A Counter-Based Approach to Translating
Normal Logic Programs into Sets of Clauses

Tomi Janhunen

Helsinki University of Technology
Department of Computer Science and Engineering
Laboratory for Theoretical Computer Science
P.0.Box 5400, FIN-02015 HUT, Finland
Tomi.Janhunen@hut.fi

Abstract. In this paper, we develop a two-phased translation function
from normal logic programs into sets of clauses. The translation is based
on a novel characterization of stable models in terms of level numberings
and it uses atomic normal programs, which are free of positive body liter-
als, as an intermediary representation. The resulting translation function
has attractive properties which are lacked by the earlier attempts. First,
a bijective relationship is established between stable models and classical
models. Second, the translation can be performed in time proportional
to || P|| x log, |At(P)| where || P|| is the length of a program P in symbols
and |At(P)| is the number of atoms in P.

1 Introduction

Normal logic programs under the stable model semantics [9] are well-suited for a
variety of knowledge representation tasks. Typically, a problem at hand is solved
(i) by formulating it as a logic program whose stable models correspond to the
solutions of the problem and (ii) by computing stable models using a special-
purpose search engine. The reader is referred e.g. to [16, 17] for examples of using
this kind of methodology, also known as answer set programming (ASP).
Similar problems are solvable by formulating them as classical satisfiability
(SAT) problems and using SAT solvers. However, such formulations tend to be
more difficult and less concise. E.g., formulating an AI planning problem is much
easier as a normal logic program [5] than as a set of clauses [13]. This indicates of
areal difference in expressive power which can be established formally by showing
that normal programs cannot be translated into sets of clauses in a faithful and
modular way [17,11,12]. In spite of this intranslatability result, we develop a
faithful and non-modular, but still fairly systematic, translation function from
normal programs into sets of clauses. Using a novel characterization of stable
models based on level numberings, the time complexity remains sub-quadratic.
We proceed as follows. In Section 2, we review the syntax and semantics
of normal logic programs and sets of clauses. As a further preparatory step,
we characterize stable models in terms of level numberings in Section 3. The
translation function mentioned above is presented in Section 4. A comparison
with related work takes place in Section 5 whereas Section 6 concludes the paper.

Translating Normal Logic Programs into Sets of Clauses 167

2 Preliminaries

A normal (logic) program P is a set of expressions or rules of the form
a+by,...,b,,~C1,...,~Cm (1)

where a is an atom, and {by,...,b,} and {ci,...,¢y} form sets of atoms. In
this paper, we restrict ourselves to the purely propositional case and consider
only programs that consist of propositional atoms. The symbol ~ denotes default
negation or negation as failure to prove [4] which differs in an important way from
classical negation denoted by —. We define (default) literals in the standard way
using ~ as the negation sign. Given a rule r of the form (1), the atom a forms
the head of r whereas the positive literals by,...,b, and the negative literals
~Ci, .. .,~Cny together form the body of r. Despite of the notation used in (1), we
interpret the body as a set of literals, which implies that the order of the literals
is not relevant. To enable easy reference to the atoms/literals in the body, we
adopt the following notations: H(r) = a, B(r) = {b1,...,by} U{~c1,...,~cn},
B*(r) = {b1,...,bp}, and B=(r) = {c1,...,¢cm }. We generalize these notations
for any normal program P in the obvious way: H(P) = {H(r) | » € P}; and
B(P), BT (P), and B~ (P) are defined analogously.

The positive part r™ of a rule r is defined as H(r) + B¥(r). A (normal)
program P is positive, if r = r* holds for all rules r € P. In addition to positive
programs, we distinguish normal programs that are obtained by restricting the
number of positive body literals, i.e. |B*(r)|, allowed in a rule r [11]. A rule r of
a normal program is called atomic, unary or binary, if |BT(r)| =0, [BT(r)| <1,
or [B¥(r)| < 2, respectively. We extend these conditions to cover programs in
the obvious way: a logic program P satisfies any of these conditions given that
every rule of P satisfies the condition. For instance, an atomic normal program
P contains only rules of the form a + ~cy,...,~Cp.

2.1 Semantics

Normal programs can be given a standard model-theoretic semantics. The Her-
brand base At(P) of a normal logic program P is defined as the set of atoms that
appear in the rules of P. An interpretation I C At(P) of a normal program P
determines which atoms a € At(P) are true (a € I) and which atoms are false
(a € At(P)—I). The satisfaction relation = is defined for rules and programs in
the standard way. Note that negative default literals are given a classical inter-
pretation at this point: I |= ~a <= I }£ a. A rule r is satisfied in I, denoted
by I Er, <= I = H(r) is implied by I = B(r). Finally, an interpretation I is
a (classical) model of P, denoted by I | P, <= I [=r for every r € P.
Although classical models give a semantics for arbitrary normal programs P,
the ultimate semantics assigned to normal programs will be different as minimal
models are distinguished. A model M = P is a minimal model of P <= there
is no model M' |= P such that M’ C M. In particular, every positive program P
is guaranteed to possess a unique minimal model which equals to the intersection

168 Tomi Janhunen

of all models of P [14]. We let LM(P) stand for this particular model, i.e. the
least model of P. The least model semantics is inherently monotonic: if P C P’
holds for two positive programs P and P’, then LM(P) C LM(P’).

The least model LM(P) of a positive program P can be constructed itera-
tively using the van Emden-Kowalski operator Tp which is defined by Tp(A) =
{H(r) | r € P and Bt(r) C A} for any set of atoms A C At(P). The iter-
ation sequence of Tp is then defined inductively as follows: Tp 1 0 = 0,
Tp 1 i=Tp(Tp T i—1) fori >0, and Tp T w = J;., Tp 1 i. It follows
that LM(P) = Tp T w = lfp(Tp). Note that for finite programs P, lfp(Tp)
is always reached with a finite number of steps. In the sequel, we use the iter-
ative construction above to define the level number lev(a) for each true atom
a € LM(P), i.e. the least natural number ¢ such that a € Tp 1 i.

Gelfond and Lifschitz [9] propose a way to apply the least model semantics
to an arbitrary normal program P. Given an interpretation M C At(P), i.e. a
model candidate, their idea is to reduce P to a positive program PM = {rt |
r € P and M NB~(r) = §}. In this way, the negative default literals appearing
in the bodies of rules are simultaneously interpreted with respect to M. Since
the reduct PM is a positive program, it has a natural semantics determined by
the least model LM(PM). Equating this model with the model candidate M,
which was used to reduce P, leads to the following notion of stability.

Definition 1 (Gelfond and Lifschitz [9]). An interpretation M C At(P) of
a normal logic program P is a stable model of P <= M = LM(PM).

Every stable model of P is also a classical model of P, but the converse does
not hold necessarily. In general, a normal logic program need not have a unique
stable model nor stable models at all. In contrast to the least models of positive
programs, stable models may change in a non-monotonic way which implies that
conclusions may be retracted under the stable model semantics.

The stable model semantics of normal programs was preceded by an alterna-
tive semantics, namely the one based on supported models [1]. A classical model
M of a normal program P is a supported model of P <= for every atom a € M
there is a rule r € P such that H(r) = a and M = B(r). As shown in [15], any
stable model M C At(P) of a normal logic program P is also a supported model
of P, but not necessarily vice versa. Supported models can be given a fixed-point
characterization in analogy to stable models: an interpretation M C At(P) is a
supported model of a normal program P <= M = Tpu(M). In the sequel,
we distinguish the set of supporting rules SR(P,I) = {re P | I E=B(r)} C P
for any normal program P and an interpretation I C At(P).

2.2 Sets of Clauses

We define classical literals in the standard way using classical negation — as the
connective. A clause C = {a1,...,ap, b1,..., by} is a finite set of classical
literals representing a disjunction of its constituents. A set of clauses S represents
a conjunction of the clauses contained in it. The Herbrand base of a set of clauses

Translating Normal Logic Programs into Sets of Clauses 169

S is denoted by At(S) and interpretations are defined as subsets of At(S). A
clause C of the form above is satisfied in an interpretation I <= I [= a; for some
i €{l,...,n}or I b; for somei € {1,...,m}. An interpretation I C At(S) is
a classical model of S, denoted by I =S, <= each clause C € S is satisfied in
I. A set of clauses S gives rise to a set of classical models {M C At(S) | M E S}.
This makes an essential difference with respect to a normal program P for which
the set of stable models {M C At(P) | M = LM(PM)} is of interest.

3 Yet Another Characterization of Stability

In this section, we develop a characterization of stable models in terms of sup-
ported models and level numberings, as defined below.

Definition 2. Let M be a supported model of a normal program P. A function
#: M USR(P,M) = N is a level numbering w.r.t. M <

Vae M : #a=min{#r |r € SR(P,M) and a =H(r)} and (2)

] _ [max{#b|beBt(r)}+1, if Bt(r) #0.

Vr € SR(P, M) = r = { 1, otherwise. (3)
Definition 2 can be understood as a generalization of the notion of level
numbers, first defined for positive programs in Section 2.1, to the case of normal
programs. It is important to realize that a level numbering need not exist for

every supported model. This is demonstrated by the following example.

Ezxample 1. Consider a logic program P consisting of two rules 11 = a < b
and 75 = b + a. There are two supported models of P: M; = () and My =
{a,b}. The first model has a trivial level numbering with an empty domain, since
M7 USR(P, M;) = . For the second, the domain M USR(P, My) = MsUP. The
requirements in Definition 2 lead to four equations: #a = #ry, #r1 = #b+1,
#b = #rs, and #ry = #a + 1. From these, we obtain #a = #a + 2, which has
no solutions. Hence there is no level numbering w.r.t. M. d

Proposition 1. Let M be a supported model of P. If there is a level numbering
w.r.t. M, then # is unique.

Then the question is how one can determine level numberings in practice. In
fact, the scheme introduced for atoms in Section 2.1 can be extended to cover
rules as well. Given a positive program P, the least model M = LM(P), and any
rule r € P such that BT (r) = B(r) C M, define the level number

lev(r) = {rlr,lax{lev(b) |be Bt (r)} +1, i)ft}]?;‘(}:i)sj 0. 4)

Assigning level numbers in this way is compatible with Definition 2 which implies
a characterization of stable models based on the existence of level numberings.

170 Tomi Janhunen

Theorem 1. Let P be a normal program.

1. If M is a stable model of P, then M is a supported model of P and there is a
unique level numbering # : M U SR(P, M) — N w.r.t. M defined as follows.
(a) For a € M, let #a = lev(a).

(b) Forr € SR(P, M), let #r = lev(rt).

2. If M is a supported model of P and there is a level numbering # w.r.t. M,

then # is unique and M is a stable model of P.

4 Translating Normal Programs into Sets of Clauses

By our earlier results [11, 12], a faithful and modular translation function Tr from
normal programs into atomic normal programs is impossible, i.e. positive body
literals cannot be translated away from rules in a faithful and modular way.
More precisely, these results are based on the following properties of translation
functions. A translation function Tr is faithful if and only if the stable models of
a program P and the (stable) models of its translation Tr(P) are in a bijective
relationship and coincide up to At(P). On the other hand, we define Tr to be
modular if and only if translations can be formed on a rule-by-rule basis, i.e.
Tr(PUQ) = Tr(P) U Tr(Q) and Tr(P) N Tr(Q) = @ hold for all disjoint sets of
rules P and @ satisfying PN Q = 0.

A similar impossibility result holds for translations from (atomic) normal
programs into sets of clauses under classical models [17,11,12]. Despite these
intranslatability results, we present a polynomial and faithful translation func-
tion Trar which maps an arbitrary normal program P into an atomic program
Trat(P). Our intranslatability results imply that Trar must be non-modular
if faithfulness is to be expected. Our idea is to apply the characterization of
stable models developed in Section 3 so that each stable model M of a normal
program P is eventually captured as a supported model M of P possessing a
level numbering w.r.t. M. Let us now recall level numberings from Section 3.

Ezample 2. Let P = {ri =a <; ro =a <« b; r3 =b < a} be a (positive) nor-
mal program. The unique stable model M = LM(P) = {a, b} is supported by the
set of rules SR(P, M) = P. The unique level numbering # w.r.t. M is determined
by #r1 =1, #a =1, #r3 =2, #b =2, and #r: = 3. O

As there is no explicit way of representing a level numbering within a normal
program, we have to encode such a numbering using propositional atoms. Then
a natural solution is to use a binary representation for the individual numbers
determined by a level numbering #. Unfortunately, every atom in At(P) may
be assigned a different level number in the worst case. This setting is actually
demonstrated in Example 2. Thus the level numbers of atoms may vary from 1 to
|At(P)|. Hence the highest possible level number of a rule r € P is |At(P)|+1, as
for r3 in our example. Although level numbers are positive numbers by definition,
we leave room for 0 which is to act as the least binary value. Thus, given a normal
program P, we have to be prepared for binary numbers consisting of at most

VP = [log, (|At(P)] + 2)] (5)

Translating Normal Logic Programs into Sets of Clauses 171

bits. In case of Example 2, we have VP = 2 which is enough to represent all
the values in the range of the level numbering # in question. In general, we
can establish the following bounds for level numbers in terms of VP [12]. If
: MUSR(P,M) — N a level numbering w.r.t. a supported model M of a
normal program P, then 0 < #a < 2V —1foreacha € M and 0 < #r < 2VF for
each r € SR(P, M). The logarithmic factor embodied in VP forms an important
design criterion, since would like to keep the length of the translation || Trar(P)||
in symbols as well as the translation time proportional to ||P|| x VP rather than
[|P|| x |At(P)|. Hence we strive for a sub-quadratic translation function from
normal programs to atomic normal programs. There is potential behind such an
objective, since VP = 14 for normal programs P with |At(P)| = 10000.

4.1 Representing Binary Counters

We have to fix some notation in order to deal with binary representations of
natural numbers. Given the number of bits b and a natural number 0 < n < 2°,
we write n[i...j], where 0 < ¢ < j < b, for the binary representation of n from
the ith bit to the j bit in the decreasing order of significance. Thus n[1...b]
gives a complete binary representation for n. Moreover, as a special case of this
notation, we may refer to the i*" bit by writing n[i] = n[i...1].

Our idea is to encode the level number #a of a particular atom a € At(P)
using a vector ay,...,a; of new atoms where j = VP. Such a vector can be un-
derstood as a representation of a binary counter of j bits; the first and the last
atoms corresponding to the most significant and the least significant bits, respec-
tively. Since atoms may take only two values under the stable model semantics,
we equate bits 0 and 1 with the truth values false and true, respectively. Because
Trar(P) is supposed to be an atomic normal program, positive body literals are
forbidden and we have to introduce a vector at, . ..,a; of complementary atoms
so that we can condition rules on both values of bits. The i*" bit of the binary
counter associated with a takes the value 0 (resp. 1) <= a; (resp. 3;) cannot
be inferred, i.e. the negative literal ~a; (resp. ~a;) is satisfied in rule bodies. In
the sequel, we may introduce a binary counter of the kind above for any atom a
by subscripting it with an index 7 in the range 0 <7 < j.

In order to express the constraints on level numberings, as demanded by
Definition 2, we need certain primitive operations on binary counters. These
primitives will be used as subprograms of the forthcoming translation Trar(P).
The first set of subprograms, as listed in Table 1, concentrates on setting the
counters to particular values. The size of each subprogram is governed by a
parameter j which gives the number of bits used in the binary counters involved.
The activation of all subprograms is controlled by an additional atom c. The idea
is that the respective subprograms are activated only when ¢ cannot be inferred,
i.e. ¢ is assigned to false under stable model semantics. The first subprogram
SEL;(a,c) selects a value n in the range 0 < n < 27 for the binary counter
ai,...,a; associated with an atom a. The second program NXT;(a,b,c) binds
the values of the binary counters associated with atoms a and b, respectively, so

172 Tomi Janhunen

Primitive Definition

SEL;(a, c) = {a; ¢ ~a;, ~¢; 3 ¢ ~ai,~c|0<i < j}
NXTj(a, b, c) = {b; + ~a;, ~@i31, ~bit1,~c |0 < < j} U
{b; + ~ai, ~ai1, ~bit1,~c|0<i<j} U
{b; + ~aj,~ait1,~c|0<i<j}uU
{bi + ~ai,~ajy1,~c|0<i<j} U
{b; + ~aj,~bit1,~c|0<i<j}U
{b; + ~aj,~bit1,~c |0 <i<j}U
{E — ~aj,~C; by ¢ ~aj, ~c}
FIX;(a,n,c) = {ai « ~c |0 < < j and n[i] = 0} U
{a; < ~c|0 <4< jand n[i] =1}

Table 1. Primitives for selecting the values of binary counters

that the latter is the former increased by one (modulo 27). The last subprogram
FIX;(a,n,c) assigns a fixed value 0 < n < 27 to the counter associated with a.
In addition to setting the values of counters, we have to be able to com-
pare them. Table 2 lists our basic primitives in this respect. The first sub-
program LT;(a,b,c) checks if the value of the binary counter associated with
an atom a is strictly lower than the value of the binary counter associated
with another atom b. To keep the program linear in j, we need a vector of
new atoms lt(a, b)1, ..., It(a, b); plus the corresponding vector of complementary
atoms which we associate with a and b. The atoms It(a,b); and It(a,b);, which
refer to the most significant bits, capture the result of the comparison. Note that
the latter atom captures the greater than or equal relation between the values of
the counters in question. The second program EQ j(a, b, ¢) checks if the counters
associated with the atoms a and b hold the same value. Only two new atoms
eq(a,b) and eq(a,b), which capture the result of the comparison, are needed.

4.2 Translating Normal Programs into Atomic Ones

We will compose a non-modular translation function Trar in four steps cor-
responding to Definitions 3-6 to be presented in the sequel. We will use the
program P = {a < b; b « a} from Example 1 as our running example and the
resulting translation Trar(P) is specified stepwise in Fig. 1. To achieve faith-
fulness, one of the aims is to capture each stable model M of a normal logic
program P as a stable model N of Trat(P) which is an atomic program. In the
subsequent discussion, M and N are supposed to form a pair of stable models
in a one-to-one correspondence, as insisted by faithfulness. The first part of the
translation Trsypp (P) aims to capture a supported model M of P and to define
the complementary atom 3 for each atom a € At(P) appearing in P.

Translating Normal Logic Programs into Sets of Clauses 173

Primitive Definition

LT;(a,b,c) = {lt(a,b); ¢ ~ai,~b;,~c|0<i<j} U
{It(a, b); = ~a;, ~b;, ~It(a,b)i+1,~c|0<i < j} U
{It(a, b); + ~a3, ~b;, ~It(a, b)it1,~c | 0 < i < j} U

{lt(aa b)l — Nlt(aa b)i:NC | 0<s S .7}
EQ;(a,b,c) = {eq(a,b) « ~ai, ~b;,~c |0 < i< j} U

{eq(a,b) ~aj;,~bi,~c|0<i < j} U

{eq (a: b) <~ Neq(aa b)a NC}

Table 2. Primitives for comparing the values of binary counters

Definition 3. For a normal program P, define an atomic normal program

TrSUPP(P) = {5 — ~a | ENS At(P)} @]

{bt(r) « ~B*(r),~B7(r); bt(r) < ~bt(r); H(r) « ~bt(r) |r € P}. (6)

The other parts of the overall translation will require us to determine when
the body of a rule r € P is true. This is why new atoms bt(r) and bt(r) are
introduced for each r € P. Note that copying the transformed body of r to other
parts of the translation would imply a quadratic blow-up and we need bt(r) for
each r € P in order to save space. Equation (7) gives the translation Trgypp (P)
for our running example. The next part of the translation introduces counters
that are needed to represent a level numbering candidate. Two new atoms ctr(a)
and nxt(a), which act as names of two counters, are introduced for each atom
a € At(P). The eventual purpose of these counters is to hold the values #a and
#a+ 1, respectively, in the binary representation when a belongs to the domain
of a level numbering #, i.e. a € M (or equivalently, a2 ¢ N).

Definition 4. For a normal program P, define an atomic normal program

TI‘CTR(P) = U [SELVp(ctr(a),E) U NXTVp(ctr(a), nxt(a),E)] U
acAt(P)

U FIXyp(ctr(r),1,bt(r)) U
r€P and B+ (r)=0
SELVP(Ctr(T),bt(T')). (11)
re€P and B+ (r)#0

However, at this point, the primitives included in Trcrr(P) choose a value
for ctr(a) and define the value of nxt(a) as the successor of the value of ctr(a)
modulo 2VF. Quite similarly, a new atom ctr(r) and the respective counter is
introduced for each r € P to eventually hold #r when r is in the domain of #,

174 Tomi Janhunen

{a ¢ ~bt(r1); bt(r1) < ~bt(r1); bt(r1) < ~b; b < ~b}
U {b « ~bt(rz); bt(r:) < ~bt(rz); bt(r2) < ~3; 3 + ~a}

SELs(ctr(a),a) UNXTs(ctr(a), nxt(a),a) U SELa(ctr(r1), bt(r1)) (8)
U SELs(ctr(b), b) U NXT2(ctr(b), nxt(b),b) U SELa(ctr(rs), bt(r2))

LTz (ctr(r1), nxt(b), bt(r1)) U {x < ~x, ~bt(r1), ~It(ctr(r1), nxt(b))1}
U LTz (ctr(r2), nxt(a), bt(rz)) U {x ¢ ~x, ~bt(rz), ~It(ctr(r2), nxt(a)):}

U EQ,(ctr(r1), nxt(b), bt(r1)) U {max(r1) < ~bt(r1), ~eq(ctr(r1), nxt(b))} (9)
U EQ, (ctr(r2), nxt(a), bt(rz)) U {max(rz) < ~bt(rs), ~eq(ctr(r2), nxt(a))}
U {x < ~x,~bt(r1), ~max(r1); x ¢ ~x, ~bt(rz), ~max(rs)}

LTy (ctr(r1), ctr(a), bt(r1)) U {y « ~y, ~bt(r1), ~It(ctr(r1), ctr(a))1}

U LTa(ctr(r2), ctr(b), bt(r2)) U {y < ~y, ~bt(r2), ~It(ctr(rz2), ctr(b)):}
U EQ,(ctr(r1), ctr(a), bt(r1)) U {min(a) « ~bt(r1), ~eq(ctr(r1),ctr(a))} (10)

U EQ,(ctr(r2), ctr(b), bt(rz2)) U {min(b) + ~bt(rs), ~eq(ctr(rz), ctr(b))}

U {y < ~y,~a,~min(a); y ¢ ~y, ~b, ~min(b)}.

Fig. 1. The translation Trar(P) for the program P given in Example 1

i.e. r € SR(P, M) (or equivalently, bt(r) ¢ N). In case of an atomic rule r € P
with BT (r) = 0, the counter ctr(r) is assigned a fixed value 1 and no choice is
made, which is in perfect accordance with Definition 2. The subprograms which
are needed in case of our running example are listed in (8).

The translation Trorgr(P) is sufficient for choosing a candidate level num-
bering for a supported model M of P that is to be captured by the rules in
Trsupp(P). We have to introduce constraints in order to ensure that the can-
didate is indeed a level numbering, as dictated by Definition 2. We start with
the conditions imposed on rules r € P and in particular, when r € SR(P, M)
holds, i.e. M = B(r). This explains why bt(r) is used as a controlling atom in
the forthcoming translation. The case of atomic rules r € P is already covered
by Trorr(P), but for non-atomic rules r € P with BT (r) #), the maximization
principle from Definition 2 must be expressed e.g. as follows.

Definition 5. Let x be a new atom not appearing in At(P). For an non-atomic
rule r € P and a number of bits b, define Tryjax(r,b) = Ua€B+(T) Tryax(r, b, a)
where for any a € BT (r), the translation Tryax (r,b,a) =

LTy (ctr(r), nxt(a), bt(r)) UEQ,(ctr(r),nxt(a),bt(r)) U
{x ~x,~bt(r), ~It(ctr(r), nxt(a))1; max(r) « ~bt(r), ~eq(ctr(r), nxt(a))}.

For a normal program P, define an atomic normal program

Tryax (P) = U Tryax(r, VP) U
reéP and Bt (r)#0

{x + ~x, ~bt(r), ~max(r) | r € P and BT (r) # 0}. (12)

Translating Normal Logic Programs into Sets of Clauses 175

An informal description follows. The rules in Tryax (r, VP, a) are to be acti-
vated for a non-atomic rule r € SR(P, M) and a positive body literal a € B*(r).
As a consequence, the value held by ctr(r) must be greater than or equal to the
value of nxt(a) which is supposed to be the value of ctr(a) increased by one. In
addition to this, the rules for max(r) in Trpax(r, VP,a) and Tryax(P) make
the value of ctr(r) equal to the value of nxt(a) for some a € B*(r). Thus the
value of ctr(r) must be the maximum among the values of the counters nxt(a)
associated with the positive body atoms a € B¥(r). This conforms perfectly to
the definition of #r given in Definition 2. See (9) in Fig. 1 for the rules involved
in the translation Tryax(P) for our running example.

Let us then turn our attention to atoms a that are assigned to true in a
supported model M of P. The properties of supported models imply that there
must be a rule r € SR(P, M) such that H(r) = a. Moreover, the level number
#a is defined as the minimum among the respective rules by Definition 2.

Definition 6. Lety be a new atom not appearing in At(P). For a rule r and a
number of bits b, define Trpin(r, b) =

LTy(ctr(r),ctr(a),bt(r)) UEQ,(ctr(r),ctr(a),bt(r)) U
{y « ~y, ~bt(r), ~lt(ctr(r),ctr(a));; min(a) « ~bt(r), ~eq(ctr(r),ctr(a))}.

where a = H(r). For a normal program P, define an atomic normal program

Travun(P) = | Traan(r, VP) U{y < ~y,~a, ~min(a) |a € At(P)}. (13)
reP

Given a € M and a rule r € SR(P, M) such that H(r) = a, the rules in
Tryan(r, VP) make the value of ctr(a) lower than or equal to the value of ctr(r).
Moreover, the rules for min(a) in Tryn (P) ensure that the value of ctr(a) equals
to the value of ctr(r) for at least one such rule r. In this way, the value of
ctr(a) becomes necessarily the minimum as dictated by the definition of #a in
Definition 2. For our running example, the translation Tryn (P) appears as (10).

We are now ready to formulate the translation function Trar based on the
four sub-translations presented so far. Given a normal program P, we define
an atomic normal program Trar(P) as the union Trsypp(P) U Trorr(P) U
Tryax (P) U Tryn (P). Despite non-modularity, the translation Trar(P) can be
formed in a very systematic fashion by generating certain rules for each r € P
and each a € At(P). A source of non-modularity is hidden in the number of bits
VP involved in Trar(P). Given two disjoint programs P and @, it is possible
that VP < V(P U Q) and VQ < V(P U Q). As a consequence, the counters
in TraT(P) and Trar(Q) are likely to have too few bits so that Trat(P) and
Trat(Q) cannot be joined together in order to form the translation Trat(PUQ).

4.3 Correctness of the Translation Function Trat

Our next goal is to specify the expected outcomes of the primitives listed in
Tables 1 and 2. If c is cannot be inferred, the contribution of a subprogram

176 Tomi Janhunen

Extsypp(P,M) =M U{3|a€ At(P)— M} U
{bt(r) | € SR(P, M)} U {bt(r) | r € P — SR(P, M)}.
EXtCTR(Py M: #) = UaEM ATCVtIrD(Ctr(a): #a) U
Uaenr ATSE (nxt(a), #a + 1 mod 2¥7)] U
Uresrep,a), B+(ry—0 AT (ctr(r), 1) U
Usresrep,um), B+ ()20 ATSp (ctr(r), #r).
Extumax(P, M, #) = {max(r) | r € SR(P, M) and BT (r) # 0} U
Us esrp.a), aeB+(m) ATY . (ctr(r), #r, nxt(a), #a 4+ 1 mod 2¥7) U
U’I‘ESR(P,M), aeB+ (r) AT?P (ctr(r), #T‘, nXt(a): #a + 1 mod 2VP)-
Extwmin(P, M, #) = {min(a) |a€ M} U
Uresicrny AT (ctr(r), fér, cer (B(r)), #H(r)) U
Usesrcpan ATup (ctr(r), #r, ctr(H(r)), #H(r)).

Fig. 2. Operators for extending a stable model M of P to one of Trar(P).

SEL;(a,c) is a set of true atoms AT‘J?tr(a, n) which contains for each 0 < i < 7,
the atom a; <= n[i] = 1, and the atom 3; <= n[i] = 0. Here j is the number
of bits and n is the value 0 < n < 27 chosen for the counter associated with
a. If the counter associated with an another atom b is holding a value m such
that m + 1 = n holds modulo 27, the same set of atoms is made true by the
subprogram NXT;(b,a,c), if ¢ is not inferable. Similarly, the set of true atoms
AT (a,n) is obtained with FIX;(a,n,c) which assigns a fixed value n to the
counter associated with a. Let us then define the outcome of the subprogram
LT,(a,b,c) when the atom c is false. Given the values0 < n < 2/ and 0 < m < 2/
of the counters associated with a and b, respectively, the set of true atoms is
AT;-t(a,n, b,m), which contains for each 0 < ¢ < j, the atom lt(a,b); <
nli...j] < mfi...j], and the atom lt(a,b); <= n[i...j] > m[i...j]. The
program EQ;(a, b, c) is covered as follows. If ¢ cannot be inferred, then the set
of true atoms AT;fq(a,n, b,m) is {eq(a,b)}, if n = m, and {eq(a,b)}, if n # m.

We are now ready to address the correctness of the translation function Trar.
Given a normal program P, an interpretation M C At(P) of P, and a function
#: MUSR(P,M) — {0,...,2VF — 1}, we write Extar (P, M, #) for the union
of the sets atoms given in Fig. 2. Moreover, given an interpretation N of the
translation Trat(P), we may extract the value of a counter associated with an
atom a by setting val;(a, N) = > {277 |0 < i < j and a; € N}.

Proposition 2. Let P be a normal program. If M is a stable model of P and
is the corresponding level numbering w.r.t. M, then the interpretation N =
ExtaT(P, M,#) is a stable model of Trat(P) such that M = N N At(P).

For the program P given in Example 1, the only stable model M = 0 of Pis
captured as a stable model N = {3, b, bt(r1), bt(r2)} of the translation in Fig. 1.

Definition 7. Let P be a normal program, N C At(Trar(P)) an interpre-
tation of the translation Trat(P), and M = N N At(P). Define a function

Translating Normal Logic Programs into Sets of Clauses 177

: MUSR(P,M) — {0,...,2F — 1} by setting (i) #a = valyp(ctr(a), N)
for atoms a € M, and (ii) #r = valyp(ctr(r), N) for rules r € SR(P, M).

Proposition 3. Let P be a normal program. If N is a stable model of the
translation Trar(P), then M = N N At(P) is a stable model of P and N =

Extar (P, M,#) where # is the level numbering extracted in Definition 7.

As a consequence of Propositions 2 and 3, the stable models of a normal
program P and the translation Trar(P) are in a bijective relationship and the
models coincide up to At(P). Thus Trar is faithful in the sense explained in the
beginning of Section 4. Furthermore, it can be established that Trat(P) can be
produced in time linear to ||P]| x log, |At(P)|, see [12] for details.

4.4 Translating Atomic Normal Programs into Sets of Clauses

Atomic normal programs provide a promising intermediary representation that
is relatively straightforward to translate into a set of propositional clauses. Such
programs are positive order consistent in the sense proposed by Fages [8]. As a
consequence, stable and supported models coincide for this class of programs,
and Clark’s program completion is sufficient to capture stable models. However,
new atoms have to be introduced in order to keep the translation function linear.

Definition 8. For an atomic normal program P and an atom a € At(P), let
Defp(a) = {r € P | H(r) = a} and define the set of clauses

Trcr(a, P) = {{a, -bt(r)} | a € At(P) and r € Defp(a)} U
{{—a}u{bt(r) | r € Defp(a)} | a € At(P)} U
{{bt(r)} UB~(r) | r € Defp(a)} U
{{-bt(r),~c} | r € Defp(a) and c € B~ (r)}

where bt(r) is a new atom for each r € P and TrcL(P) = U,ecaqp) Trew(a, P).

The intuitive reading of bt(r) is the same as in TraT. Roughly speaking, the
clauses in the translation ensure that every atom a € At(P) is logically equivalent
to the disjunction of all bodies of rules r € P with H(r) = a. This leads to a tight
(bijective) correspondence of models as described next. Given an interpretation
I C At(P) of a program P, define Extcr, (P, I) = I U {bt(r) | r € SR(P,I)}.

Proposition 4. Let P be an atomic normal program. If M C At(P) is a stable
model of P, then N = Extcr(P, M) is a model of Trcr,(P) such that M =
NNAt(P). If an interpretation N C At(TrcL (P)) is a (classical) model Trcy, (P),
then M = N N At(P) is a stable model of P such that N = Extcr, (P, M).

The translation function Trgr, is clearly non-modular, as the clauses of the
type {—a} U {bt(r) | r € Defp(a)} create a dependency between rules possessing
the same head atom a. Thus Troy (P) cannot be formed on a rule-by-rule basis.
On the other hand, the composition Trat o Trgy, of the two translation functions
maps an arbitrary normal program P into a set of clauses Trcr (Trar(P)) such
that the stable models of P and the classical models of the translation are in a
bijective relationship and coincide up to At(P). Moreover, the translation can
be formed in time linear to ||P|| x log, |At(P)|.

178 Tomi Janhunen

5 Related Work

Ben-Eliyahu and Dechter [3] study the possibilities of reducing head-cycle-free
disjunctive logic programs, under the stable model semantics [10], to proposi-
tional logic. As normal programs form a special case of head-cycle-free disjunctive
programs, a comparison with our results follows. One of the results obtained by
Ben-Eliyahu and Dechter [3, Theorem 2.8| is a characterization of stable models
that resembles the one developed in Section 3. However, they impose weaker
conditions on level numberings. That is, they insist on the existence of a func-
tion f : At(P) — N such that for each a € M, there is a rule r € SR(P, M)
satisfying f(b) < f(a) for every b € BT (r). It is easy to see that a level number-
ing # conforming to Definition 2 can be extended to such a function f, but such
functions are by no means unique even if the range of f is limited. This is in
contrast to Theorem 1 where the uniqueness of level numberings is established.

The translation function Trgp (called translate-2 in [3]) proposed by Ben-
Eliyahu and Dechter produces a propositional theory Trgp(P) that consists of
four parts. The first two parts ensure that each model N of Trgp(P) captures a
classical model M of P. The third part makes M a supported and stable model
of P whereas the fourth part can be neglected in case of normal programs. In
particular, the fact that f(a) = 4 holds for an atom a € At(P) is expressed
by making a new atom in(a); true in N. Similar objectives can be identified
for the sub-translations involved in Trar(P). In contrast to the composition
Trat o Trop, the translation function Trgp does not necessarily yield a one-to-
one correspondence between the stable models of P and the classical models of
the translation. This is because the level numberings used by Ben-Eliyahu and
Dechter are not unique. Moreover, the language of P is not preserved by the
translation function Trpp, as At(P) N At(Trgp(P)) = 0. A further difference is
that || Trgp(P)]|| is quadratic in ||P|| in the worst case. The translation function
Trat o Trgp, is more compact, as a binary encoding of level numbers is used.

There are also other characterizations of stable models that are closely related
to the one established in Section 3. Fages [8] calls an interpretation I C At(P)
of a normal program P well-supported if and only if there exists a strict well-
founded partial order < on I such that for any atom a € I, there is r € SR(P, I)
satisfying H(r) = a and b < a for all b € B™(r). The basic result [8, Theorem
3.2] that well-supported models of a normal program P are stable models of P,
and vice versa. In fact, it is possible to associate such an ordering with a level
numbering conforming to Definition 2: just define a < b <= #a < #b for
any a € I and b € I. The resulting ordering can be considered as a canonical
one, as # is known to be unique by Theorem 1. Moreover, Fages distinguishes
positive order consistent normal programs whose models are necessarily well-
supported. As a consequence, the classical models of the completed program P
[4], or supported models of P, coincide with the stable models of P.

Quite recently, Babovich et al. [2] and also Erdem and Lifschitz [7] generalize
Fages’ results by introducing the notion of tightness for logic programs. The
tightness of a logic program P is defined relative a set atoms A C At(P), which
makes Fages’ theorem applicable to a wider range of programs. To understand

Translating Normal Logic Programs into Sets of Clauses 179

the contribution of this paper in this respect, let us point out that atomic normal
programs are automatically positive order consistent, or absolutely tight in the
terminology of [7]. Therefore, arbitrary normal programs can be transformed into
absolutely tight ones in a fairly systematic fashion by applying the translation
function Trat presented in Section 4. A further implication is that a transitive
closure of relation can be properly captured with classical models. This has
already been established by Erdem and Lifschitz [6] for relations that can be
represented in terms of a tight program, but our results generalize this fact for
arbitrary logic programs. There are also problems, such as Hamiltonian cycles in
graphs, for which no representations as tight programs are known. In this case,
a representation is obtained by applying Trar to a formulation by Niemeld [17].

6 Conclusions

In this paper, we tackle a very challenging problem of translating normal pro-
grams into sets of clauses so that a one-to-one correspondence of models is ob-
tained. The results of the paper indicate that such a transformation is possible
and of reasonably low time complexity, although it cannot be done rule-by-rule.
The reader is referred to [12] for full proofs and further (in)translatability results.

The characterization of stable models developed in Section 3 reveals that the
computation of the least model for a positive normal program can be viewed as a
minimization /maximization process. As discussed in Section 5, a particular nov-
elty of a level numbering conforming to Definition 2 is that the values assigned
to atoms are uniquely determined. This is in sharp contrast with earlier char-
acterizations of stable models, where similar numberings are used to distinguish
stable models, but the value assignment can be done even in infinitely many
ways. Unique level numberings are crucial for the main objective of Section 4,
i.e. obtaining a tight (bijective) correspondence between models.

In Section 4, we develop a counter-based approach for translating normal pro-
grams into atomic ones. Compared to earlier attempts, there are several distinc-
tive features in our approach. As a fundamental result, all finite normal programs
can be covered and a bijective relationship of models is obtained. Moreover, the
translation function Trar preserves the Herbrand base of the program, only new
atoms are added. The length of the translation || Trat(P)|| as well as the transla-
tion time are of order || P|| x log, |At(P)|, indicating that Trat is sub-quadratic.
We consider this as a breakthrough, since the best known transformation to
date [3] is quadratic. However, the translation function Trar is far from being
optimal, as the translation of two rules given in Fig. 1 consists already of tens of
rules. There are several techniques that can be used to decrease the number of
rules that have to be generated for a particular normal program, the number of
binary counters as well as the number of bits involved in them. One particular
technique is to apply Trar to the strongly connected components of P, as already
suggested by Ben-Eliyahu and Dechter [3]. We leave such optimizations as imple-
mentation issues to be addressed elsewhere, as the main interest in the current
paper is to establish a translation function possessing promising properties.

180 Tomi Janhunen

Acknowledgements This work has been supported by the Academy of Finland
under Project #53695 “Applications of Rule-Based Constraint Programming”.
The author wishes to thank the anonymous referees for their comments.

References

1. K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 89-148. Morgan Kaufmann Publishers, Los Altos, 1988.

2. Y. Babovich, E. Erdem, and V. Lifschitz. Fages’ theorem and answer set pro-
gramming. In Proceedings of the 8th International Workshop on Non-Monotonic
Reasoning, Breckenridge, Colorado, USA, April 2000. cs.AI/0003042.

3. R. Ben-Eliyahu and R. Dechter. Propositional semantics for disjunctive logic pro-
grams. Annals of Mathematics and Artificial Intelligence, 12(1-2):53-87, 1994.

4. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, pages 293-322. Plenum Press, New York, 1978.

5. Y. Dimopoulos, B. Nebel, and J. Koehler. Encoding planning problems in non-
monotonic logic programs. In Proceedings of the Fourth European Conference on
Planning, pages 169-181, Toulouse, France, September 1997. Springer-Verlag.

6. E. Erdem and V. Lifschitz. Transitive closure, answer sets and predicate comple-
tion. In AAAI Spring Symposium on Answer Set Programming: Towards Efficient
and Scalable Knowledge Representation and Reasoning. AAAT, 2001.

7. E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic
Programming, 3(4-5):499-518, 2003.

8. F.Fages. Consistency of Clark’s completion and existence of stable models. Journal
of Methods of Logic in Computer Science, 1:51-60, 1994.

9. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In Proceedings of the 5th International Conference on Logic Programming, pages
1070-1080, Seattle, USA, August 1988. The MIT Press.

10. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365-385, 1991.

11. T. Janhunen. Comparing the expressive powers of some syntactically restricted
classes of logic programs. In Computational Logic, First International Conference,
pages 852-866, London, UK, July 2000. Springer-Verlag. LNAT 1861.

12. T. Janhunen. Translatability and intranslatability results for certain classes of
logic programs. Series A: Research reports, Helsinki University of Technology,
Laboratory for Theoretical Computer Science, 2003. To appear.

13. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic,
and stochastic search. In Proceedings of the 13th National Conference on Artificial
Intelligence, Portland, Oregon, July 1996.

14. J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1987.

15. V.W. Marek and V.S. Subrahmanian. The relationship between stable, supported,
default and autoepistemic semantics for general logic programs. Theoretical Com-
puter Science, 103:365-386, 1992.

16. W. Marek and M. Truszczynski. Stable models and an alternative logic program-
ming paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pages
375-398. Springer-Verlag, 1999.

17. I. Niemela. Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3,4):241-273,
1999.

