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Abstract Nowadays, a very large number of digital image archives is easily pro-
duced thanks to the wide diffusion of personal digital cameras and mobile devices
with embedded cameras. Thus, each personal computer, personal storage unit, as
well as photo-sharing and social-network web sites, are rapidly becoming the repos-
itory for thousands, or even billions of images (i.e., more than 100 million photos
are uploaded every day on the social site Facebook!). As a consequence, there is an
increasing need for tools enabling the semantic search, classification, and retrieval
of images. The use of meta-data associated to images solves the problems only par-
tially, as the process of assigning reliable meta data to images is not trivial, is slow,
and closely related to whom performed the task. One solution for effective image
search and retrieval is to combine content-based analysis with feedbacks from the
users. In this paper we present Image Hunter, a tool that implements a Content Based
Image Retrieval (CBIR) engine with a Relevance Feedback mechanism. Thanks to
a user friendly interface the tool is especially suited to unskilled users. In addition,
the modular structure permits the use of the same core both in web-based and stand
alone applications.

1 Introduction

The growing number of digital data such as text, video, audio, pictures or photos is
pushing the need for tools allowing the quick and accurate retrieval of information
from data. Whereas the results of traditional text data search methods are quite sat-
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isfactory, the same can not be said for visual or multimedia data. So far, the most
common method for image retrieval is predicated on adding meta-data to the images
as keywords, tag, label or short descriptions, so that the retrieval can occur through
such annotations. The manual cataloguing of images, even though it requires ex-
pensive work and a large amount of time, is often not so effective. Describing a
picture in words is not always easy, and the relevance of the description is strictly
subjective.

By now, all mobile phones are equipped with cameras, and thanks to the Internet,
social networks and almost “unlimited” storage space, the exchange of photos and
digital images has become frenetic, to say the least. As a consequence there is an
increasing need for tools enabling the semantic search, classification, and retrieval of
images. As above-mentioned, the use of meta-data associated to the images solves
the problems only partly, as the process of assigning meta data to images is not
trivial, slow, and closely related to the persons who performed the task. This is
especially true for retrieval tasks in very highly populated archives, where images
exhibit high variability in semantic. It turns out that the description of image content
tends to be intrinsically subjective and partial, and the search for images based on
keywords may fit users’ needs only partially. For this reason, since the early nineties,
the scientific community focused on the study of Content Based Image Retrieval [9,
15, 11, 5] that it is based on the idea of indexing image by using low-level features
such as color, texture, shape, etc.. Another difficulty in devising effective image
retrieval and classification tools is given by the vast amount of information conveyed
by images, and the related subjectivity of the criteria to be used to assess the image
content. In order to capture such subjectivity, image retrieval tools may employ the
so called relevance feedback [13, 18]. Relevance feedback techniques involve the
user in the process of refining the search. In a CBIR task in which the RF is applied,
the user submits to the system a query image, that is an example of the pictures
of interest; starting from the query, the system assigns a score to the images in the
database, the score being related to a similarity measure between the images and
the query. A number of best scored images are returned to the user that judges them
as relevant or not. This new information is exploited by the system to improve the
search and provide a more accurate result in the next iteration. Faced with this new
scenario, it has become increasingly urgent to find a way to manage this heap of
data, to permit an effective search and to involve the user in this task.

Image Hunter is a full content-based image retrieval tool which does not need
a text query in contrast to the vast majority of other applications [14, 2]. It is able
to retrieve an ensemble of “similar” images from an image archive starting from an
image provided by a user. Image Hunter is further equipped with a learning mech-
anism based on the relevance feedback paradigm that allows dynamically adapting
and refining the search. In addition, the adaptability of the system has been enforced
by the concurrent use of twelve different feature sets including color based, texture,
and shape global descriptors.

The rest of the paper is organized as follows. Section 2.1 illustrates the core
of the application, and its connections between the different modules. Section 2.2
briefly reviews the integrated learning process and relevance feedback mechanisms
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implemented in the application. Section 2.3 shows the graphical interface and ex-
plains how it works. Experimental results are reported in Section 3. Conclusions are
drawn in Section 4.

2 Image Hunter

With the aim of building a practical application to show the potentialities of Content
Based Image Retrieval tools with Relevance Feedback, we developed Image Hunter.
This tool is entirely written in JAVA, so that the tool is machine independent. For its
development, we partially took inspiration from the LIRE library [12] (that is just a
feature extraction library). In addition, we chose Apache Lucene?® for building the
index of the extracted data.

Image Hunter is made up of two main parts: the core, and the user interface.

2.1 Image Hunter’s core

The main core of Image Hunter is a full independent module in order to allow the
development of a personalized user interface. The core is subdivided into four parts:

Indexing

LIRE interface

Lucene interface for data storing
Collection Search and Relevance Feedback

IMAGE HUNTER CORE

CORE

|,_{ Search and Relevance Feedback l—
— ~| Indexing

Lucene Interface

Lire Interface

Fig. 1 Image Hunter’s Core

The “Indexing” part has the role of extracting the visual features from the images.
The visual features and other descriptors of the images are stored in a particular
structure defined inside Image Hunter. For each image collection, all the data are
stored in a database built according the Apache Lucene standard. Lucene turned out

2 http://lucene.apache.org/
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to be well suited for the storage needs of Image Hunter, as it resulted faster than
other SQL based solutions. In particular, the indexes created by the use of Lucene
can be easily moved by copying the folder that contains the index. In this way it
is also quite simple to build a “portable” version of Image Hunter. Moreover, we
had also adapted some of the main classes defined by Lucene to better fit to our
needs: e.g., we created some methods to simplify the index administration, and we
enriched the functionality of document manipulations.

Finally, we describe the “Collection Search and Relevance Feedback” module
that is the more important as it implements the core engine of our system. Each
time a user submits an image to be used as a visual query, the system computes
the visual similarity between the query and each image in the collection. This vi-
sual similarity is computed in terms of the average of the normalized distances in
each feature space. Then, the user can label the images provided by the system as
relevant to her search or not, and the system exploits this feedback to learn which
is the best combination of visual features that represents the semantic meaning that
the user is associating to the query. Thus, in the feedback elaboration process, the
visual similarity is computed in terms of a weighted combination of the distances in
different feature spaces, rather than in terms of the average distance. In the follow-
ing sections we describe the Relevance Feedback techniques implemented in Image
Hunter (Section 2.2), and the web-based user interface that we have developed (Sec-
tion 2.3).

2.2 Relevance Feedback techniques implemented in Image Hunter

In this section the three relevance feedback techniques implemented in the core
are described. Two of them are based on the nearest-neighbor paradigm, while one
of them is based on Support Vector Machines. The use of the nearest-neighbor
paradigm is motivated by its use in a number of different pattern recognition fields,
where it is difficult to produce a high-level generalization of a class of objects, but
where neighborhood information is available [1, 6]. In particular, nearest-neighbor
approaches have proven to be effective in outliers detection, and one-class classifi-
cation tasks [3, 16]. Support Vector Machines are used because they are one of the
most popular learning algorithm when dealing with high dimensional spaces as in
CBIR [4, 17].

2.2.1 k-NN Relevance Feedback

In this work we resort to a technique proposed in [7] where a score is assigned to
each image of a database according to its distance from the nearest image belonging
to the target class, and the distance from the nearest image belonging to a different
class. This score is further combined to a score related to the distance of the image
from the region of relevant images. The combined score is computed as follows:

rel(I):( n/t )-relBQS(I)-l-(

m ) "’elNN(I) (D

1+n/t



ImageHunter: a novel tool for Relevance Feedback in CBIR 5

where n and ¢ are the number of non-relevant images and the whole number of
images retrieved after the latter iteration, respectively. The two terms relyy and
relpgs are computed as follows:

_ [1- NN (D)
= NN+ [T NN (D]

2

relNN (I)

where NN'(I) and NN™ (I) denote the relevant and the non relevant Nearest Neigh-
bor of I, respectively, and || - || is the metric defined in the feature space at hand,

| l—dBQS (I)/max dBQS (Ii)
—e 1

relBQs(I) = 1_e (3)

where e is the Euler’s number, i is the index of all images in the database and
dpgs is the distance of image I from a reference vector computed according to the
Bayes decision theory (Bayes Query Shifting, BQS) [8]. If we are using F feature
spaces, we have different scores rel(I) for each f feature space. Thus the following
combination is performed to obtain a “single” score:

F
rel(T) = Y wy - rel/ () “)
F=1

where the wy is the weight associated to the f-space. In this paper we are going to
use two ways of computing the weights wr. One approach to estimate the weights
wy is to take into account the minimum distance between all the pairs of relevant
images, and the minimum distance between all the pairs of relevant and non-relevant

images as follows
Z drj:lin (Ii7 R)
i€R (5)

Wf = - -
Zdrj:lin(li’R) + de{ﬁn(I“N)
i€ER i€R

The other approach for estimating the weights wy, is a modification of the previous
one. Let us sort the images according to their distances from the query as measured
by rel(I), then their rank, from the closer to the farther, is considered. The weights
are then computed by taking into account the relevant images and their “positions”
in a f-space, and the sum of all the “positions” in all the feature spaces F as follows

(6)




6 R. Tronci, G. Murgia, M. Pili, L. Piras, G. Giacinto

2.2.2 SVM based Relevance Feedback

Support Vector Machines are used to find a decision boundary in each feature space
f € F. The use of a SVM for this tasks is very useful because, in the case of image
retrieval, we deal with high dimensional feature spaces. For each feature space f,
a SVM is trained using the feedback given by the user. The results of the SVMs in
terms of distances from the hyperplane of separation are then combined into to a
relevance score through the Mean rule as follows

1 F
relsyn(T) = Y retfy,, (D) (7
f=1

2.3 Image Hunter’s user interface

The user interface is structured to provide just the functionalities that are strictly
related with the user interaction (e.g., the list of relevant images found by the
user). Image Hunter employs a web-based interface that can be viewed at the ad-
dress http://prag.diee.unica.it/amilab/WIH. This version is a web application built
for the Apache Tomcat web container by using a mixure of JSP and java Servlet.
The graphic interface is based on the jQuery framework, and has been tested for the
Mozilla Firefox and Google Chrome browsers. When the web container is launched,
a servlet checks if the folder of the collection contains an updated Lucene index; if
not, the index is updated. Afterward, the index is loaded by the web application and
used for all the sessions opened by the remote clients (see Figure 2). The Image

Web Container

Image Hunter Core

JSP/Servlet
HITP 5 >
eques \
Query Image [ g"
HTTP processing Images
Browser Responst Archives

Client

- Results / I\
! . Relevance
»
S

Lucene Index

Relevance Feedback

Fig. 2 Web Application Architecture

Hunter homepage let the user choose the picture from which starting the search.
The picture can be chosen either within those of the proposed galleries or among
the images from the user hard disk (see Figure 3). Each query is managed by a
servlet that queries the Image Hunter engine and displays the 23 most similar im-
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Fig. 3 Web Application

ages according to the mechanisms reported in Section 2.2. The choice of the number
of images displayed to the user on the one hand takes into account the needs of the
page layout and, on the other hand, is oriented to maintain high the user attention. In
order to make more intuitive and easy the features of the application, the graphical
interface has been designed relying on the Drag and Drop approach (see Figure 4).
From the result page the user can drag the images that her deems relevant to her
search in a special boxcart, and then submit the feedback. Then the feedback is pro-
cessed by the system, and a new set of images is proposed to the user. The user can
then perform another feedback round.

In order to make the system more flexible for skilled users, the Settings page al-
lows choosing the low-level feature used to describe the image content. In particular,
it is possible to select between 7 color based descriptors that are: Scalable Color, a
color histogram extracted from the HSV color space; Color Layout, that character-
izes the spatial distribution of colors; RGB-Histogram and HSV-Histogram, based
on RGB and HSV components of the image respectively; Fuzzy Color, that consid-
ers the color similarity between the pixel of the image; JPEG Histogram, a JPEG
coefficient histogram, and ABIF32 obtained rescaling the images to 32x32 size and
returning a color histogram extracted from the RGB color space. It is also possible
choosing between different texture and shape features that are: EDGE Histogram,
that captures the spatial distribution of edges; Tamura, that captures different char-
acteristic of the images like coarseness, contrast, directionality, regularity, rough-
ness, and Gabor that allows the edge detection. In addition, it is possible to use two
descriptors that merge color and texture characteristics: CEDD (Color and Edge
Directivity Descriptor), and FCTH (Fuzzy Color and Texture Histogram).

One of Image Hunter’s greatest strengths is its flexibility, as it is possible to
add any other image descriptor. The choice of the above mentioned set is due to
the “real time” nature of the system. In fact even if some local features such as
SIFT or SURF could improve the retrieval performances for some particular kind
of searches, on the other hand they are more time expensive in the evaluation of the
similarity between images.

In addition, in the Settings page the user can select the Relevance Feedback tech-
nique to be used, and the dataset to explore.
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Fig. 4 Results and Relevance Feedback

3 Experiments

3.1 Dataset Setup

In the experimental evaluation of Image Hunter we performed both a full automatic
test by using the MIRFLICKR-25000 collection [10] and a User Experience test
using a subset of 53279 unlabelled images extracted from the Sardegna Digital Li-
brary®. MIRFLICKR-25000 consists of 25000 images tagged by the user of the
social photography site Flickr. The average number of tags per image is 8.94. In
the collection there are 1386 tags which occur in at least 20 images. Moreover, for
a limited number of images, some manual annotations is also available (24 annota-
tions in the collection considered for this experiment). In these experiments we used
all the features embedded with the system that have been listed in Section 2.3.

In the automatic test, we analyzed all the tags of the collection by a semantic
point of view, and fused the tags with the annotations in a tag verification process.
This process was performed to keep only the tags which occur in at least 100 images,
so that the single tags/concepts are adequately represented in the dataset used in the
evaluation experiments. This process of fusing and discarding tags brought us to
keep 24718 images and 69 tags, with an average number of tags per image of 4.19.
Thus, as “starting” query images, we chose 1294 of them from the refined collection.
These query images have a number of tags per image that varies from 3 to 10 (i.e.,
the single image can represent different meanings) , with an average number of
tags per image equal to 4.69 (thus very similar to the value in all the collection).
For each one of the 1294 query image, a relevance feedback experiments had been
performed by using all the tags as a target, i.e., given a query image, we considered,
one at a time each single tag as target of the retrieval process to be refined through
the relevance feedback. Thus, each query image has been used as starting example

3 http://www.sardegnadigitallibrary.it
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for different retrieval tasks. In this way, 6070 retrieval tasks were performed for each
relevance feedback technique implemented inside Image Hunter.

Each automatic experiment consists of 10 iterations: the first one is based on a
nearest neighbor search on all the feature spaces, and the other 9 iterations are based
on one of the relevance feedback techniques described above. At each iteration we
simulated the feedback from the user on 20 images.

The User Experience test has been performed by 52 users that were asked to
perform one or more searches by choosing as query one out of 32 images (See
Figure 5) that we selected so that they exhibited different subjects, different colors
and shapes. The users can choose to perform any number of consecutive iterations
to refine the search. On average, each of the 32 queries has been used 6.75 times
and the users performed an average of 5 iterations. At each iteration n = 23 images
are shown to the user for marking the feedback.

Fig. 5 User Experience queries

3.2 Performance measurements

The performance of the experiments will be assessed using the Precision and a
modified definition of the Recall, that we named “user perceived” Recall.

The Precision is a measure that captures how many relevant images are found
within the images that are “shown” to a user, and it is computed as follows:

_ A(g)NR(q)
) ®

where A(q) is the ensemble of images retrieved by using the query g, while R(g) is
the ensemble of images that in the collection are relevant according to the query q.

The Recall measures how many relevant images are found among the set of im-
ages in the collection that have the same tag/concept:
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_ Al9)NR(q)
=0 ©)
R(q)

In this way we compute the percentage of relevant images with respect to the totality
of relevant images in the collection. This measure has a disadvantage: if the total
number of relevant images in a collection for a given tag is greater than the number
of images shown by the system, the measure is going to be always less than 100%
even if all the images shown to the user are relevant. Thus, this measure doesn’t
represent the perception, in term of performance, that a real user will have on the
system. In addition, each class contains a different number of images, and therefore
the denominator of Equation 9 differs from one class to another even in one order of
magnitude, and it can completely distort the average performance. For these reasons,
we propose to use a modification of the recall measure namely, the “user perceived”
Recall. This is a recall measure takes into account just the maximum number of
relevant images that can be shown to the user according to the number of iterations,
and the number of images displayed per iteration, and it is computed as follows

_Alg)NR(q) o+ [R(q),if|R(g)| <n-i
rp_R*i(q) ’ R(q)_{n~i , otherwise

where A(q) is the number of images retrieved by using the query ¢ up to the iteration
i, R(g) is the number of relevant images in the dataset (for the query target), |- |
indicates the cardinality of the set, and n is the number of images shown to the user
per iteration.

In an unlabelled dataset it is more difficult to define the set of similar images, so
in the User Experience test for each query image we have formed the set of relevant
images by considering the images marked as Relevant by at least the 50% of users.
Indicating as ﬁ(q) this ensemble of images retrieved by using the query g the Recall
will be:

Ag)NR(q)
R(q)

It is worth to note that |R(g)| < n-i, so the Recall and the “user perceived” Recall

agree.

r =

(10)

3.3 Experimental results

In the automatic test we compared the performance of all the relevance feedback
techniques described in the previous section, i.e., the k-NN based on Equation (5)
(NN in the tables), the k-NN based on Equation (6) (PR in the table), and the SVM,
with the performance attained by simply browsing the image collection. In the User
Experience test, we just used the NN relevance feedback mechanism. The term
browsing indicates nothing more than showing the user the n images nearest to the
query with no feedback. The aim of comparing relevance feedback with browsing
is to show the benefits of relevance feedback. To put it simple: can a relevance feed-
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back approach retrieve more relevant images than simply browsing the collection by
sorting the images according to the visual similarity with the query?

The average results in terms of Precision, and “user perceived” Recall obtained
in the automatic test are presented in Table 1. The results show that, as the number of
iterations increase, the performance of the relevance feedback methods increase, as
well as the difference in performance with the browsing. From these analysis it turns
out that the behavior of the two k-NN methods are quite similar, while the SVM
exhibits the biggest increasing performance power. To evaluate the User Experience,

Precision
it. 0 1 2 3 4 5 6 7 8 9
SVM [29.6 28.0 30.5 33.1 35.2 36.9 38.3 39.4 404 41.1
NN [29.6 28.7 29.4 30.0 30.6 31.1 31.5 31.8 32.1 324
PR |29.6 28.5 29.3 30.1 30.7 31.1 31.5 31.9 32.1 32.3
browsing|29.6 28.6 28.1 28.0 27.7 27.5 27.3 27.2 27.1 26.9

Recall
it. 0 1 2 3 4 5 6 7 8 9
SVM (3.0 5.6 9.2 13.2 17.6 22.2 269 31.6 364 41.2
NN |3.0 58 8.8 12.0 153 18.7 22.0 255 28.9 323
PR |3.0 57 88 120 154 18.7 22.1 255 289 32.3
browsing|3.0 5.7 85 11.2 139 16.6 19.2 21.8 24.4 27.0

Table 1 Precision and “User perceived” Recall in the MIRFlickr experiments.

we show the values of the recall measure: Table 2 reports the obtained results. The
performance of the RF technique w.r.t. the browsing shows as the user interaction
permits a very big improvement of the performance and as the system learn how to
find images that fulfil the user’s desires. We observed that the users tend to label
as “Relevant” less and less images after few iterations, especially if she is satisfied
with the previous results, because labelling the images is an annoying task. As a
consequence, the reported values of the recall can be considered as a lower bound
of the true performances, as they take into account just the images actually labelled
by the user.

Recall
it. 0 1 2 3 4
NN |344 59,6 742 774 818
browsing|41,2 48,8 53,1 55,6 55,6

Table 2 Recall in the SDL experiments.

4 Conclusions

In this paper we presented Image Hunter, a tool that exploits the potentiality of Rel-
evance Feedback to improve the performance of Content Based Image Retrieval.
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Unlike other proposed tools, Image Hunter is a full content based image retrieval
system in which the user’s feedback is integrated in the core of the application,
and permits a dynamical adaptation of the queries driven by the user. The proposed
results obtained both in a full automatic test, and in a user test show how the integra-
tion of the relevance feedback improves significantly the performance of the image
retrieval system making the search more effective w.r.t. the web browsing.
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