
Łukaszewicz-style Answer Set Programming: A
Preliminary Report

J. P. Delgrande
�

, M. Gharib
�

, R. E. Mercer
�

, V. Risch
�

, and T. Schaub
���

�

School of Computing Science, Simon Fraser University , Burnaby, B.C., Canada V5A 1S6
�

Institut für Informatik, Universität Potsdam, D–14415 Potsdam, Germany
�

Cognitive Engineering Laboratory, Department of Computer Science,
The University of Western Ontario, London, Ontario, Canada N6A 5B7

	

InCA Team, LSIS – UMR CNRS 6168,
Domaine Universitaire de Saint-Jérôme, avenue Escadrille Normandie Niemen,

F–13397 Marseille cédex 20, France

Abstract. The correspondence between Reiter’s default reasoning and logic pro-
gramming has been exhaustively studied (e.g. [1], [2], [3]). A Contrario the rela-
tion with the many variants of the initial theory of Reiter seems far less known.
This paper aims to present a preliminary investigation on applying a variant of de-
fault reasoning proposed by Witold Łukaszewicz [5] to extended logic programs.
We show that the modification made to the notion of extension by Łukaszewicz
has its counterpart as a relaxed notion of answer set of an extended logic program.
As can be expected from this correspondence: (1) any extended logic program has
always at least one relaxed answer set; (2) classical answer sets can be completely
characterized among the set of relaxed answer sets of an extended logic program.

Keywords: Logic Programming, Default Logic, justified extensions, answer sets

1 Introduction

This paper aims to present a preliminary investigation on applying Łukaszewicz ap-
proach of default reasoning to extended logic programming. Following Gelfond and
Lifschitz [3] who established a one-to-one correspondence between the classical exten-
sions of Reiter’s default reasoning and the answer sets of an extended logic program, we
show that justified extensions have their exact counterpart as a notion of relaxed answer
set. However, we adopt a different approach than the one chosen in [3] since, instead of
working at the level of fixed-points, we rather try to establish a correspondence between
the set of generating defaults of a justified extension and a relaxed answer set of an ex-
tended logic program. In the first section below we briefly recall some basic features
of extended logic programming and default reasoning. An alternative characterization
of justified extensions is also recalled. The second section defines the notion of relaxed
answer set and establish a correspondence with justified extensions.

Affiliated with the School of Computing Science at Simon Fraser University, Burnaby,

Canada.

2 J.P. Delgrande et al.

2 Preliminaries

We consider that the fundamentals of both default reasoning and logic programming
are familiar and we only briefly give a short reminder in order to fix our notations. The
reader is referred to the basic sources on the subject [8] [4] for a complete introduction.

Throughout this paper, we consider only a restricted form of propositional default
theories

���������
where (1) the language has no disjunction except in the special case

of horn clauses in
�

, (2)
�

contains no conjunctions, (3) the consequence and each
justification is an atom, (4)

�
is emptied by the following transformation: facts are

transformed into prerequisite-free, justification-free rules (or in the sense of logic pro-
grams, bodiless rules) and horn clauses are transformed into justification-free rules (or
rules without ‘not’s in the logic program sense. This leads us to use the language of
atoms with classical negation for default theories and extended logic programs. Hence,
we abuse the use of the generic term “atom” to include atoms with classical negation,
considering that the context will make clear what is meant. The logical closure of a set
of formulas 	 is denoted by Th

� 	 � . We also use the following notions (most of them
developed in [6] and [7]): Atoms and not-atoms (formulas of the form not

��
��
) are called

literals. For a set of literals 	 , by 	�
 (resp. 	��) we denote the set of atoms (resp. not-
atoms) in 	 . Moreover, we consider � 	������
 � not

��
���� 	�� and ��	������
 �
�� 	
 � .
Hence, logic programs consist of rules of the form

head body
 � body �
corresponding modularly to default rules of the form

!
body
#" �$� body � �

head

where head is an atom and body is a set of literals (cf. [3]).
Given a logic program % , this allows us to denote the corresponding default theory

by % as well since it should be clear from the context what we mean. Given a rule& � % , by head
� & �'�

body
 � & �'� body � � & � we denote respectively the corresponding
parts of the rule

&
.

The most important objects regarding an extended logic program are the answer
sets generated by this program. Consider %)(, the set of ground instances of the logic
program % . The reduct %+*(with respect to a set 	 of atoms 	 is obtained from %)(by
first deleting each rule that has not

�,
��
in its body with

�� 	 , then deleting all not
�,-��

in
the remaining rules. Inspiring ourselves from Niemelä and Simons [7], we summarize
these notions as follows:

Łukaszewicz-style Answer Set Programming: A Preliminary Report 3

Definition 1. Consider % an extended ground logic program, and � a set of literals.

– The reduction of % with respect to � is the set:

� � % � � � � � head body
 � head body
 � body � � % �
body ��� �������

– The deductive closure [7] of a set of ground rules % of a logic program and a set of
literals � , denoted Dcl

� % � � � , is the smallest set of atoms which contains ��
 and
is closed under the inference rules of the reduction

� � % � � � .
– The reduct with respect to a set 	 of atoms, written %�* is the reduction of % with

respect to not
� 	 � where 	 denotes the complement of 	 , i.e. the atoms not in 	 . In

other words, % *�� � � % � not
� 	 � � .

– A set of atoms 	 is an answer set for % iff 	�� Dcl
� % � not

� 	 � � .
Classical extension is the notion on the side of default theories corresponding to

answer set. PREREQ
� % � , JUST

� % � and CONS
� % � are respectively the sets of all pre-

requisites, justifications and consequents that come from defaults in a set % , that is
respectively all the

!
body
 , �$� body � � , and head in % . An extension is then usually

defined as a smallest fixed point of a set of formulas. It contains
�

(but remember that
we only consider here default theories with an empty

�
), is logically closed, and the

defaults whose consequents belong to the extension verify a property which actually
allows them to be used. The manner in which this property is considered is related to
the variant of default reasoning under consideration. It is know that regarding Reiter’s
approach of default reasoning, with Th denoting the logical closure, for any program % ,
any set 	 of atoms, 	 is an answer set for % iff Th

� 	 � is a classical extension of % (see
[3]). We will show that a similar result holds with justified extensions, such as defined
by Łukaszewicz in [5]. So let us first give a brief account on justified extensions.

In his original paper, Łukaszewicz gives a fixed-point definition of the notion of
justified extension, similar to Reiter. However this definition is quite complex, involving
two fixed points and a heavy theoretical framework. In what follows, we move directly
to a restricted form of the characterization given in [9]. Consider first the following
notion of S-groundedness as a restricted case (empty

�
) of the definition given by

Schwind1 [10]: A set % of defaults is S-grounded iff for all
& � % there is a finite

sequence
&�� � ����� � &	� of elements of % such that (1) PREREQ

� � &�� � � is an empty body
rule of % , (2) for
���
�������
 , PREREQ

� � &	�
 � �
� ����� �

CONS
� � &�� � ����� � &�� � � � , and& � � &

. The restricted form (
�

empty) of the characterization given in [9] is then:

1 Note that the term used by Schwind is grounded. We use here the term S-grounded in order to
avoid any confusion with the usual notion of ground program.

4 J.P. Delgrande et al.

Theorem 1. Let % be an extended logic program. � is a justified extension with re-
spect to � for % iff there is %�� a maximal S-grounded subset of % such that � �
��� �

CONS
� %�� ��� , ��� JUST

� %�� � , and for each default
& � % , of the form

!
body
 " �$� body � �

head
:

(i) If
& � %�� then

��!
body
 � � and for each � � � body � � � ���� � � .

Remark 1. The difference between Reiter’s and Łukaszewicz’s approaches holds in (i):
if the if condition is changed to an iff one gets the definition of Reiter extensions.
Another way to stress this is to take into account the behavior of the defaults that do not
participate in the construction of an extension: in Reiter’s approach, these defaults must
verify an additional condition that indeed allows them not to participate in the extension
being constructed (this results from the contrapositive form of the necessary condition
in the iff). In other words, according to Łukaszewicz, we should never be allowed to
revise a justification already used for deriving the consequent of a default (contrary to
Reiter’s approach). As a consequence of this:

– A default theory always has a justified extension whereas it may have no classical
extension.

– Every classical extension (if any) is a justified extension.

Note that % � is the set of generating defaults of � , also written GD
� % � � � .

3 Relaxing answer sets

Let us now relax the notion of answer set:

Definition 2. 	 is a relaxed answer set of an extended logic program % iff 	 � Max

Dcl
� % � not

� 	 � � , i.e. 	 is a maximal subset of the deductive closure of % and not
� 	 � .

Remark 2. We get immediately that answer sets are relaxed answer sets for which the
extra condition Dcl

� % � not
� 	 ��� � 	 holds.

We show now that, just as classical extensions are in one-to-one correspondence
with answer sets (cf. [3]), relaxed answer sets are in bijection with justified extensions.
Unlike in [3], and instead of using the fixed-point definition of an extension, we relate
the set of generating defaults of a justified extension with the reduct used to produce
the relaxed answer set of a program. We make use the following lemmas:

Lemma 1. If 	 is a relaxed answer set of an extended logic program then Th
� 	 �	� Lit �	 .

Proof. Follows the guideline of the proof of the similar theorem given in [3]. Let 	 be a
relaxed answer set of an extended logic program % . If % is contradictory then 	�� Lit
(Proposition 1 of [3]), and consequently Th

� 	 �
� Lit � Lit. If not, then 	 is a subset of
a consistent set of ground literals, i.e. 	 � Max Dcl

� % � not
� 	 � � , so that the ground literals

that logically follows from 	 are precisely the elements of 	 .

Lemma 2. For any extended logic program % , any
& � % ,

Łukaszewicz-style Answer Set Programming: A Preliminary Report 5

(i) Let 	 be a relaxed answer set of % , then:& � % *�� for each not
� � ��� body � � & �'� � �� Th

� 	 �
(ii) Let � be a justified extension of % , then:& �

GD
� % � � � � & � % ��� Lit

Proof. (i) Assume
& � % * i.e.

& � � � % � not
� 	 � � , that is ��� &�� � � �

not
� 	 � � � from

Definition 1, i.e. ��� &	� � � not
� 	 � (since

�
not
� 	 ��� �+� not

� 	 �), that is for each � �
body � � & � � � � 	 , hence � �� 	 . Assume now that there exists � � body � � & �'� � �
Th
� 	 � , that is � � 	 (2) (since � � Lit and from Lemma 1). This is a contradiction.

(ii) Assume
& �

GD
� % � � � , i.e.

!
body
 � � and for each � � � body � � � � ��

� (from Theorem 1). Assume
& �� % ��� Lit, that is

& �� � � % � not
� � � Lit

���
.

From Definition 1 we get ��� &�� � � & � �� �
not
� � � Lit

��� � that is, for each not
� � � �

body � � & � � not
� � � �� not

� � � Lit
�
. Hence not

� � ��� not
� � � Lit

�
i.e. � �#� � � Lit

�
,

which contradicts the assumption � �� � .

Theorem 2. For any extended program % ,

(i) If 	 is a relaxed answer set of % then the logical closure of 	 is a justified extension.
(ii) Every justified extension of % is the logical closure of exactly one justified answer

set of % .

Proof. (i) Consider 	 , a relaxed answer set of % , that is 	 � Max Dcl
� % � not

� 	 � � . For
any

& � � � % � not
� 	 � � � � % * � , if body
 � & � � 	 then body
 � & � � Th

� 	 � and
head

� & ���
Dcl

� % � not
� 	 ��� . Since by Lemma 2 (i), for each not

� ��� � ��� body � � & � � � ��
Th
� 	 � , and since 	 is maximal, then

& �
GD

�
Th
� 	 �'� % � hence head

� & � �
Th
� 	 �

i.e. Th
� 	 � is a justified extension of % .

(ii) We have to show that � �
Lit � Max Dcl

� % � not
� � � Lit

� �
. Assume there exists

� � � �
Lit such that � �� Dcl

� % � not
� � � Lit

���
. � is the head of some rule

of
&

of % , i.e. there exists
& " � body
 � body � such that

& �
GD

� � � % �
and

& �� � � % � not
� � � Lit

� �
which contradicts Lemma 2 (ii), hence � �

Lit �
Dcl

� % � not
� � � Lit

���
. � � Lit is maximal because � � Th

�
CONS

� % � ��� is maxi-
mal with %�� maximal in % . It remains to show that, for any relaxed answer set 	 ,
Th
� 	 � � � only if 	�� � � Lit. By Lemma 1 � � Lit � Th

� 	 � � Lit � 	 .

Example 1. Consider the extended logic program % composed of the “pathological”
rule:
 not

�,
��
– % has no answer set, neither has it a classical extension.
– % has
 as only relaxed answer set, which corresponds to Th

�
 � as only justified
extension.

Example 2. Consider the extended logic program % :
 not
� � � �

�� not
�,
��

– �
 � is an answer set of % , but � � � is not.Th
�,
��

is the only classical extension of % .
– �
 � and � � � are both relaxed answer sets of % . Th

��
��
, Th

� � � are justified extensions
of % .

6 J.P. Delgrande et al.

4 Refinements

In classical answer set programming, problems are usually formulated by decomposi-
tion into a generation and a test part. While the generation part is arguably possible
by means of relaxed answer sets as well, this does not transfer directly to the test part,
which normally relies on integrity constraints for eliminating invalid candidate answer
sets. An integrity constraint is a headfree rule of the form

 body
 � body � �
In classical answer set programming such a rule can be encoded as

� body
 � body � ��� � � � � � �
where � is a new symbol. So, informally, whenever body
 and body � are satisfied the
putative answer set at hand is destroyed. Such an encoding is inappropriate in our setting
since the resulting rules are always inapplicable and can thus never destroy a putative
relaxed answer set.

Finally, because there may be many more (even exponentially many) relaxed answer
sets than classical ones, the need for a formal means of elimination is even more acute
in our setting than in the classical one.

For addressing this, we propose to encode the above integrity constraint as

� body
 � body � �
where � is a new symbol, not occuring in the underlying program. We say that a relaxed
answer set 	 of some program % satisfies the integrity constraints included in % , if 	
does not contain the special symbol � . For directly characterising relaxed answer sets
that satisfy all integrity constraint, one simply has to enforce the exclusion of � in the
maximisation described in Definition 2.

In fact, without integrity constraints, the approach is monotonic in the sense that the
addition of rules never eliminates any existing relaxed answer sets. To see this, consider
the following variant of Example 2:

� not
�,
��

This program has two relaxed answer sets, �
 � and � � � , which is arguably counter-
intuitive, because the monotonic inference of

does not override the nonmonotonic

inference of � to eliminate the second relaxed answer set � � � .
In analogy to the above, we propose to address this by incorporating an additional

condition into the maximisation described in Definition 2. To be more precice, we re-
quire that any relaxed answer set 	 contains Dcl

� % �
 � , the set of monotonic conse-
quences of % . In this way, we eliminate all relaxed answer sets that override monotonic
consequences. Alternatively, we may even stipulate that any relaxed answer set contains
the set of well-founded consequences of % . In both cases, we obtain only the relaxed
answer set �
 � from the above program.

A prototypical implementation in Java exists and can be obtained upon request from
the authors.

Łukaszewicz-style Answer Set Programming: A Preliminary Report 7

5 Conclusion

The notion of justified extension comes from knowledge representation ; it has interest-
ing properties: justified extensions always exist, and classical extensions are a special
case easily characterized among justified extensions. From Theorem 2 these proper-
ties hold also for relaxed answer sets. Another interesting characteristic of justified
extensions is that they are easier to compute than classical extensions. A question to
be further investigated is whether this is still true with relaxed answer sets compared
to answer sets, and how the known methods could be adapted for computing relaxed
answer sets.

Acknowledgements

The first and third authors were partially funded by NSERC (Canada). The second and
fifth authors were partially funded by the IST programme of the EU under project IST-
2001-37004 WASP. The fifth author was partially supported by the German Science
Foundation (DFG) under grant SCHA 550/6, TP C.

References

1. N. Bidoı̂t and C. Froidevaux. Minimalism subsumes default logic and circumscription. In
Proceedings of LICS–87, pages 89–97, 1987.

2. N. Bidoı̂t and C. Froidevaux. Negation by default and nonstratifiable logic programs. Tech-
nical Report 437, Université Paris XI, 1987.

3. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9:365–385, 1991.

4. V. Lifschitz. Foundations of logic programming. In Gerhard Brewka, editor, Principle of
knowledge representation, pages 69–127. The University of Chicago Press, 1996.

5. W. Lukaszewicz. Considerations on default logic — an alternative approach. Computational
Intelligence, 4:1–16, 1988.

6. I. Niemelä. Towards efficient default reasoning. In International Joint Conference on Artifi-
cial Intelligence, IJCAI’95, pages 312–318, 1995.

7. I. Niemelä and P. Simons. Smodels — an implementation of the stable model and the well
founded semantics for normal logic programs. In 4th International Conference on Logic
Programming and Nonmonotonic Reasoning, LPNMR’97, pages 420–429, July 1997.

8. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
9. V. Risch. Analytic tableaux for default logics. Journal of Applied Non-Classical Logics,

6:71–88, 1996.
10. C. Schwind. A tableau-based theorem prover for a decidable subset of default logic. In 10th

International Conference on Automated Deduction, CADE’10, pages 541–546, 1990.

