
Focused Search on the Web using WeQueL

Amar-Djalil MEZAOUR
Laboratoire de Recherche en Informatique (LRI), France

Email: mezaour@lri.fr

Abstract

Keyword-based web query languages suffer from a lack of precision when searching
for a precise kind of documents. Indeed, some documents cannot be simply characterized
by a list of keywords. For example, searching for on-line pictures dealing with formula
one using only simple keywords with general-purpose search-engines gives imprecise
answers. This imprecision is due to the method that considers that a relevant document
to a query is one that contains a lot of query keywords occurrences. This method is to-
tally unefficient for poor textual-content documents like pictures, video streams� � �. On
the other hand, keyword based languages are often not powerful enough for expressing
sophisticated document search like on-line java or c++ tutorials.

We propose ” WeQueL ” a multi-criteria query langage for a better characterization
of documents. The aim is to increase the precision of document retrieval on the web. In
our experiments, we show the gain in accuracy for web document searching using our
language.

1 Introduction

Nowadays, the web represents an important heterogeneous data source (news, articles, pic-
tures, streams� � �). The information is stored in entities called documents. These documents
are identified in a unique way by their urls and are linked together by hyperlinks. Search-
ing for an information in the web consists of finding the urls of documents containing this
information. General-purpose search engines have been developed to offer simple and pow-
erful tools for users in order to search web documents. A general-purpose search engine, like
Google [7], can be divided into three general components : a web crawler, a local web-index
repository and a user query language. The web crawler is a program that visits the most pos-
sible web documents in the web in order to download them to the local web-index repository.
In this local repository, the crawled documents are indexed and stored. A keyword based
query language is proposed to the final users for quering the index repository. A user has to
specify a query in which he declares a list of relevant keywords characterising, according to
him, the documents to search for. This keyword list is then submitted to the repository to re-
trieve the urls of the documents containing occurences of the keywords in this list. The given
answers are often numerous, not enough precise and do not necessarily match the user’s ac-
tual needs. There are two major reasons for this. The first reason is that the expressive power
of a keyword-based query does not define the exact wanted pages. Indeed, a keyword based

1



query specifies only the keywords that a document must contain in its content without any
possibility of describing other caracteristics and properties of a web document. A keyword
based search is totally inefficient when searching for poor textual-content documents (pic-
tures, pdf� � �) or when searching for documents which are difficult to characterise only with
keywords (on-line c++ or java courses). The second reason of the imprecise answers to a
query is in the query evaluation method. In fact, most keyword based languages consider that
the presence of all the given keywords in a document is enough to consider it as relevant to
the given query. This evaluation method does not take into account the precise location of
the keywords in the document and ignores important properties of a web document, like its
context, structure and type. For example, when searching for c++ courses in the web, a user
submits the query ” c++ courses ” to a search engine without any other possibility to describe
in a more elaborate way those c++ courses documents. The search engine gives a lot of an-
swers. Some of these answers are relevant c++ courses but the others are irrelevant and may
contain schedule and timetable of c++ courses.

In this paper, we show that a focused keyword based search which combines the structure
and properties of a document can be an interesting way of increasing the precision of web
search document. We propose a Web Query Language : ” WeQueL ” that combines different
criteria concerning a document using logical operators. For example, a query of ” WeQuel ”
allows the user to combine keywords criteria concerning the title, the type, the content of a
document with other document properties like its url, incoming links� � �. In the next section,
we present a state of the art of related work on web document search. We define then in the
third section the syntax and the semantics of the queries of our language. Our experiments are
detailed in the fourth section of the paper. Finally, we conclude with some on-going work.

2 State of the art

Web search documents is based on two complementary components : a local collection of
documents (what we called local web-index repository) and a query language over this col-
lection. The repository is populated from the web by programs called spiders or crawlers.
These programs crawls the web in order to discover new web documents and to download
them in the repository. A crawler crawls the web starting from given urls by following re-
cursively all or some links of the current crawled document. The crawling process is done
according to a defined strategy (random, breadth-first, deep-first, intelligent� � �). Once the
repository is populated by the crawler, the user can query this collection for specific docu-
ments.

Search engines are based on the two components seen above. Most of popular search
engines offer keyword based languages to users to query their web index repository. For a
submited query �, a search engine collects the urls of the documents containing the most
occurences of all the keywords of � (without considering their location). The answers are
then ranked according to their relevance to the query (PageRanking [2], source and authority
[8]). Unfortunately, even the best ranked answers are not necessarily relevant. This can be
explained by a lack of characterization strength of a keyword based language which ignores

2



essential parts of a web document like its structure, type, context. Having bad precision
results, keyword based languages can not be used for demanding applications like topic-
specific search engines or thematic data warehouses. In addition to its standard keyword
search, Google offers an advanced search which allows the user to target his query to specific
parts of a document (like the title, the body and the links). With this advanced option, the
expressiveness strength of an advanced google query is increased in the way that users can
specify where their query keywords should be located. This gives a additional possibility to
express more precise queries than just keywords. Unfortunately, it is not possible to combine
different targeted queries with advanced google search. For example, one can not target the
url and the title in the same advanced google query.

To increase the answers precision, other approaches consists of improving the repository
quality over which the queries are evaluated. Junghoo Cho & al.[3] show that crawling the
documents having important pagerank first yields to a high repository quality. This means
that evaluating a query over this repository gives high quality answers which are most likely
to correspond to the desired answers. Focused crawling is another technique for improving
the repository quality. Focused crawling consists of limiting the crawled pages to download
only the pages dealing with a fixed thematic. This is done by reducing the number of followed
links. To do this, a best-first crawling strategy is applied in order to follow the ” promising ”
links first. This selective strategy is based on a function which can estimate the benefit of
following a link only from the words occuring in its neighborhood. This function is learned
from a sample web graph by using machine-learning techniques. Note that this learning graph
should be representative of the fixed thematic. For example, Jason Rennies & A.K.McCallum
have build CORA [10], a topic-specific search engine specialised in on-line research papers,
using focused crawling. In their selective crawling process, their system uses a discriminant
function built by combining reinforcement learning and bayesien classifiers [9]. An other
similar approach is the method that have used Diligenti & al. for developing CiteSeer [4]
(the most popular on-line scientific papers). Their approach consists of training a bayesian
classifier over a labelled graph to estimate the distance separating a given document from
a possible on-topic documents [5]. Having this estimation, their best-first crawling strategy
consists of following at each step the outgoing links of the nearest document to a relevant one.
A focused crawling solution can be a good alternative for the web search quality problem but
it seems to be a little bit difficult to implement. Indeed, the machine learning techniques that
are necessary to learn the discriminative function needs a learning sample graph which must
be representative enough of the fixed topic to reach satisfying performances. Unfortunately,
this learning graph is not easy to build and needs a cumbersome manual labelling of each of
its nodes.

The intelligent crawling is a technique proposed by Charu C.Aggarwal & al [1]. Intel-
ligent crawling needs no training on a learning graph. In fact, an intelligent crawler learns,
one by one, during its crawling how to favour the promising links. This progressive learning
uses a function to estimate the relevance of each crawled document while it is crawled. This
function can be for example the presence of a list of keywords in a document. During the
crawling process, a set of statistical measures associated with the candidate pages1 is updated

1a candiate page is a page not yet crawled but is pointed to by an already crawled page

3



each time a document is visited and evaluated by the function. These statistical measures
expresses different properties of how the relevant documents of the visited graph are linked
to the candidate pages. The intelligent crawling strategy consists then of downloading first
the candidate page that reaches the highest statistical score (a combination of the measures
of the statistical set). The intelligent crawling approach reduces significantly the costs of the
training step since it does’nt need to do so. Unfortunately, the efficiency of this approach is
strongly related to the precision of the discriminative function.

To summarize, the ability of distinguishing without any ambiguity and with a very high
precision a relevant document from a non relevant document is the key of focused web search
document. We then propose a web query language : ” WeQueL ” which allows a better
characterisation of the desired documents.

3 WeQueL

We have defined a web query language that we called ” WeQueL ”. WeQueL is an attribute-
value language that allows a user to combine different criteria using logical operators to define
the documents interests. Each criterion specified in a WeQueL query allows a user to focus on
a special part of a document (title, link neighborhood � � �) or to describe a particular propriety
of a document (url tokens, mime type � � �). The criteria of WeQueL can be combined using
the logical operators of conjunction and disjunction to focus for example in the same query
the title, the incoming links with the type and url of a document. Each WeQueL query is built
from the logical combination of atomic queries. An atomic query is a keyword based query
having this form : ” attribute = values ”. We fixed a set of possible attributes for the WeQueL
queries. The different atomic queries are the following :

� ���� ����� � 	���
 � � � 
 	��� :
where each 	��� is a string that may contain more than one word separated with white
space character. This query is evaluated to true over a page � if and only if all the
words appearing in one of the above values 	��� are present in the title of � in the same
order that they have been declared in their corresponding value 	���. The page title,
when it exists, is defined with the content of the tags : �title� or �h1� or �meta
name=”title”�.

Example : Consider �� : ” page title = cours java, introduction à java ”

page title �� evaluation
cours de licence en java ����

java cours introductif ���	�

� �� � �����
 � � � 
 ����� :
Mime types ����� must be conform to the standard mime types defined for the html
language. This query is evaluated to ���� over a page � if � mime type corresponds to
one of the specified mime types in the list �����.

4



� ����� ������� ���� � 	���
 � � � 
 	��� :
This query is evaluated to ���� over a page � if and only if it exists a page �� pointing
to � and �� is evaluated to ���� with the atomic query ���� ����� � 	���
 � � � 
 	���.

� ��� � 	���
 � � � 
 	��� :
This query is evaluated to ���� over a page � if and only if all the words of one of the
above 	��� appears (in the same order with their order in 	���) in the url tokens of �.

Example : Consider �� : url = univ cours java

page url �� evaluation
http://www.infres.enst.fr/˜charon/coursJava/ ���	�

http://www.univ-reunion.fr/˜courdier/cours/java ����

� ������� ����� � 	���
 � � � 
 	��� :
This query allows the user to target the words appearing in the neighborhood of the
incoming links of a page. We defined the neighborhood of a link as the words appearing
in : its anchor, the tokens of the urls that this link refers to and the 10 words before and
after the link (before the �a href� tag and after the closing tag � �a�). This query
is evaluated to ���� over a page � if and only if it exists one link � that points to � and
having all the words of at least one of the 	��� appearing in the neighborhood of � (with
the same order in this 	���).

� �������� ����� � 	���
 � � � 
 	��� :
This query allows the user to focus on the words appearing in the neighborhood of the
outgoing links from a page. This query is evaluated in the same way as the previous
atomic query with the only difference that it concerns the links of the page �.

� �������� � 	���
 � � � 
 	��� :
The keywords of a page are extracted from the content of the tag �meta name =
”keywords”� when this last one exists in a document.

� ��� ������ � ����� ����������� :
where ����� ����������� is a cardinality restriction (atleast[�], atmost[�]). This
query is useful when one has to limit the length of the desired documents. We defined
the length of a url as the number of ’/’ that it contains.

Example : url length = atmost[2] was useful for us to characterise the notion of being a
homepage.

page url �� evaluation
http://www.gofast.com ����

http://www.yahoo.fr/tourisme ���	�

In the upcoming sections, we note ���
�� the graph of web pages that will be used for
evaluating the queries of WeQueL. � is the set of the nodes of the graph (web pages) and �
the set of links between the nodes of � . The associated semantics, noted ��� , of an atomic
query �� is defined as the set of the pages from � that satisfy ��. These answer pages are
obtained after evaluating �� over � and � :

5



��� � ������� � �� � �� � ��� is evaluated to ���� over ���

We implemented a java program for evaluating WeQueL queries over � and �. This pro-
gram generates first a list of regular expressions from the values of each atomic query of a
WeQueL query according to java/Perl/unix regular expression syntax. The regular expression
are obtained by replacing all the blank charaters by the string ”.*”. This replacement guar-
anties that the words of the different values of an atomic query are searched in the order that
they are specified. The program matches then these expressions on the content of the corre-
sponding target part of a document for each page � � � .

A conjunctive WeQueL query is a conjunction of atomic queries without repetition of
attributes in the same conjunction and with exactly one attribute ” mime type ” in the con-
junction.

Example : This conjunctive query expresses the needs of a search for java courses docu-
ments in french only in pdf or postscript format :

(mime = application/pdf , application/postscript) � (url = univ java , cours java) � (incom-
ing links = cours java , introduction à java)

The semantic of a conjunction of atomic queries � � ��� � � � � � ��� is defined as :

�� �
��

���

����

A disjunctive WeQueL query is defined as a disjunction of WeQueL conjunctions. The
semantics of a WeQueL disjunction � � �� 	 � � � 	 �� is defined as :

�� �
��

���

���

Example : The following query expresses the search for java courses documents in french
and in ps, pdf or html format :

(mime = application/pdf , application/postscript)� (incoming links = cours java , introduction java) �
(url = univ java , cours java , enseignement java)

�

(mime = text/html) � (url = univ cours java) � (page title = cours java , introduction java) �
(incoming links = cours java , introduction java) � (outgoing links = sommaire , intro)

4 Experimental evaluation of WeQueL

We implemented a WeQueL query evaluator in java. We defined an experimental protocol
for evaluating WeQueL queries. In this protocol, we specified the sample of tested queries,
the sample of web documents over which the tested queries have been evaluated and finally
the two measures to estimate the WeQueL quality.

6



4.1 Sample of tested queries

We fixed three topics for testing WeQueL : computer science courses documents (in french),
homepages of touristic documents (in french also) and finally formula one pictures. We man-
ually defined �� different WeQueL queries expressing different kind of web document search
: � queries for the computing-science courses documents, � queries for tourismo and � queries
for the formula 1 pictures. These queries have been written in two steps. In the first step, we
wrote one query for each topic. We obtained � queries that we call ” initial queries ”. We con-
sider that we are ” advanced users ” in WeQueL with good knowledge about the three fixed
topics. Writing an initial query consists of targeting the relevant parts of the desired docu-
ments by choosing the right logical combination of atomic queries with their corresponding
relevant values. The initial WeQueL queries for the three topics are given in the table Tab.1.
The writing of these initial queries shows the power of expressiveness of a WeQueL query.

The other queries have been generated by relaxing a given number � of atomic queries
from all the conjunctions of the initial queries of each topic. These relaxations are called
” relaxation � ” of the initial query. Let’s consider the conjunction : �� � � � � � �� of a
WeQueL initial query 
. To relax � atomic queries from this conjunction where � � �,
one has to remplace this conjunction by the disjunction of the ��� possible conjunctions :
��� � � � � � �����

. For a semantic coherence, the mime-type atomic query can not be relaxed
and must be combined (by conjunction) with at least another different atomic query. This
means that it not possible to have or to relax until conjunctions of only one atomic query.
Note also that no relaxation is possible for � � � �.

A relaxed query of an initial query 
 is less restrictive (and so less precise) than 
. We
can also note that a relaxation � of an initial query 
 is more restrictive (and so more precise)
than a relaxation � � � of it.

Example : Let’s consider the initial query 
 composed by two conjunctions :


 � ������ 	 �
�

��
�

�

where �� and �
�

� are mime-type atomic queries. The relaxation � of 
 is :

���� 	 ���� 	 �
�

��
�

�

We can see that it is not possible to relax the second conjunction �
�

��
�

� nor to write a relax-
ation � for � � �.

The relaxation of the initial queries of each of the three topics have been done to show
the benefit of the conjunctions of the initial queries. The experiment results are shown in the
tables 3, 4 et 5.

7



tourism homepages
(URL = voyage , tourisme , sejour , reservation billet � � �) � (Outgoing Links = reservez , vol , sejour � � �)
� (page title = agence tourisme , tour operateur , office tourisme , compagnie aerienne , vol charter � � �) �
(Incoming Links = agence tourisme , tour operateur , achat reservation billets , vol regulier� � �) �
(MIME = text/html) � (keywords = NOT NULL) � (url length = atmost[2])

french computer science courses
(url = cours cpp , cours c , cours slide , cours transparent � � �) � (page title = cours informatique� � �) �
(Incoming Links = cours algo , cours info , notes cours � � �) � (Outgoing Links = introduction� � �)
� (MIME = text/html)

�

(Incoming Links = notes cours , cours reseaux� � �) � (MIME = application/postscript , application/pdf� � �)
� (URL = cours ia , cours bd , univ � cours , info cours � � �)

�

(title Incoming Page = cours informatique , documentation cours , notes de cours , cours algo � � �) �
(MIME = application/ppt , application/msword application/pdf � � �) � (URL = cours ’bd’ , � sld � � �)

Formula one pictures
(page title = photo gallery ’f1’ , schumacher picture , montoya picture � � �) � (URL = photo ’f1’ , image ’f1’ ,
coulthard picture , villeneuve picture � � �) � (Incoming Links = photo formule 1 , image formule 1 , grand
prix photo � � �) � (Outgoing Links = suivant , precedent , previous , back � � �) � (MIME = text/htm)

�

(URL = f1 photo , image f1 , grand prix photo , gallerie f1 � � �) � (Incoming Links = formula one pic , f1
picture , formula one gallery � � �) � (MIME = image)

�

(URL = photo ferrari f1 , photo mac laren f1 , ralf picture � � �) � (title Incoming Page = formula one gallery ,
photo ferrari ’f1’ � � �) � (MIME = image , text/htm)

Table 1: The three initial queries

8



4.2 Evaluated web pages

We have been confronted with the dilemma of choosing the right graph to build for our queries
evaluation. For limitations reasons (capacity and time), we could’nt evaluate our queries over
all the web documents or over a repository equivalent to Google index. We have then explored
other costless alternatives which best-fit our machines capacity. We found two interesting
possibilities : build a random web graph by sampling the web or build three thematic graphs
corresponding to the three topics. The first possibility is incontestably the most obvious to
implement. Unfortunately, we have no guarantee of having the desired thematic documents
which are necessary for a good evaluation of our queries. We have then chosen to build three
thematic graphs. For each thematic graph, we used Google to obtain a set of urls related to
the topic of the graph. All the documents corresponding to these urls are downloaded and
stored in a relational database (MySql). These stored documents build up the level zero of the
thematic graph. We implemented in java a web crawler in order to extend the level zero of
each graph. Due to storage limitation and crawling time limitation, only the two best ranked
documents of the level zero (from Google responses) are extended. The extension is done by
downloading and storing in the local database the documents pointed to by the documents of
the level zero. This extension process is repeated until reaching a fixed depth (� � �	 for our
experiments). We finally obtain � thematic graphs. The level “zero” of each graph contains
Google responses to some atomic queries from the initial query. The level “�” contains the
pages pointed to by the two best ranked google responses from the level “	”. Finally, levels
“�
 � � � � �” contain pages that are pointed to by pages from level � �. Due to the same
limitations as above, only �
 random choosen links from each page of level �� are followed
(� � �

���
).

The thematic graphs that have been built contains sufficient number of relevant documents
to validate the evaluation measure quality of WeQueL (see section 4.3). The choices that have
been made for building the thematic graphs are justified by two hypothesis. The first one
consists in the reliability of the best ranked google responses [2]. The second hypothesis is
based on the fact that the web is thematically connex [8, 2, 5]. In fact, a relevant document
points often to other relevant documents. Following links of relevant documents increases the
chance to include other relevant documents.

Let’s see now how the level zero of each graph is obtained. Let’s consider 
 an initial
query. The zero level is obtained by submitting a set of queries to Google. These queries
correspond to the atomic queries that Google can evaluate. The WeQueL atomic queries that
can be evaluated by Google are : title, incoming and outgoing links, url. This is an example
of the sent Google queries having an initial query 
 : 
 � (page title = cours java , cours
c++) 	 (url = univ java , cours cpp). The advanced Google queries are : (allintitle: cours
java) OR (allintitle: cours c++) OR (allinurl: univ java) OR (allinurl: cours cpp).

The graph characteristics of each topic is given in this table :

9



WeQueL query # Google responses # pages # followed links
computer science courses ���	� ������	 �������	

tourism documents ��	�� ������ ��������

formula one pictures ��� ������ ��	����

Table 2: Number of nodes and links in each thematic graph

4.3 Quality measures

We retained two measures for estimating WeQueL quality : the precision and the recall. The
precision of a WeQueL query 
 is the proportion of really relevant 
 answers among all the
responses of 
 (pages evaluated to ����). The recall of a WeQueL query 
 is the proportion
of really relevant 
 answers among the relevant documents of the nodes set � of the thematic
graph.

Let’s consider � the set of nodes (documents) of a thematic graph ���
�� and � the set
of answers of the evaluation of 
 over � . The relevance modality divide each of the previous
sets into two subsets : relevant nodes (�� and ��) and non-relevant nodes (��� and ���) :

� � �� � ��� � � �� � ���

The precision and the recall are then defined as :

precision �

����
���

recall �
����
����

In our experiments, the number of graph nodes (see Tab.2) and the number of query an-
swers are very important and can not be manually labelled. We used then random sample sets
of �		 elements to estimate precision and recall (manual labelling of ���� and ����)

We also want to know how precise our language is comparing to Google. Unfortunately,
it is not possible to express the same WeQueL queries in Google (neither classic Google nor
advanced Google offers the possibility to do logical combinations). We defined then for each
initial query a set of comparable Google queries :

� google classical query is made of all the values in the initial query ;

� different advanced google queries (title, urls, incoming and outgoing links) made of the
values of their corresponding occurrence in the initial query.

With these comparisons, we first show the benefit of a targeted query (google advanced
queries comparing to classical google) and show also the gain of precision of a logical com-
bination (WeQueL query comparing to advanced google).

The results are shown in the tables Tab.3, Tab.4 et Tab.5. In these tables, we show in the
line ” advanced Google ” the best result of the advanced google queries evaluations and its
corresponding google advanced query.

10



5 Experimental results

In our manual labelling, we have been very restrictive : a document which contains no relevant
data but points to relevant documents is considered as not relevant. The evaluation results are:

computer science courses query precision recall
Classical Google 9,00% 6,68%

Advanced Google (best = url) 26,00% 5,82%
initial query 71,00% 11,16%
relaxation 1 56,00% 56,57%
relaxation 2 65,00% 63,31%
relaxation 3 10,00% 100%

Table 3: computer science courses

tourism query precision recall
Classical Google 10,00% 7,29%

Advanced Google (best = title) 21,00% 4,14%
initial query 100,00% 2,30%
relaxation 1 29,29% 10,56%
relaxation 2 8,00% 21,74%
relaxation 3 7,00% 61,56%
relaxation 4 2,00% 100%

Table 4: tourism documents

formula one pictures precision recall
Classical Google 9,00% 22,99%

Advanced Google (best = url) 32,00% 9,47%
initial query 65,53% 9,44%
relaxation 1 41,00% 36,11%
relaxation 2 36,00% 35,99%
relaxation 3 8,00% 93,01%

Table 5: formula one pictures

We can see from the two first lines from the above tables that a targeted query is more
precise than a non targeted query. We can also see that on our initial queries WeQueL is
three times more precise than Google. This shows how expressive and powerful are logical
combinations of different targeted queries. Unfortunately, recall results of a WeQueL queries
are a little bit low. This can be explained in two ways : the first way is that we have been very
retrictive in our manual labelling. The second way is in the evaluation method which matches
only the defined values in the WeQueL queries without exploiting synonyms for example or
machine learning statistics. One way for improving the recall results consists of expanding
the query keywords values with synonyms from ontologies for example.

11



6 Conclusion

In this paper, we have presented a multi-criteria web query language which allows the user
to target his keywords on different parts of a document in the same query. We used different
queries to illustrate the expressiveness of WeQueL language. We have experimentally shown
that logical combinations of targeted queries are more precise than simple keywords based
queries. WeQueL is in use in the ” eDot ” project [6] as a filtering tool for populating the-
matic data warehouses. ” eDot ” project consists of developing a data warehouse populated
from the web with documents dealing with food risk. For the warehouse needs, we semi-
automatically defined a characteristic WeQueL query for describing the documents to include
in the eDot warehouse. This WeQueL query is based on given relevant examples and a risk
food ontology. In this project, we are studying how our language can be a good filtering tool
of urls given by a general purpose crawler (Xyleme crawler [11]). Having the precision and
recall filtering results, we can use WeQueL for an intelligent crawling process to increase the
number of relevant documents to include in the warehouse. WeQueL queries will then be
used as discriminative functions.

References

[1] Charu C. Aggarwal, Fatima Al-Garawi, and Philip S. Yu. Intelligent crawling on the
world wide web with arbitrary predicates. In World Wide Web, pages 96–105, 2001.

[2] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web search
engine. Computer Networks and ISDN Systems, 30(1–7):107–117, 1998.

[3] Junghoo Cho, Hector Garcı́a-Molina, and Lawrence Page. Efficient crawling through
URL ordering. Computer Networks and ISDN Systems, 30(1–7):161–172, 1998.

[4] CiteSeer. http://citeseer.nj.nec.com/cs, 2003.

[5] Michelangelo Diligenti, Frans Coetzee, Steve Lawrence, C. Lee Giles, and Marco Gori.
Focused crawling using context graphs. In 26th International Conference on Very Large
Databases, VLDB 2000, pages 527–534, Cairo, Egypt, 10–14 September 2000.

[6] eDot. http://www-rocq.inria.fr/verso/gemo/projects/edot.pdf, 2002.

[7] Google. http://www.google.com, 2003.

[8] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM, 46(5):604–632, 1999.

[9] Jason Rennie and Andrew Kachites McCallum. Using reinforcement learning to spider
the web efficiently. In Proc. 16th International Conf. on Machine Learning, pages 335–
343. Morgan Kaufmann, San Francisco, CA, 1999.

[10] whizbang. Cora version 2.0 : Computer science research paper search engine, 2001.
http://cora.whizbang.com.

[11] Xyleme. http://www.xyleme.com/, 2002.

12


