resolving the
conflicts, which in turn requires that schema
transformations be performed. In order to resolve a
conflict, the designer must investigate the reasons
that caused the schemas to be diverse in order to
understand the semantic relationship.

 Schema Restructuring

 This activity is performed by further analyzing the
global schema against three goals: completeness,
minimality, and understandability. This analysis
usually gives rise to several transformations on the
global schema. Let us examine these three goals
individually:
• Completeness - To achieve completeness, we

have to conclude the analysis and the addition
of interschema properties that is usually
initiated in previous design steps. Note that the
variety of interschema properties is strongly

related to the repertoire of schema constructs at
the disposal of the data model;

• Minimality - The objective of minimality is to
discover and eliminate redundancies

• Understandability - We have to analyze a
schema in order to find (all) possible
restructuring that can improve one’s
understanding of it. In general, for improved
understandability, additional schema
transformations are needed.

The rest of the Section is devoted to analyze
each of the above activities showing how they can
benefit by interschema assertions belonging to the
interschema knowledge.

Concerning name conflicts, synonyms can be
easily discovered by looking at the interschema
assertions of the following form:

L1 defint L2
L1 defext L2

in which L1 and L2 are class expressions formed by
the name of a class-node. More precisely, if there
exists an assertion of the form:

L1 defext L2

we can conclude that L1 and L2 are deeply
synonyms and that the integrated schema can be
built using either L1 or L2.

On the other hand, if the assertion is of the form:

L1 defint L2

we can conclude that L1 and L2 are synonyms at the
intensional level and that their instances may differ;
as a consequence in the integrated schema both the
instances of L1 and L2 must be taken into account.

Homonyms can be discovered by the absence of
an assertion involving the two classes sharing the
same name. In particular, assume that the two
schemas S1 and S2 share the same class, say C (we
denote with C1 and C2 the different occurrences of
the class). If the interschema knowledge does not
contain an assertion of the form

C1 defint C2

or the stronger one:

C1 defext C2

we can conclude that we are in presence of a
homonym and that in the integrated schema one
class (or both) must be renamed.

Among the structural conflicts mentioned before,
only the ones concerning type inconsistencies can be

J. Cardiff, T. Catarci, G. Santucci 2-7

detected through the inspection of the interschema
knowledge: in particular, we have to look for
assertions of the form:

L1 defint L2
L1 defext L2

in which L1 and L2 are attribute expressions
referring to different classes. As an example, if we
know that the attribute expression corresponding to
the attribute Cname of the class Person is
intentionally equivalent to attribute expression
corresponding to the attribute Name of the class City
we can argue that the same concept (City) has been
modeled as an attribute in the former case and a
class in the latter.

The schema conforming activity results in so-
called amended schemas. The correspondences
existing between an original schema and its
amended version can be documented in terms of
interschema knowledge assertions. As an example if
a concept C belonging to the original schema is
renamed with the new name C’ in the amended
version we can say that:

C defint C’

It is clear that the activity of schema conforming
is just an input for the interschema knowledge.

The activity of schema restructuring can benefit
from assertions of the form

L1 isaint L2
L1 isaext L2

in which L1 and L2 are class expressions formed by
the name of a class-node, or assertion of the form

L1 def C1 ∪ C2 ∪ ... ∪ Ck

in which L1, C1, C2, ..., Ck are class expressions
formed by the name of a class-node.

In all of the above cases it is possible to add to
the integrated schema an isa relationship between L1
and L2 (first two assertions) or between L1 and C1,
L1 and C2, ..., L1 and Ck (last assertion).

If a cycle of unprintable nodes and role nodes
exists, of the form u1, r1, u2, r2, ..., uk, rk, u1 we
can check for redundancies, looking for an assertion
of the following form:

ri defext R2

where ri is a role node expression formed by the
name of a role node belonging to the cycle, say ri
and R2 is a role node expression formed by the join
of all role nodes belonging to the cycle but ri. In this

case we can argue that ri is redundant and we can
remove it from the integrated schema.

4. Summary

The main goal of our approach is to allow
different classes of users to access multiple,
heterogeneous databases by means of an adaptive
interface, offering several interaction mechanisms.
This led us to design and partially implement a
query system, having both user-oriented and
multidatabase features. In particular, our proposal
exploits a Constraint Language based on logic, used
to represent and reason upon inter- and intra-schema
assertions, which are proficuously used in global
query optimization and schema integration.

It is worth noting that we can use the
interschema knowledge in several ways. First,
besides providing information on the
correspondence between classes in different
schemas, interschema assertions actually constitute a
declarative specification of several consistency
requirements over different databases. Obviously, if
the interschema knowledge is itself incoherent, then
no state of the MDB may exist satisfying all the
interschema assertions. Therefore checking
coherence is one of the basic activities for verifying
the correctness of the MDB. In our approach,
coherence verification corresponds to checking the
multidatabase for satisfiability.

Summarising, this research has provided a strong
and formal basis for the development of an adaptive
user interface to heterogeneous databases. The work
is still in progress. In particular, we are devising a
more sophisticated schema integration technique.
Starting from a set of Graph Model databases and a
knowledge base containing intra- and inter-schema
knowledge we will be able to automatize several
phases of the schema integration. As for the
multiparadigmatic interface, which has been
implemented, we are presently testing it against real
users.

References

[Batini Lenzerini Navathe 1986] C. Batini, M.
Lenzerini, S. Navathe, A Comparative Analysis
of Methodologies for database Schema
Integration, ACM Computing Surveys,
September 1986, pp. 323-364.

[Cardiff Catarci Santucci 1995] J. Cardiff, T.
Catarci, G. Santucci, Distributed Semantic
Query Processing in a Cooperative Information
System, Proc. International Conference on
Cooperative Information Systems, 1995
(COOPIS’95)

[Catarci Santucci Cardiff 1997] T. Catarci, G.
Santucci and J. Cardiff, Graphical Interaction
with Heterogeneous Databases, VLDB Journal,
6(2), 1997

J. Cardiff, T. Catarci, G. Santucci 2-8

[Cardiff Catarci Santucci 1997] J. Cardiff, T.
Catarci, G. Santucci, Semantic Query Processing
in the VENUS Environment, International
Journal of Cooperative Information Systems,
June 1997

[Catarci Santucci Cardiff 1995] T. Catarci, G.
Santucci, J. Cardiff, Knowledge based Schema
Integration in a Heterogeneous Environment,
International Conference on Next Generation
Database Systems, Israel, 1995

[Catarci Santucci Angelaccio 1993] T. Catarci, G.
Santucci, M. Angelaccio, Fundamental
Graphical Primitives for Visual Query
Languages, Information Systems, Vol. 18, N.2.

[Catarci Lenzerini 1993] T. Catarci, M. Lenzerini,
Representing and Using Interschema Knowledge
in Cooperative Information Systems, Journal of
Intelligent and Cooperative Information
Systems, Vol. 2, N. 4, pp.375-398, World
Scientific, 1993.

[Dayal Landers Yedwab 1982] U. Dayal, T.
Landers, L. Yedwab, Global Query Optimization
in Multibase, a system for Heterogeneous
Distributed Databases, Technical Report TR-82-
05, Computer Corporation of America

[Du Krishnamurthy Shan 1992] W. Du, R.
Krishnamurthy, M.C. Shan, Query Optimization
in a Heterogeneous DBMS, in Proc. of the 18th
International Conference on Very Large Data
Bases, Vancouver.

[Florescu Raschid Valduriez 1996] D. Florescu, L.
Raschid, P. Valduriez, A Methodology for Query
Reformulation in CIS using Semantic
Knowledge, Int. Journal on Intelligent and
Cooperative Information Systems, special issue
on Formal Methods in Cooperative Information
Systems: Heterogeneous Databases, 5(4),
December

[Lu Ooi Goh 1992] H. Lu, B-C. Ooi, C-H. Goh, On
Global Multidatabase Query Optimization,
SIGMOD Record 21(4)

[Meng Yu, 1995] W. Meng, C. Yu, Query
Processing in Multidatabase Systems, in Modern
Database Systems, Kim ed., Addison-Wesley

[Sheth Larson 1990] A. Sheth and J. Larson,
Federated Database Systems for Managing
Distributed Heterogeneous, and Autonomous
Databases, ACM Computing Surveys, Vol. 22,
No. 3.

