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Abstract. Though numerous new clustering algorithms are proposed
every year, the fundamental question of the proper way to evaluate new
clustering algorithms has not been satisfactorily answered. Common pro-
cedures of evaluating a clustering result have several drawbacks. Here,
we propose a system that could represent a step forward in addressing
open issues (though not resolving all open issues) by bridging the gap
between an automatic evaluation using mathematical models or known
class labels and the actual human researcher. We introduce an interac-
tive evaluation method where clusters are first rated by the system with
respect to their similarity to known results and where “new” results are
fed back to the human researcher for inspection. The researcher can then
validate and refine these results and re-add them back into the system
to improve the evaluation result.

1 Introduction

A major challenge in the development of clustering algorithms is the proper and
useful evaluation. In most cases, a clustering algorithm is evaluated using (i)
some internal evaluation measure like cohesion, separation, or the silhouette-
coefficient (addressing both, cohesion and separation), (ii) some external evalu-
ation measure like accuracy, precision, or recall w.r.t. some given class-structure
of the data. In some cases, where evaluation based on class labels does not seem
viable, (iii) careful (manual) inspection of clusters shows them to be a somehow
meaningful collection of apparently somehow related objects.

All these approaches certainly have their merits but also serious drawbacks.
(i) The evaluation w.r.t. some internal evaluation measure does nothing more

than evaluate how well the objective function of the clustering algorithm fits to
the chosen evaluation measure. For example, using some compactness measure
would be obviously inappropriate to evaluate the results of some density-based
clustering [1], simply because density-based clustering does not aim at finding
convex clusters. As a consequence, the evaluation does not primarily show that
the clustering is meaningful and fitting for the given data. Clusters attributed
with good grades could be trivial or rather uninteresting.

(ii) The fundamental problem in using class-labels for evaluation of cluster-
ing is the different structure of classes and clusters. Consider for example one
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of the best known classification data sets, Fisher’s Iris data set [2]. It comprises
four descriptors of the Iris flower, namely length and width of petals and sepals,
respectively. These descriptors are collected for individual flowers of three dif-
ferent species. The classes are well defined (though not trivial to learn) by some
separating borders between members of the classes. The natural clusters in this
data set, however, are certainly not evolved according to such (predefined?) bor-
ders. Cluster analysis of these data would discover that I. setosa is much more
different from both, I. versicolor and I. virginica, than these two are from each
other (in fact, they will usually be considered a single cluster). Accordingly, most
classification algorithms set out with learning some separating borders between
different classes. Opposed to that, clustering algorithms aim at grouping similar
objects together. As a consequence, the evaluation of new clustering algorithms
towards learning a class structure may introduce some strong bias in the wrong
direction into the development and design of new clustering algorithms. Actu-
ally, it could be a good and desirable result if a clustering algorithm detects
structures considerably different from previously known classes. In that case,
the clustering algorithm should not be punished by using some evaluation mea-
sure biased towards rediscovery of classes. A more thorough discussion of this
issue, along with many more examples, has been provided in [3].

(iii) The third approach, (manual) inspection of clusters and reviewing them
for prevalent representation of some meaningful concept, could be figured as
‘evaluation by example’. There are attempts to formalize this as ‘enrichment’
w.r.t. some known concept (this technique is automated to a certain extent in
biological analysis of gene data, e.g. [4–10]). In the context of multiple clusterings
and overlapping clusters (as are expected in gene data – see the Gene Ontology
[11] –, but also in many benchmark data sets that sparked interest of researchers
in alternative or multiview clustering, e.g. [12–17], see also [18]) it becomes
even more important to find methods of evaluating clusterings w.r.t. each other,
w.r.t. existing knowledge, and w.r.t. their usefulness as interpreted by a human
researcher. Though the problem of overlapping ground truths (and, hence, the
impossibility of using a flat set of class labels directly) is pre-eminent in such
research areas as subspace clustering [19], alternative clustering [16], or multiview
clustering [13], it is, in our opinion, actually relevant for all non-näıve approaches
to clustering that set out to learn something new and interesting about the world
(where ‘näıve’ approaches would require the world to be simple and the truth to
be one single flat set of propositions only).

It is our impression, that the third approach is pointing in the right direction
since it tries to assess whether some clustering algorithm actually found some
new, valid, and previously unknown knowledge (which is, after all, the whole
point in performing data mining [20]). As ‘evaluation by example’, however, it
has never been convincingly impartial and always remained tasting somehow
subjective and incomplete. The discussion of evaluation scenarios in [3] pointed
out some requirements in an automation of evaluation based on multiple (and
possibly some unknown) ground truths. Thus we try to establish some first steps
in automation of such a process and to set up an evaluation system to address
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at least some of the identified requirements. We see this only as some first steps,
the system relies on participation of the community to further advance.

In the following, we describe the preliminary system and the envisioned pos-
sibilities of future enhancements (Section 2). Based on the available system, we
discuss an illustrative example benchmark data set as a case study (Section 3).
We conclude the paper in Section 4.

2 A Clustering Evaluation System

Since a main goal of cluster analysis is the discovery of new and previously
unknown knowledge, our evaluation concept is built around the comparison of
results to known structure in the data. But instead of just computing a score
of how well the clustering resembles a known label structure, we actually try
to detect situations where it deviates from the known structure. Another key
difference is that we not only include the target classes, but essentially include
any structure information that we can obtain for the data set.

A key source of information are features of any kind. In order to process
complex data such as image or video data, feature extraction is essential and a
whole research area of its own. But when working in a cluster analysis context, we
should treat the features as known properties of the data, and instead evaluate
how much additional information the clustering algorithm is able to extract from
the data that goes beyond the data already extracted using the feature extraction
methods: in particular, when feature extraction itself is already very good, almost
any clustering algorithm will appear to perform well, but the performance is
essentially increased to not more than a näıve statistic on the features.

2.1 Assisted Evaluation

The general process of an assisted evaluation is an iterative interaction between
the computer system and the researcher. The system uses the available infor-
mation to find feature descriptions of the clusters. Clusters that can not be
explained sufficiently well using the existing knowledge are then given to the
researcher for further external analysis. Knowledge obtained in this process is
then added back into the system as additional features, resulting in better ex-
planations for some clusters and thus in new candidates to be analyzed by the
human researcher. When assigning a “usefulness” to the different information
fed into the system – for example, a simple color feature will not be considered
particularly useful but preexisting knowledge – this can also be used to qualita-
tively rate the output of an algorithm by the usefulness of the information it was
able to discover in the data. Both a supervised or semi-supervised evaluation is
here possible. For example, the system could perform an initial analysis of the
data set, present these results to the analyst, who can then choose results for
a more expensive refinement, manually choose complex feature combinations or
refine the parameters of found explanations.
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2.2 Challenges

In the task of analyzing the characteristics of a cluster, various challenges arise.
For example, the cluster size can vary from micro clusters to clusters that span
almost the complete data set, resulting in varying imbalance problems. When
searching complex explanations involving e.g. the combination of features, or
the intersection or union of known classes, the search space is extremely large
and an exhaustive search quickly becomes infeasible. Even comparing a cluster
with a single numerical feature is non-trivial. Such a feature will give you an
ordering (or scoring) of the objects, but the clusters can still occur anywhere
within this scoring. Therefore, we need a general way to measure how relevant
the information of a feature (or combination of features) is with respect to a
particular cluster. Combining such scorings could be based on any linear or
non-linear combination of their scores. The scorings however can be strongly
correlated, so that in the end, finding the optimal combination offers little benefit
to the analyst.

There are many kinds of features, and we will work with two of the most
common types of features in the following: class features that differentiate a
particular group of objects from the remainder and numerically scoring and
ranking features such as the average brightness of an image. Other types such
as “bag of words” can probably be handled well enough by breaking them down
into individual scoring features.

2.3 Comparing with Existing Classes

Comparing two clusters has of course been extensively studied, and various mea-
sures have been developed (see, e.g., [21]). Much of this research (such as pair
counting measures) however is designed to compare two complete partitionings
of the data (containing more than one cluster each). In our setting, we are again
evaluating single clusters with respect to overlapping classes and scorings. Com-
paring two clusters however is done using simple measures such as precision,
recall, or the F-measure (which represents the harmonic mean of these two):

F1 :=
2 · precision · recall

precision + recall

A nice property of the F-measure is that both trivial solutions (the empty set
and the complete data set) score fairly low due to the product in the numerator.
Only when both precision and recall are high at the same time, the F-score will
be good. When precision equals recall, they will also be equal to the F-score.

We also use this measure in evaluation of a cluster with respect to a scoring,
essentially treating these two cases the same, which we will explain next.

2.4 Comparing Clusters with Scorings

A common way of comparing a two-class problem with a scoring is the evaluation
using ROC curves. Instead of evaluating a ranking with respect to a class, we
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Object Scoring
Cluster Members
Candidate Intervals

...
Highest F-Measure

Fig. 1. Evaluating a cluster using the highest F-measure on an interval

could apply ROC curves to evaluate the cluster with respect to the ranking given
by the scores. However in our experiments, the results were not very useful:
given that the clusters are usually computed on features similar or identical to
the reference scorings, a strong correlation and thus a high ROC AUC score
between them can be expected. Additionally, ROC is only meaningful when
the cluster is at the top or bottom of the scoring, which we would yet have to
generalize to allow it to occur at arbitrary positions.

Instead, we chose an approach based on a kind of compactness based on the
comparison with classes as discussed before: We search for an arbitrary interval
within the scoring that has a high F-measure. Too large an interval will score
badly because of a bad precision, while too narrow an interval will suffer from a
bad recall. A compact interval containing mostly cluster members however will
achieve a high F-measure. In this context, precision can be considered as the
density of the cluster members in the interval, while recall is the coverage. Note
that this measure is independent of the actual position of the interval within the
scoring or the order within the interval. Since we are interested in the potential
of agreement between the scoring and the cluster, we want to use the maximum
F-measure possible; however näıvely there are O(n2) possible intervals to test.
Luckily, we can exploit some monotonicity properties here. Recall obviously is
monotonously decreasing, so any subinterval will have at most the same recall.
Interesting intervals are thus on the skyline of precision and recall. Intervals
which do not have a cluster member on the interval boundary are obviously
dominated by the subinterval that fulfills this property (same recall, but better
precision). This reduces the search space to O(k2) for cluster size k. However,
we perform a greedy search by starting with the smallest interval containing all
cluster members (so at recall 1), then repeatedly narrow down the interval as
sketched in Figure 1 by trying to cut off leading and trailing cluster members
along with any non-member as long as we can improve the F-measure this way
by improving precision at the cost of recall in at most k iterations.

Ties need special handling: an interval may never split within a tie. Then
we can map an existing class to a scoring by setting all members to 1 and non-
members to 0. If there is some overlap between the test cluster and the known
class, the result will be the F-score.
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2.5 Scoring Combinations

In addition, we perform a greedy search for a simple additive combination of
features. In a preprocessing step, we normalized the scores of each scoring to
unit variance to improve results in this step. In the greedy combination phase,
we now combine the top matching results by just adding their scores and testing
the new scoring. When the combined scoring performs better by a sufficiently
large amount, we add it to the candidate list. While we only test a very simple
combination of features – not even considering full linear combinations – this
greedy search was very successful in our experiments in finding better explana-
tions than single features. We will show examples of this in the next section. But
obviously there is much room for improved heuristics in finding such combined
explanations.

2.6 Result Presentation

There are essentially infinitely many combinations possible, and even when just
using the additive combinations we have theoretically O(2r) scores for each clus-
ter. The top score itself is often not very useful to the analyst: it may be just one
of many very similar explanations. The most interesting analysis results occur
when a combination of scorings offers a significantly better explanation than the
individual single features, or when there was not found any adequate explana-
tion at all. Therefore we need to make a selection of the results to present to the
user. As a heuristic, we will present a result to the user if it is the best single-
feature explanation or if no other score with a single feature added or removed
performed better. Additionally, we will stop once a threshold of matches has
been reached by the accumulated amount explained. Other application-domain
specific heuristics may be useful, for example when there is a large number of
correlated features.

3 A Case Study

For the case study, we started to analyse the ALOI [22] image data set. It
consists of 110250 images of 1000 objects taken from 72 angles and in a series
of controlled light conditions varying both color temperature and lighting angle.
This metadata can be used to obtain a couple of overlapping classes on the data
set, resembling the object number, the viewing angle, the lighting angle, lighting
color temperature, and a stereo image shift. Some of these classes are however
only useful for machine learning tests; in particular the rotation and stereo image
shift usually require a training set and optimized color features.

In addition to these labels we compute some simple color analysis on the
pictures. We defined a set of 77 colors spaced evenly in HSV color space (18
hues with 100% and 50% each in saturation and brightness plus 5 grey values
for saturation 0%), then computed the average pixel color similarity to these
colors for each image to obtain object reference scorings.
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For the actual algorithm, we independently produced traditional color his-
tograms in HSV color space with 28 dimensions: 7 bins in hue and 2 bins in
saturation and brightness each. In contrast to the features above, the histogram
dimensions are not independent, but each pixel is assigned to the closest his-
togram bin only, so the histograms add up to 1. While the performance of the
histograms is of course expected to be similar to the other color features, we
wanted to avoid using identical features to not overfit our analysis method.

Early analysis on the objects in this data set allowed us to identify various
groups of objects that form sensible clusters aggregating multiple objects such
as different jam cans. These additional human-verified clusters sometimes form
a hierarchy: for example there are multiple yellow rubber ducks that can be
considered a cluster, but there also is a red rubber duck that can be added to
form an “any-color rubber duck” cluster. However, there were also some inter-
esting additional features hidden in the data set that were surprisingly useful in
explaining results. We highlight these features using a bold typeface and we will
explain these features in the discussion below.

We ran OPTICS [23] on the 28 dimensional HSV histograms using Manhattan
distance (since this is a rather large data set, and we can use an R∗-tree [24] for
acceleration here; on normalized vectors, Manhattan distance equals histogram
intersection distance [25]; all implementations featured by ELKI [26]). We chose
minPts = 15, ε = 0.3 (solely for performance improvements) and ξ = 0.03 and
obtained a hierarchy of 1442 clusters. The median size is 40 objects, the largest
cluster contains 343 images. OPTICS is not a subspace clustering algorithm,
but it is a truly hierarchical clustering algorithm, so certain types of overlap
among clusters occur. While the majority of objects was not clustered using these
unoptimized parameters, the detected clusters were still interesting to analyze.
We will give some examples here.

There is a cluster that contains 18 images from object 938 and 19 images from
object 939. Some sample images are shown in Figure 2. The cluster is not very
surprising, as the two objects are indeed very similar – considering the back side
of the objects (images 2(a) and 2(b)). The cluster does not contain the front sides
(images 2(c) and 2(d)), which are much more different. In fact, there is another
cluster, containing the front sides of object 938 only. The F-measure with the
individual clusters is just around 0.25, adding the second object information
improves this only slightly to 0.285 (due to the bad recall), but when using both
clusters and some color features it rises to above 0.9, offering a much better
explanation. Note that one might also be tempted to see a shape cluster, while
this is impossible due to the result being computed from color histograms. From
the perspective of multiview-clustering, this is a very interesting cluster, since
there is a nontrivial cluster that is orthogonal to the original classes, consisting
only of parts of the original classes each. As such, the automatic analysis also
returns the two matching objects along with color annotations for a best match,
thus supporting the analysis as intended. Also note that the reported green colors
do not resemble the picture much – but the images may indeed have a very similar
distance from this reference color. After our initial analysis we added some new
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(a) Object 938 (b) Object 939 (c) Object 938 (d) Object 939

Score Analysis

0.914 color-408055 color-aaff80 object-938 object-939

0.635 color-808040 color-aaff80 object-938 object-939
0.286 object-938 object-939
0.257 object-939
0.243 object-938

0.877 object-938 object-939 front-to-back
0.618 object-938 front-to-back
0.590 object-939 front-to-back

(e) Analysis result

Fig. 2. Boxes in ALOI image data set

features, including a front-to-back object scoring (ranging from 0 to 1 based on
the angle the image was taken from). Including this scoring returns some new
explanations. However, they do not score as well as the color-based explanations,
making the less interesting color explanation more appropriate. Nevertheless, we
already discovered structure in the data that we had not formalized before.

Another cluster (Figure 3) contains 81 images of object 49 and 2 others (so
it is almost pure in a traditional sense), but only scores 0.848 on the object
itself. Combined with a single color feature, this improves to 0.969. Images 3(a)
and 3(b) were both included in the cluster (as were all other rotations and basic
color situations). Given the strong uniformity of the object’s color representa-
tion under rotation, OPTICS cuts off the color variations of the cluster such as
image 3(c) (having a light color of 2172K as opposed to 3075K for the regular
images) and angular lighting situations such as image 3(d) (with light coming
from the bottom right instead of the center). While the cluster matches the
object very well, the actual subset included can be better explained when also
using color scorings. Some other objects (e.g. the sea shell 228) were clustered
the same way. Furthermore, OPTICS also found a subcluster within this cluster
containing just 33 images. The F-measure for the object class on this sub-cluster
was just a meagre 0.468. Combining it with a feature that contains only the
basic lighting situations, the score rises to 0.606. However, the direct color based
explanations match better than the ground truth lighting information, so the
clustering algorithm does not appear to have recognized the actual light effects
here. In both examples shown so far, the clustering algorithm far from failed:
it discovered that there is a subset of a class that is more similar to each other
than the others.
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(a) Regular light (b) Regular light (c) Temp. 2172K (d) Light angle l1c2

Cluster Score Analysis

Parent 0.976 color-2a0080 color-80ff80 object-49

Parent 0.969 color-2a0080 object-49

Parent 0.963 color-aaff00 object-49
Parent 0.848 object-49

Parent 0.936 color-ffd580 object-49 light-basic
Parent 0.918 object-49 light-basic

Child 0.909 color-008080 color-800080 color-ffd580 object-49

Child 0.899 color-2a0080 color-ffd580 object-49

Child 0.829 color-2a0080 object-49
Child 0.468 object-49

Child 0.925 color-2a0080 color-800080 color-aaff00 object-49 light-basic

Child 0.923 color-800080 color-80ff80 object-49 light-basic
Child 0.606 object-49 light-basic

(e) Analysis of clusters

Fig. 3. Decorative loop in ALOI image data set (Object 49)

In object 492 another interesting hierarchy was discovered (see Figure 4).
The outer cluster contains 99 images of the object, while the inner cluster con-
tained just 29. The outer cluster obviously is fairly complete, it just misses some
lighting conditions. The inner cluster contains only front views of the object
(images 4(a) and 4(b)), but not of the back side (images 4(c) and 4(d)). This
is not very surprising, given the silver handle present on the front side of the
object, but absent from the back. Note that the inner cluster is explained by
colors much better than by the object class, despite being pure, while the outer
cluster also scored very well when compared with the object itself. For this clus-
ter again we added the front-to-back object scoring. For the main cluster, this
does not improve the result at all (as expected). For the inner cluster, the result
however almost doubles, allowing the claim that the algorithm had successfully
discovered front views of the object. The result slightly improves with additional
color scorings, which is not surprising given that the algorithm had used color
information.

Then there is a cluster that caught our attention by having 155 images,
making it clearly larger than the expected class size. It contained 74 and 75
images of the objects 981 and 982, respectively, two very similar metal pots (see
Figure 5), along with 5 other objects (likely an artifact of the OPTICS ξ “steep
up area” definition). The automated analysis suggests that the cluster is based
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(a) Front of 492 (b) Front of 492 (c) Back of 492 (d) Back of 492

Cluster Score Analysis

Parent 0.971 color-00ff00 color-408040 object-492

Parent 0.961 color-00802b color-00ff00 object-492
Parent 0.938 object-492

Parent 0.938 object-492 front-to-back

Child 0.812 color-80002b

Child 0.774 color-00802b
Child 0.414 object-492

Child 0.852 color-408040 color-80002b object-492 front-to-back

Child 0.846 color-408040 front-to-back
Child 0.821 object-492 front-to-back

(e) Analysis result

Fig. 4. Green savings box in ALOI image data set

(a) Object 981 (b) Object 981 (c) Object 982 (d) Object 982

Score Analysis

0.955 color-00802b color-2a8000 object-981 object-982

0.940 color-0000ff object-981 object-982

0.925 color-ffff80 object-981 object-982
0.790 object-981 object-982
0.564 object-982
0.556 object-981

0.974 color-00802b object-981 object-982 light-basic
0.939 object-981 object-982 light-basic

(e) Analysis result

Fig. 5. Metal pots in ALOI image data set

on the two objects along with color restrictions. However, when adding the basic
lighting scoring again, the result is explained better. In retrospection, this is not
surprising, given that the metallic object does reflect the light to some extend,
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and the object color is thus expected to vary much with the light in contrast to
for example the green objects before. Again there is a child cluster and a super
cluster which adds 36 images of another metallic object.

4 Conclusion

Building upon some points taken concerning the evaluation of multiple cluster-
ings in last year’s MultiClust workshop [3], here we developed some first steps
in implementing the vision. We provide a system for evaluation of clusterings,
based on prior knowledge as well as on readily extensible knowledge. Currently,
the system comprises the ALOI data set. We discussed exemplary clustering re-
sults for these data in a case study. The system allows to judge whether some
cluster is rather trivial (given it is related to a known concept at all), whether it
is a combination of such concepts, or whether it might comprise an interesting,
non-trivial, new concept.

During the case study performed on the ALOI data set, we were able to
discover nontrivial structure in the data set that we had not been aware of
before, but that we were able to formalize and add back into the system to
improve the analysis results.

Along with the reference files computed for the ALOI data set, including the
advanced structure we found during our analysis, the analysis toolkit is available
on the ELKI web page: http://elki.dbs.ifi.lmu.de/.

We encourage researchers to use and extend this toolkit for evaluating their
findings and for contributing additional structure information. We also would
welcome the incorporation of other data sets.
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