
Accessing multidimensional Data Types in Oracle 9i 
Release 2 

Marc Bastien 

ORACLE Deutschland GmbH, Notkestrasse 15, 22607 Hamburg 
Marc.Bastien@oracle.com 

In former Releases of the Oracle Database, multidimensional data types did not 
exist. In typical Warehouse situations, especially if more advanced analytics 
was needed, an additional database had to be chosen to store and analyze the 
data. These databases offered a lot functionality for advanced analytics like 
what-if analysis, statistical queries and so on and an excellent query 
performance due to their optimized physical storage concept. But, on the other 
hand, these databases had some issues regarding size, integration and 
manageability. In Oracle 9i Release 2, both technologies have been integrated 
in one database to achieve both optimal results for relational and 
multidimensional data . This document describes how the multidimensional 
Data types are stored in the database and could be accessed using SQL and 
PL/SQL. 

1 About the OLAP Option in the Oracle 9iR2 database 

The OLAP Option is in fact the database formerly know as “Express” built into the 
kernel of the relational Oracle database. Still all the features of the Express database 
are available; this includes a multidimensional calculation engine, multidimensional 
data types and multidimensional query language, called the OLAP DML. As a new 
feature to the OLAP Option the SQL-Access to the multidimensional data types was 
added. This includes the possibility to run OLAP DML commands in a SQL-Session 
and as well the possibility to access the multidimensional objects via SQL. 

Multidimensional Data Model 

A key feature of the OLAP Option is its multidimensional data model. There is both a 
logical data model, which could represent data physical stored in relational or 
multidimensional structures and the physical multidimensional data model. 

mailto:Marc.Bastien@oracle.com


9-2      Marc Bastien 

Logical data model 
The logical data model represents the data without the need to specify if it is stored in 
a relational schema as a STAR-Schema or in a multidimensional workspace. The 
model includes Dimensions, Cubes (Measures), Hierarchies, Levels, and Attributes. 
Cubes are the data in the data model, while Dimensions index the data. Levels group 
hierarchies and Attributes classify dimension values with non-hierarchical data like 
“red” or “green. 

Physical data model 
The multidimensional data model consists of all the multidimensional data objects 
like Dimensions, Relations, Composites, Formulas, Programs, Aggregation Maps, 
Models, Surrogates, Valuesets and Worksheets. 

 
Like in a relational model a cube is often represented as a collection of tables or views 
that make up a STAR-Schema, the multidimensional objects represent the data in the 
multidimensional workspace. The workspace in Oracle 9iR2 is named the Analytic 
Workspace (AW). 

 
The multidimensional objects that are relevant for SQL access are: 
− Dimensions: store dimension members like the values for Month, Quarter and 

Year in a time dimension. The dimension values are unique across one dimension. 
− Relations: Relations are to store attributes of dimension values. They play a 

central role in accessing multidimensional data via SQL since they are used in 
converting predicates of the SQL “WHERE”-Clause to data selections in the 
analytic workspace. The Relations often found in an analytic workspaces and 
therefore often used for SQL access are: 
• Parent R. (relate a dimension value to its parent in a hierarchy) 
• Level R. (relate a dimension value to a specific level in a hierarchy) 
• Family R. (contain all ancestors of a value in a hierarchy) 
• Attribute R. (offer the possibility to select data by non-hierarchical attributes) 

− Variables: Variables store the actual fact data, e.g. Sales, Units etc. Variables are 
multidimensional arrays and are stored separately from the dimension keys. If a 
variable is created, the dimensionality has to be specified. A referential integrity is 
forced in the OLAP Option, so a value for a variable could not exists for an 
unknown dimension value.  

− Composites: Composites are used to compress the actual disk space of a variable. 
Since the theoretical space in multidimensional Cubes could be very large, a 
construct is needed to reduce the actual disk space. 

− Formulas: Formulas contain calculations in the analytic workspace. Users might 
probably don’t notice any difference to variables, but they are very useful to 
calculate data at run-time. Formulas could contain very easy expressions, more 
advanced expression (IF-THEN-ELSE) or even calls to OLAP DML programs 

− Programs: Programs will store procedures or functions in OLAP DML Code. It is 
possible to write very complex code to create, manipulate or access the data in an 
analytic workspace 



Accessing multidimensional Data Types in Oracle 9i Release 2   9-3 

2 Access to the multidimensional objects using SQL 

Generally spoken, there are three methods to access multidimensional objects using 
SQL or PL/SQL. 

 
1) Retrieving data and access all multidimensional objects using PL/SQL  
2) Retrieving data using SELECT from a Table Function 
3) Retrieving data using SELECT from a relational view 

 
This document will only discuss Method 2 and 3 as this is most often used to query 
data in the Analytic Workspace. Method 3 is in fact the same as method 2 since the 
declared view contains the same logic as a direct query using the OLAP_TABLE 
function. 

Processing Queries in Oracle 9iR2 

This is the way SQL queries will be processed: 

 
All Queries are first routed to the SQL engine of the relational database. If the 
SELECT statement selects data from an OLAP_TABLE, the query is processed to the 
OLAP Option’s Table function. This would extract all needed multidimensional data 
and process the predicates in the WHERE clause and translate the query into OLAP 
DML. The multidimensional engine limits the data to the predicates in the WHERE 
Clause, fetches the data – which could include some extra processing like aggregation 
at runtime – and returns the data to the relational engine for any additional processing 
(e.g. joining to other tables, views). The relational engine delivers the data through the 
open connection, which could be OCI or JDBC. 



9-4      Marc Bastien 

Creating a view on multidimensional data 

The process of creating a multidimensional view is a three-step process, involving 
two abstract data type to describe the structure of the data and the view itself: 

 
1) Create an abstract data type (ADT) to specify the rows 
2) Create an ADT to make up a table out of the rows 
3) Create the view to match the rows with the data in the AW 

Example: creating a multidimensional view as a dimension lookup table for a 
time dimension 
 
First: Create an ADT to specify the rows of the multidimensional view 

create� type� time_type_row� as� object� (�
month� varchar(10),�
quarter� varchar(10),�
year� varchar(10),�
all_times� varchar(10));�
�

Second: Create an ADT to make up a table: 
create� type� time_type_table� as� table� of� time_type_row;�

Third: Create the view and do the mapping between the rows and the 
multidimensional objects. 

CREATE� OR� REPLACE� VIEW� olap_time_view� AS�
SELECT� *�
FROM� TABLE(OLAP_TABLE('DDEPOT� DURATION� SESSION',�
'time_type_table',�
'limit� time� KEEP� levelrel_time� ''MONTH''',�
'DIMENSION� month� FROM� time� WITH�
HIERARCHY� parentrel_time�
LEVELREL� all_times,� year,� quarter�
FROM� familyrel_time� USING� leveldim_time'));�

In this example the OLAP_TABLE function does the following: 
 
• attaches the appropriate analytic workspace (“DDEPOT”) 
• matches to structure to the Table type object (“time_type_table”) 
• does some OLAP DML processing (“limit time to levelrel_time ‘MONTH’”), so 

only time values of the level “MONTH” are selected 
• matches the row “month” to the multidimensional dimension “TIME” (and use the 

relation “parentrel_time” to select parents 
• matches the rows “all_times”, ”year” and “quarter” to the multidimensional values 

coming from the relation “familyrel_time” 



Accessing multidimensional Data Types in Oracle 9i Release 2   9-5 

The view could be described like any other relational view: 
SQL>� desc� olap_time_view�

Name� � � � � � � � � � Null?� Type�
-----------------� -----� ---------------�
MONTH� � � � � � � � � � � � � � � VARCHAR2(10)�
QUARTER� � � � � � � � � � � � � � � VARCHAR2(10)�
YEAR� � � � � � � � � � � � � � � VARCHAR2(10)�
ALL_TIMES� �� � � � � � � � � � � � � VARCHAR2(10)�

A selection based on this view could look like this: 

SQL>� select� *� from� olap_time_view� where� year� =� '2002';�
MONTH� � � � QUARTER� � � YEAR� � ALL_TIMES�
----------� ----------� � -----� ----------�
Jan02� � � Q1.02� �� � � 2002� � All� Times�
Feb02� � � Q1.02� �� � � 2002� � All� Times�
Mar02� � � Q1.02� �� � � 2002� � All� Times�
Apr02� � � Q2.02� �� � � 2002� � All� Times�
May02� � � Q2.02� �� � � 2002� � All� Times�
Jun02� � � Q2.02� �� � � 2002� � All� Times�

Selecting directly from OLAP_TABLE 

Like a view can select on an OLAP_TABLE, a SELECT can as well. This is more 
dynamic than defining a view, and for example offers the possibility to run different 
OLAP DML programs prior to data selection. 

 
The following example just selects the same data as the example before does 

SQL>� SELECT� *�
FROM� TABLE(OLAP_TABLE('DDEPOT� DURATION� SESSION',�
'time_type_table',�
'limit� time� KEEP� levelrel_time� ''MONTH''',�
'DIMENSION� month� FROM� time� WITH�
HIERARCHY� parentrel_time�
LEVELREL� all_times,� year,� quarter�
FROM� familyrel_time� USING� leveldim_time'))�
where� year� =� ‘2002’;�
 
MONTH� � � QUARTER� � � YEAR� � ALL_TIMES�
---------� � ----------� � -----� ----------�
Jan02� � � Q1.02� �� � � 2002� � All� Times�
Feb02� � � Q1.02� �� � � 2002� � All� Times�
Mar02� � � Q1.02� �� � � 2002� � All� Times�
Apr02� � � Q2.02� �� � � 2002� � All� Times�
May02� � � Q2.02� �� � � 2002� � All� Times�
Jun02� � � Q2.02� �� � � 2002� � All� Times�



9-6      Marc Bastien 

3 The fully aggregated Cube 

Concept 

In multidimensional environments the key concept was always that data is fully pre-
calculated in a cube. This could physically be true, so every cell need disk space, but 
could also mean that data has to be calculated at runtime. The multidimensional 
engine is designed to calculate aggregates very fast, so aggregating at runtime is 
mostly no performance issue. This runtime aggregation is fully transparent to any 
client application. To use this advantage of the multidimensional engine if the data is 
queried with SQL, some rules have to be followed. 
The ability of the multidimensional engine to present data in a solved (calculated and 
aggregated) form to OLAP_TABLE allows all data in the analytic workspace 
(Aggregates, allocations, forecasts) and other calculations to be presented in a view or 
for selection directly from OLAP_TABLE.  This means that:  

- Views can be presented with all summary data, and; 
- Complex calculations can be presented as rows and columns. Virtual 

dimension members are added as rows.  Measure calculations appear as 
columns 

The fact that SQL based applications can access all data - summary data and 
calculations - transparently dramatically reduces the complexity of SQL that must be 
generated by applications accessing analytic workspaces. 

Best Practice in selecting data from analytic workspaces 

In a classic, relational Datawarehouse, a STAR-Query would be used to query data. A 
typical query to get Sales Volume for all Year 2000 and 2001, Total Channel, all 
Products in the Product Subcategory “Trousers – Men” for all German Customers 
region would involve all Dimension tables and the Fact Table with at least four joins. 
If this query would run against an analytic workspace, all data from the variable has 
to be fetched and would then be joined with the dimension data. This query would be 
very slow and inefficient.  

Denormalized Views 
 

As mentioned before, the star schema is a typical schema for datawarehouse purposes, 
allowing some overhead for dimension tables, but none for facts. With additional 
possibilities to optimize queries using star query optimization, the relational engine 
performs very well against this schema. Nevertheless, a star schema is not optimal, 
because of the added complexity of the joins between the dimension and fact tables. A 
more simple solution would be a fully denormalized schema, but in a relational world 
this would mean very inefficient storage of the data. 



Accessing multidimensional Data Types in Oracle 9i Release 2   9-7 

This is not the case for multidimensional storage: 
- Physical storage of data within analytic workspaces is completely denormalized 

and is thus extremely efficient 
- The multidimensional engine automatically und transparently joins dimensions 

and variables. This eliminates the need for expressing joins in SQL 
- Dimension members and all dimension attributes are represented by Relation 

objects in the AW and can be efficiently mapped to a relational view (SQL 
WHERE will become OLAP DML LIMIT) 

- The multidimensional model can be seen as fully aggregated. Therefore 
aggregations do not need to be done in SQL 

 
So it is possible to create fully denormalized views on top of the multidimensional 
objects without any negative impact, but with all advantages of the multidimensional 
engine. The same example as before on the generated view would be: 

SELECT� time_id,� channel_id,� product_id,� customer_id,� sales�
FROM� sales_view�
WHERE� time_id� in� ('2000','2001')�
AND� channel_id� =� ‘Total� Channel’�
AND� product_id� =� ‘Trousers� -� Men’�
AND� customer_id� =� ‘DE’�

This query would be most efficient, because no joins would be needed. 
 

Calculations 
 

As discussed earlier, it is fairly easy to insert even more analytic functionality without 
the need of a more complex SQL Query. If the Analytic Workspace is used to 
calculate e.g. a value for the percentage change of sales vs. last year, a formula in 
OLAP DML would be used: 

Sales_ly� =� lagpct(sales,1,time,nostatus)*100�

Still, the SQL query would not turn complex, nor would any change in performance 
be noticed: 

SELECT� time_id,� channel_id,� product_id,� customer_id,� sales,�
sales_ly�
FROM� sales_view�
WHERE� time_id� in� ('2000','2001')�
AND� channel_id� =� ‘Total� Channel’�
AND� product_id� =� ‘Trousers� -� Men’�
AND� customer_id� =� ‘DE’�

This allows adding analytic capabilities to any SQL Application without the need of 
complex SQL Queries. 



9-8      Marc Bastien 

4 Summary 

 
The new OLAP features of the Oracle 9iR2 database offer a lot functionality to create 
and build analytic applications. Its possibility to access the multidimensional data 
with SQL adds a lot power to any SQL-aware application or tool. 
 
The key to successful use of the SQL interface to multidimensional data is to build 
views that allow the translation of predicates in the WHERE clause to OLAP DML 
limit commands.  This is accomplished by mapping columns to dimensions and 
relations, and using supported operators in SELECT statements.   
Other key factors include the use of edge and manager queries or denormalized views 
and proper Management of sparse data.  

 

Sources 

[1]: Oracle 9i OLAP Users Guide Release 2 (9.2) 
[2]: Oracle 9i OLAP Developer’s Guide to the OLAP DML Release 2 (9.2) 
[3]: Oracle 9i OLAP Developer’s Guide to the OLAP API Release 2 (9.2) 
[4]: SQL Access to Multidimensional Data Types 


