
A Software Project Perspective on the Fitness and
Evolvability of Personal Learning Environments

Christian R. Prause
Fraunhofer FIT

Schloss Birlinghoven, Sankt Augustin, Germany
christian.prause@fit.fraunhofer.de

ABSTRACT
This position paper deals with the exploration of fitness and
evolvability of personal learning environments (PLEs). Tak-
ing a software engineer’s perspective, PLE evolution is a
software project. Software quality characteristics like Func-
tionality and Usability map to the PLE’s fitness, while Main-
tainability is important for evolvability. Only adaptation can
secure future fitness. But for this, the software project has
to be a good PLE for its developers in its on right.

1. INTRODUCTION
Common wisdom of software development — going back

to Edward V. Berard — says: “Walking on water and de-
veloping software from a specification are easy if both are
frozen.” The success of Personal Learning Environments
(PLEs) not only depends on their fitness for a certain pur-
pose or environment, but no less than this depends on their
ability to evolve, i.e. to adapt to changes. In the world of
software, the continuous change of requirements is as sure
as death and taxes. A PLE that fails to catch up with new
requirements, ages and eventually becomes useless.

Bear with me, while I relate to the workshop’s natural evo-
lution metaphor: The extinction of dinosaurs is attributed to
their failure to adapt to a changing environment. Their races
showed only few diversification and innovativeness in behav-
ioral strategies. When their world changed, only two species
attempted an adaptation to new foods [6]. The dinosaurs’
seemingly unbreakable predominance abruptly ended, mak-
ing room for mammals that had waited in a niche. Mam-
mals instantly filled the gap, and diversified into a plethora
of species. Today, they emboss the planet’s face as successful
predators. If dinosaurs had not failed to adapt, they would
have remained invincible competitors for any other species.

Predominance and wide spread were limited predictors of
fitness and evolvability. Predominance can suppress com-
petitors, but for how long? It is no disgrace to wait for
a chance like the early mammals. To avoid extinction and
eventually prevail, PLEs must evolve. Different from nature,
where mutation of organisms occurs by accident and with-
out the intent to optimize a creature’s fitness, adaptation
happens through conscious decision and human developers.

I take on a software engineer’s view in the discussion on
fitness and evolvability of PLEs. In this view, evolvability E
is understood as a PLE’s ability to embrace natural change,
i.e. evolution E′. Fitness F does not imply evolvability, nor
does evolvability imply fitness. Yet both are prerequisites
of successful evolution F ∧ E ⇐ E′. New clades of PLEs
often start from research. While fitness is usually tested

thoroughly there, evolvability is often neglected.
The easier developers perform changes, the higher the

chance that a PLE will cope with emerging requirements.
Only this can make a PLE remain fit. Section 2 addresses
the ease of change in software projects. This leads to the
finding that learning is essential, and to the dualism that
evolution is a PLE itself (Section 3). As long as a PLE’s
fitness suffices to safe it from extinction, evolvability is most
important. A more evolvable PLE will adapt to changing en-
vironmental demands faster and easier. In conclusion, this
is not least a matter of how easy PLE developers can obtain
the necessary knowledge to make change happen.

2. EMBRACING THE CHANGE
Evolvability means to be prepared for changing environ-

ments and the unknown. It cannot be said in an across-the-
board fashion what that practically means. It would imply
to summarize the achievements of software engineering in a
few sentences. In the Iron Triangle, the prime resource is
people supported by processes and technology [5]. A full dis-
cussion of all three factors would be way out of scope of this
paper. Instead, here are some fundamental considerations:

Whenever a software system grows larger, its complex-
ity increases to a level that is no longer easily handable.
Any successful software will eventually grow to that size.
Abstraction and structuring that organize it into an under-
standable architecture become necessary. A good architec-
ture means that developers can change parts without having
to understand everything. But for the individual developer,
having to adhere to architecture rules can be cumbersome.
In a multi-tier Web-Service project, developers of front-end
components bypassed the middle layer, and directly accessed
back-end layers. This sped up development at first, but de-
graded architecture to a costly mess. Evolvability assess-
ment should take into account how an architecture is pro-
tected, and how technical debt (see also [1]) is dealt with.

The term architecture should not be confused with inte-
gration platform. An integration platform can be something
like UNIX’s toolbox concept with its many small programs.
It can be Web-Services, or a single program based on OSGi.
The different platforms have different strengths and weak-
nesses that influence PLE fitness. Yet from an evolvability
point of view, they are similar, all allowing fast adaptation
through reuse of components. Do not think that a tech-
nology has reuse built in; instead, reuse is a discipline [12].
Here, it is more important to look at the processes.

Even with the best architecture, building a software archi-
tect’s knowledge costs a hundred million. The combination

49



of deep domain knowledge and system engineering capabil-
ities is invaluable [2]. Will the architect stay with the PLE
project? What endeavors are made to train new architects?

Is the business model associated with the PLE project
sustainable? While a potent company may be able to han-
dle closed-source evolution on its own, also the openness of
open source — mind the license — has advantages for evolv-
ability: open standards, interoperability, cost effectiveness,
attractiveness for users, possibly unlimited branching and
experimentation, and a higher number of potential develop-
ers. However, a major road block to becoming a productive
executor of PLE evolution, is knowledge about the software.

The Maintainability quality characteristic describes a soft-
ware’s capability to be modified and evolve [4]. By being
analyzable, easy and predictable to change, and allowing to
test changes, software developers can gain a deep under-
standing of the software through practical experimentation.

All of the aspects in the paragraphs above, help develop-
ers to understand the software by being few (complexity-
reducing architecture), simple (with reuse in mind), super-
vised (senior architect guidance), open (open source), and
practical (support experimentation) to learn. Knowledge
about the software project, i.e. about how to evolve the
PLE, is at the center of evolvability. Not only is the process
of PLE evolution a software project, but a software project
is a PLE itself. This duality is addressed next, when we look
at internal documentation, which can be considered as the
learning material that supports learning a software system.

3. THE SOFTWARE PROJECT AS A PLE
Modern software systems are too complex to fully un-

derstand them. But a certain understanding is necessary
for performing changes. Working on a computer system is
therefore a continuous learning process. The learning ma-
terials are process artifacts like source code, requirements,
bug history, etc.; a developer’s PLE consists of his individual
selection of source code pieces, requirements, searchable bug
records and so on that are delivered to him through tools
like an IDE or an issue tracker. Developers do not like to
create such learning material because it has few value for
them [9]. But it is needed to persist collaborative long-term
efforts like developing and maintaining a software.

Consider the example of source code (see also [7]): Source
code is mostly learning material for us humans. There is
an infinite number of ways of writing a same-purpose com-
puter program. Neither does it matter for a computer what
programming language one uses, nor does a parser care how
functions and methods are named. The instructions that the
computer needs are intertwined with the human-readable
lines of source code. Functions, data types, objects, com-
ments, macros, etc. and their respective names are just
abstractions that make the design appear more clearly from
code by masking unneeded implementation details [10]. This
way we humans better understand what the computer will
do. Programming languages exist so that we can better ex-
plain to our fellow developers what the computer will do.

In a small, one-person, throw-away-prototype project it
may be sufficient to just code, but any other project will
eventually need documentation [11]. The actual way of how
code is documented is less important, as long as all the nec-
essary information is conveyed. The difference that matters
is that between hacking code quick and dirty, or being nice
to fellow developers by making code easier to understand

by investing a little more effort. Source code — originally
a medium of communication between man and machine —
has become a medium of communication among humans [3].

Documentation (as learning material) communicates back-
ground, context, and trial-and-error information. This in-
formation is extremely valuable [8], but will get lost if not
preserved. Motivating developers to create good learning
material is a key to evolvability and survival of PLEs.

4. CONCLUSION
Evolvability is important for the success of a PLE, because

it allows to adapt it to new environments, and thus stay fit.
PLE evolution happens through a software project. Devel-
opers, who realize the change of evolution, require a certain
knowledge of the software for this. Evolvability then is the
availability and ease of obtaining the necessary knowledge.

After all, a PLE’s evolution, i.e. its software project, is a
PLE in its own right. This duality between software projects
and PLEs is the key to evolvability, and future fitness. Does
the software project make a good PLE for its developers? If
yes, then a big obstacle to survival is cleared out of the way.

Acknowledgment
This paper was invited by the EFEPLE workshop and sup-
ported by the CAPLE project.

5. REFERENCES
[1] W. Cunningham. The wycash portfolio management

system. In OOPSLA Addendum. ACM, 1992.

[2] B. Curtis, H. Krasner, and N. Iscoe. A field study of
the software design process for large systems. Comm.
of the ACM, 31:1268–1287, November 1988.

[3] G. Dubochet. Computer code as a medium for human
communication: Are programming languages
improving? In 21st Annual PPIG Workshop, 2009.

[4] ISO/IEC 9126-1: Software engineering – product
quality: Part 1: Quality model, 2001.

[5] A. S. Koch. The people premium. online: http://www.

projectsatwork.com/content/articles/227504.cfm,
October 2005. Projects@Work Journal.

[6] G. T. Lloyd, K. E. Davis, D. Pisani, J. E. Tarver,
M. Ruta, M. Sakamoto, D. W. E. Hone, R. Jennings,
and M. J. Benton. Dinosaurs and the cretaceous
terrestrial revolution. R. Soc. B, 275:2483–2490, 2008.

[7] C. R. Prause, R. Reiners, S. Dencheva, and
A. Zimmermann. Incentives for maintaining
high-quality source code. In PPIG-WIP, 2010.

[8] J. Raskin. Comments are more important than code.
ACM Queue, 3(2):64–62 (sic!), 2005.

[9] B. Selic. Agile documentation, anyone? IEEE
Software, 26(6):11–12, Nov/Dec 2009.

[10] D. Spinellis. Code documentation. IEEE Software,
27:18–19, 2010.

[11] S. R. Tilley. Documenting-in-the-large vs. document-
ing-in-the-small. In CASCON. IBM Press, 1993.

[12] M. Wasmund. Reuse facts and myths. In ICSE, 1994.

50




