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Abstract. In this paper, we propose a decision making framework suited
for knowledge and time constrained operational environments. We draw
our motivation from the observation that large knowledge repositories
are distributed over heterogeneous information management systems.
This makes it di�cult for a user to aggregate and process all relevant
information to make the best decision possible. Our proposed frame-
work eliminates the need for local aggregation of distributed information
by allowing the user to ask meaningful questions. We utilize semantic
knowledge representation to share information and semantic reasoning
to answer user queries. We look at an emergency healthcare scenario to
demonstrate the feasibility of our approach. The framework is contrasted
with conventional machine learning techniques and with existing work in
semantic question answering. We also discuss theoretical and practical
advantages over conventional techniques.

1 Introduction

As electronic information systems become mainstream, society's dependence
upon them for knowledge acquisition has increased. Over the years, the sophis-
tication of these systems has evolved, making them capable of not only storing
large amounts of information in diverse formats, but also of reasoning about
complex decisions. The increase in technological capabilities has revolutionized
the syntactic interoperability of modern information systems, allowing for a het-
erogeneous mix of systems to exchange a wide spectrum of data in many di�erent
formats. The successful exchange of raw information is, however, only the �rst
step towards solving the bigger semantic challenge of information exchange. This
is analogous to the �ontology challenge� de�ned by [15].

In recent years a focused e�ort in the semantic web domain has resulted in
technological advancements, providing sophisticated tools for intelligent knowl-
edge representation, information processing and reasoning. Domain speci�c knowl-
edge can be managed by utilizing a diverse set of ontological solutions, which
capture key domain concepts and the relationships between them. Knowledge
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regarding the domain can then be shared by publishing information in a do-
main speci�c ontology. A semantic reasoning engine can then be applied to a
knowledge-base to answer complex user queries. The semantic reasoning process
allows for enhanced knowledge discovery that may not be possible via consump-
tion of the raw data alone. Latent relationships can be discovered by applying
inference rules to the ontological knowledge-base.

Although the premise of the semantic web technology is sound in principle
and the use of an ontology can signi�cantly enhance how users consume and pro-
cess information, practical implementation all but demands that the distributed
heterogeneous knowledge be represented by local ontological representations [13].
Consequently, it is still di�cult to share knowledge across diverse heterogeneous
sources to answer speci�c questions. Furthermore, under adverse conditions (i.e.
constraints on time, communication and/or knowledge), the usefulness of the ag-
gregated data decreases sharply, since human agents are required to (manually)
process and reason with the data.

For example, in a health care setting, a physician may need to consult various
medical information systems in order to determine the best possible solution for
a patient. Given ideal conditions, a physician will be able acquire and process
information from various systems and make the ideal diagnosis. If the same
scenario is now constrained by the available time, communication bandwidth
and the skill level of the physician, the same quality of medical care may not be
possible.

Motivated by this, we propose a framework where a user will pose questions
directly (in natural language), rather than aggregate knowledge locally in an
attempt to �nd the answer. The framework will

� Process the user query.
� Aggregate information from various sources.
� Create a semantic representation of the aggregated data.
� Process information using a semantic reasoner.

Each answer generated (in response to the user query) is backed up by a semantic
proof. The semantic proof has the desirable property that it can be independently
validated by any third party. Our approach does not require the exchange of large
data-sets to make a decision, and consequently is more suitable for the above
mentioned adverse scenarios.

2 Proposed Solution

We propose a framework for reliable information exchange between distributed
heterogeneous parties, using semantic web technologies under constrained op-
erational conditions. We observe that under normal circumstances, such an ex-
change can easily be accomplished using existing techniques. These techniques
fail to be of practical use under adverse situations. For example, consider the
following time and information constrained setting: A patient is in a critical life
threatening situation, and is being treated by an emergency response (EMR)
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Fig. 1. System architecture

team member. Under these conditions the EMR team member may not be able
to provide the best personalized care, because of di�culty accessing patient
medical records in a timely manner or correctly interpreting those records.

Our proposed framework builds on top of the semantic web technologies. We
use ontological models for knowledge representation. We acknowledge the fact
that diverse heterogeneous information will be represented by an array of local
or domain ontologies. Therefore, our framework provides support for working
with multiple data-sets represented by di�erent ontological models. Given the
almost in�nite amount of information in the world, we utilize a problem context
to identify and limit the amount of knowledge that needs to be processed. We
create a problem speci�c information model using this context. We utilize a
semantic reasoner that takes as its input a knowledge-base, a set of inference
rules and a user query. The reasoner generates a two part result-set, where the
�rst element is the answer to the provided user query and the second element is
a semantic proof.

We will now discuss the details of the various components of our proposed
framework along with some examples.

2.1 System Architecture

We present a �exible architectural style for our proposed framework. Previous
approaches utilizing similair frameworks tend to be domain speci�c (e.g. [17]).
In contrast, our approach is domain indipendent. We now illustrate the salient
components of our design (Refer to Fig 1).

System Interface The system interface component facilitates interaction by
allowing a user to pose a query to the system. The user may also provide a
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query speci�c context. We provide support for two types of user communica-
tions based on the following two user classi�cations (i) a computational agent
(CA) � represents an arti�cially intelligent automated system and (ii) a human
agent (HA) � representing a human being. The �rst type of agent communication
is between two CAs. A local CA receives a query (and a context) from a remote
CA. This type of communication represents distributed automated systems in-
teracting with each other. The second type of communication utilizes a local CA
and a remote HA. This allows human beings to pose queries to a local system.
For each query, the interface receives a response from the reasoning module, and
forwards this response to the remote user.

The system interface component provides a queryable abstraction around the
heterogeneous knowledge stores, so that the actual data (utilized for answering
the query) does not have to be transmitted. This characteristic of the framework
facilitates knowledge sharing under adverse conditions.

Knowledge-Representation The knowledge-representation component of our
framework follows a multi-tiered design that is capable of accepting data from
a wide array of heterogeneous sources. It also utilizes the problem-context (gen-
erated from the user query context) to limit the amount of data which must be
processed to answer the query.

The raw data layer provides a useful abstraction to deal with all non-semantic
data sources. These data-sources are composed of structured data (such as in the
case of distributed relational database systems) and semi-structured data (such
as content repositories and web pages). We assume that this raw data does not
have any semantic capabilities built into it.

Information from the raw data layer is then annotated using appropriate
ontologies. This semantic data layer provides the appropriate abstraction. It is
important to note that we do not constrain the choice of the ontologies used. The
main goal here is to be able to convert raw data into its semantically equivalent
representation. The semantic data layer is also capable of incorporating data
from other semantic data repositories.

The problem-speci�c semantic layer provides a normalization of the semantic
data layer. The main goal of this layer is to provide mappings between various
ontological representations of the data in use. For example a single semantic
concept (such as name) that may be de�ned by di�erent ontologies can be nor-
malized and represented by a concept from a single consistent ontology.

Reasoning and Inference The reasoning layer is responsible for processing
the various inputs from other modules such as the semantic query (representing
the initial user query), the inference rules, and the knowledge-base from the
problem-speci�c semantic layer. It utilizes a semantic reasoner [27] to reason
about the user query over the selected knowledge-base. The reasoner generates
a two part result-set. The �rst element of the result-set contains the answer to
the user query. The second element contains a semantic proof in support of the
response.
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Fig. 2. Semantic Reasoning and inference

A semantic proof has the desirable property that it can be validated by
any party. In a heterogeneous multi-agent distributed environment, knowledge
changes with time. Therefore, the same query may not result in the same answer
at a di�erent time. Having a semantic proof generated for each user query allows
the validation an answer against the knowledge-base representation (that was
aggregated by the problem-speci�c semantic layer) at any given instant in time
by any party.

Motivation In this section we consider two simple scenarios for knowledge
sharing under adverse conditions, constrained by lack of time and lack of knowl-
edge. The purpose of these examples is to highlight the various components of
our proposed architecture and their interactions with one other. Fig 3 depicts
a semantic model capturing the high level entities for a medical scenario. This
semantic model represents the normalized view of the information gathered from
various distributed sources. The model describes not only the entities, but also
the semantic relationships between these entities.

The main entities de�ned in our model are patients, health care providers,
drugs, diseases and various medical conditions. For the sake of simplicity, we de-
�ne various simple relationships between these entities. The main relationship is
the IS_A relationship (sometimes called �subsumption�). For example a doctor
IS_A health care provider which IS_A person. Similarly Insulin IS_A allopathic
drug which IS_A drug. In addition to the IS_A relationship, we also de�ne sev-
eral other varieties of attribute-value relationship. For example the disease Ulcer
has a condition called Bleeding, the drug Nitroglycerin has a contraindication to
the drug Viagra (Fig. 3). Using the triple notation [22] we capture the semantic
model in a triple-store.

Example Scenario Consider a hypothetical scenario where an emergency re-
sponse team member would like to administer Warfrain (an anticoagulant drug)
to Alice in order to treat her for potential blood clotting. Alice is currently early
in her pregnancy. The EMR member has had no past interactions with Alice,
and is not aware of her medical condition and history. We add the following
two constraints to this scenario to incorporate the (adverse) time and knowledge
factors.
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Fig. 3. Semantic model for medical question answering

� The current conditions prevent the EMR person from accessing and review-
ing Alice's medical records.

� Alice's blood clot condition needs to be treated urgently.

Instead of aggregating information related to this scenario (such as Alice's medi-
cal records, drug interaction guidelines and such), the EMR person would launch
a natural language query such as �can Alice be given Warfrain?� against a medi-
cal information system based on our framework. The system would identify Alice
and Warfrain, and would compile the required information from various hetero-
geneous sources. The compiled knowledge is then translated into its' semantic
representation. Fig. 4 shows a simpli�ed contextual model based on the global
knowledge store presented in Fig. 3. The semantic reasoner will consume this
information along with the rules and semantic (user) query, and will generate a
result and a proof as follows:

User Query

:Alice :canNotBeGiven :Warfrain.

Inference Rule

{?PATIENT :condition ?CONDITION.
?DRUG :contraIndication ?CONDITION. } => {?PATIENT :canNotBeGiven

?DRUG}.

Semantic Reasoning & Proof
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{{:Alice :condition :Pregnancy} e:evidence <knowledge-base#_27>.
{:Warfrain :contraIndication :Pregnancy} e:evidence <knowledge-
base#_22>}
=>
{ {:Alice :canNotBeGiven :Warfrain} e:evidence <rules#_9>}.
# Proof found in 3 steps (2970 steps/sec) using 1 engine (18 triples) }.

Based on the facts and the inference rules, the semantic reasoner concludes
that Alice can not be given Warfrain since she is pregnant and the Warfrain has
a contraindication relationship with Pregnancy. The N3 representation of the
user query, inference rules and semantic proof are shown above.

Fig. 4. Example Scenario: Should Alice be given Warfrain?

The scenario discussed above has been kept simple for ease of understand-
ing. A more realistic knowledge-base would be quite rich in semantic concepts
and a large number of relationships between the concepts. Similarly there will
be a larger array of rules de�ned to provide the required level of inferencing
capabilities to a complex semantic model.

3 Framework Realization

It is important to note that we are proposing a framework that can have many
di�erent realizations based on given system requirements. For example certain
implementations can omit the natural language query interface if the interacting
components are arti�cially intelligent machine agents. Similarly, di�erent seman-
tic reasoners can be used to achieve implementation goals of performance. Our
proposed framework identi�es the critical system components and their interac-
tions.

Our realization of the system was solely focused on validating the proposed
framework. As semantic knowledge representation and reasoning represent the
most important components of the proposed framework, our proof-of-concept
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realization was focused around the workings and validation of these components.
We used N3 [22] notation to represent all knowledge (raw facts), inference rules
and the system queries. Considering that N3 utilizes triple format to represent
knowledge, any other representation capable of using the triple notation would
be compatible with our approach.

We utilized the Euler proof mechanism [27] for semantic reasoning in our
realization. Our choice was mainly driven by Euler's support for N3 notation and
its support for the Java programming language (since our application was written
in Java). The Euler project also provided an extensive set of examples where the
OWL rules and concepts were already translated into N3 representation.

4 Related Work

In this section we establish both theoretical and practical concerns motivating
the use of ontologies in question answering, and discuss previous work incorpo-
rating ontologies into knowledge querying.

4.1 Ontology-Free Approaches to Querying

There is considerable recent work suggesting that conventional querying tech-
niques, though extremely powerful, might not be suitable for use in environments
where queries are frequent, time-dependent, and arbitrarily complex. The prin-
cipal reason for this is that, in the absence of semantic reasoning and inference
rules, all information available for querying must be available in explicit form.
This poses a problem in domains where there exists an enormous amount of
information, precluding of the possibility explicit codi�cation. For example, in
the medical domain, there are hundreds of thousands of codi�ed relationships
between various concepts [28], but the hierarchical nature of these relationships
means that the number of implicit relationships can be much higher. For exam-
ple, viral pneumonia is explicitly de�ned as a type infectious pneumonia, but
implicitly it is also a type of lung disease.

This motivates the use of machine learning techniques as a possible method
of answering ad-hoc queries to an information system which may not encode
all possible relationships. By taking a su�ciently large sample of the data, it
may be possible to infer the answer to a user's query. For example, if a user
asks whether a particular patient can be given a drug, a predictive classi�cation
system could be dynamically constructed and utilized to answer the query.

4.2 Motivations for Ontological Approaches to Querying

There are both theoretical and practical motivations for avoiding the use of
traditional machine learning techniques to answer the kind of questions de-
scribed above. Many machine learning algorithms, including popular decision
trees (C4.5, ID3 [23]), maximum margin classi�ers (e.g. Support Vector Machines
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[7]), and clustering techniques (e.g. KNN [9]), operate by phrasing queries as opti-
mization problems. For example, if a doctor wants to know whether their patient
is likely to experience an adverse reaction to a drug, then a system might collect
a large sample of patient records and use them to build a classi�cation model.
Although machine learning algorithms are often very e�ective in practice, there
are theoretical reasons to suppose they might be less useful in time-critical do-
mains where arbitrary queries are being made. �No Free Lunch� theorem (NFL)
[30] shows that all optimization techniques are expected to produce identical
mean performance across a set of arbitrary queries, in the absence of domain
speci�c knowledge. This suggests that, over a large set of possible queries, no
conventional machine learning technique is likely to answer all queries better
than using completely random optimization strategies. In critical scenarios like
ours, the possibility of receiving a poor result might be too large a risk for users
to trust the system's answers.

There are also practical considerations, especially the opacity of the answers
obtained using conventional query techniques. Continuing with our example
above, what the doctor receives in response to a query about adverse reactions
to a drug is a classi�cation model based on a sample of patient data. The un-
derstandability of these models to computational laypeople varies from model
to model. A support vector machine for example, is practically impossible for a
layperson to understand, since it operates by building the maximally separating
hyper-plane for a high-dimensional extrapolation of the given data. When the
doctor asks �Why does the system believe my patient will have an adverse re-
action?�, she may not trust a system which answers �I put your patient's record
into a 500 dimensional space, and it fell on this side of a line�. This is true even
if the system is highly reliable, because human users may have concerns about
the ethics of entrusting life-saving decisions to a �black box�. The system cannot
easily explain its decision in terms of medical conditions and the relationships
between them, and so it is impossible to tell whether the answer provided is
based on sound reasoning, or an unfortunate hiccup in the algorithm's usual
consistency.

4.3 Previous Ontological Approaches to Querying

There has been considerable previous work utilizing ontologies for answering
queries, but the general focus is on preprocessing of queries to facilitate the use
of conventional machine learning techniques. This is a reasonable approach in-
sofar as it obviates the NFL issues described above by introducing domain spe-
ci�c knowledge into the optimization process. In medicine, for example, there
has been a focus on isolating the queries used by doctors most frequently, and
preprocessing them using semantic information[8,12]. By utilizing ontological in-
formation, previous researchers have created frameworks capable of automated
contextualization of doctor queries. For example, a doctor whose patient has
type I diabetes would have queries regarding that patient and �diabetes� auto-
matically translated to instead include �Type I Diabetes� [21]. An alternative
approach considers the incorporation of meta-data into search queries, which
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can be utilized to return more relevant documents during information retrieval
[11]. Finally, recent research in question answering systems utilizes ontologies to
translate doctors' questions into lists of relevant terms for an ordinary search
engine [14].

The use of a semantic reasoner in place of a conventional machine learning
algorithm to answer search queries o�ers several immediate advantages. First,
because a semantic reasoner does not rely on optimization to construct a pre-
dictive model, it is not subject to the problems posed by the No Free Lunch
theorems for optimization. This eliminates the need for extensive incorporation
of a priori knowledge by the end user, as in [11]. Second, the opacity problem
is solved by the ability of the framework to both provide a proof of its answer
(i.e. the chain of reasoning used to determine the answer), and to formulate that
proof in terms easily understood by a layperson (i.e. via conversion of triple for-
mated data into simple natural language statements). For example, if our doctor
wishes to ask �Why does the system believe my patient will have a reaction to
this drug?�, instead of being told, somewhat tautologically, that their patient �ts
the system's model of patients who had reactions, the doctor can be provided
with a patient-speci�c proof based on medical evidence. By providing a semantic
proof, the framework asserts that answer to a user's query is correct, based on
the present data.

5 Future Work

Future work will take two directions. First, we plan to implement and benchmark
a prototype system, and compare its performance with that of a system based
around conventional machine learning techniques for question answering. Second,
we plan to extend the framework by overlaying probabilistic models onto the
ontological model, to provide a more precise answer to a users' queries. For
example, a user who reports cracks in a bridge might be told that there is a
60% chance of bridge failure, rather than simply being told that the bridge will

collapse if they drive over it. A drawback associated with this extension is the
�curse of dimensionality� which arises when there are many possible combinations

of factors that have di�erent interactions. For example, a bent bridge might
have a 30% chance of collapsing, but a bent and cracked bridge a 99% chance
of collapsing. The problem worsens as additional factors are added, and each
combination of factors in turn must be considered.

To avoid this problem, we plan to consider the introduction of heuristic tech-
niques for providing estimated probabilities. For example, we might have the
system take a random sampling of past bridges with both characteristics, and
produce an observed probability estimate. Alternatively, the framework could
provide �reasonable� bounds in the absence of additional information by assum-
ing no interaction and a positive interaction of strength proportionate to the
criticality of the task. Thus, if the bridge is only 3ft o� the ground, estimates of
the risk would tend to be more liberal (i.e. smaller interaction estimates) than
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if the bridge is 300ft o� the ground. Neither scheme is ideal, and experimental
validation might be required to determine appropriate estimates of risk.

6 Conclusion

In this paper we present a proposal for a general purpose ontology-based infor-
mation exchange framework, intended for use in time critical, knowledge sparse
scenarios. The framework utilizes ontologies to retrieve contextually relevant
facts from external data sources; reason about those facts in the context of a
problem-dependent rule base; and produce both answers and human readable
proofs relevant to user queries.

The framework is demonstrated through two example scenarios with a proto-
type, and contrasted with existing work on semantic data mining (which tends to
focus on pre- and post-processing, rather than rule discovery and query answer-
ing), and conventional, non-semantic machine learning approaches. Our frame-
work eliminates the problems posed by the No Free Lunch theorem for opti-
mization [30], and provides transparent answers which are easily understood by
computational laypersons. Future work will focus on the implementation of a
fully functional system, user studies of the system's e�ectiveness as compared
with conventional techniques, and on incorporating probabilistic reasoning into
the model.
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