
Data Warehouse Population Platform

Jovanka Adzic, Valter Fiore

Telecom Italia Lab
Via G. Reiss Romoli, 274

10148 - Torino, Italy

{jovanka.adzic,� valter.fiore}@telecomitalia.it�

Abstract. The input data for a data warehouse, coming from operational sys-
tems, are not immediately ready for loading into data warehouse. Cleaning and
integration could be necessary. Moreover, the input data must be transformed
and translated into a format more suitable for analytical purposes. This paper
presents a generalised platform for population of data warehouses named Data
Warehouse Population Platform (DWPP), a set of modules whose aim is to re-
solve typical aspects arising during the transformation and loading vast amount
of data into data warehouse. In Telecom Italia Lab we have realised several
Population Systems based on DWPP. The Case Study section describes one of
them: Population System for Mobile Network Traffic Data Warehouse.

1 Introduction

Data Warehousing is about technology and practice related to need to systematically
integrate data from multiple distributed data sources and to use that data in suitable
form to support business decision-making and enterprise management. In order to
manage own business a telecommunication company have to collect vast amounts of
detailed data, such as Call Detail Records (CDRs), coming from different source
systems. These CDRs are used, first of all, for billing purposes and secondly, they are
stored in decision support databases, very large databases, in order to answer different
needs. For example Customer Relationship Management (CRM) have to deal with
large volumes of data containing a lot of information about a company’s business and
behavioural patterns of the company’s customers. The challenge is how to deal with
this vast amount of data, how to store and analyse it, in order to discover, with low
latency, valuable information about business and customers.

The input data from an operational system are not immediately ready for loading
into data warehouse. Firstly, the input data may need cleaning and integration with
other data. Secondly, the input data must be transformed and translated into a format
more suitable for analytical purposes. In order to facilitate and manage this Data
Warehouse operational processes, specialized tools are already available in the mar-
ket under the general name Extraction-Transformation-Loading (ETL) Tools. The
most prominent task of these tools include (a) extraction of relevant information at
the source side; (b) transformation and integration of the data coming from multiple

8-2 Jovanka Adzic and Valter Fiore

sources into a common format; (c) cleaning of the resulting data according to busi-
ness rules and (d) loading and propagation of the data to the data warehouse and/or
data marts.

In our experience, we had to deal with several context characterized by: lot of de-
tailed data (CDRs, traffic alarm and/or measurements,..) coming from different
sources in flat file format, strong performance requirements (time available from ETL
activities from 1 to 4 hours) and simple and efficient day-by-day operational proc-
esses management (fast and consistent recovery).

The contribution of this paper is about our experience in developing and deploying
different very large data warehouses based on our own tool for ETL activities. We
have already evaluated some ETL tools available in the market, but we could not find
one corresponding to performance (time and throughput constraints) requirements in
transforming and loading very large amount of data (CDR Transformation & Load-
ing). This paper presents a generalised platform for population of data warehouses
named Data Warehouse Population Platform (DWPP), a set of modules whose aim is
to resolve typical aspects of transformation and loading vast amount of data into data
warehouse. With DWPP we do not concentrate on extraction of data from different
kind of source systems, but we assume to have input data already exported or pro-
duced in flat file format DWPP is tuned for data warehouses on Oracle DBMS and it
is independent from the domain of data (CDRs, Customer Data, Transaction Data,…).

The rest of the paper is organized as follows: Section 2 describes DWPP principal
features, such as dispatching input data, synchronizing application transformation
units, loading output data into Oracle database tables, etc. Section 3 presents a sce-
nario of a Data Warehouse Population System, based on DWPP, for Mobile Network
Traffic Data Warehouse that we have deployed for an important mobile operator.

2 Data Warehouse Population Platform (DWPP) Features

DWPP has been used in deploying different data warehouse population systems on
Unix S.O and Oracle 8i/9.i DBMS.

The Data Warehouse Population Platform (DWPP) is a set of C software modules
organized in a shared library on Unix S.O, that include features such as:
! Identification, collection and distribution of files containing input data for the

transformation units;
! Synchronization of data transformation units;
! Fast lookup functions for surrogate key valorisation;
! Bulk data loading (direct / conventional path) into database tables;
! recovery features;

The DWPP Modules are well structured: the first level modules wrap Operating
System and Oracle DBMS (via OCI), the second level modules offer particular fea-
tures for data warehouse population (ETL activities).

The typical architecture of a populating system based on DWPP contains the fol-
lowing jobs:

Data Warehouse Population Platform 8-3

The Master process allocates shared resources used by all process units and takes
care of their synchronization.

The Listener process collects data flows, coming from source systems and dis-
patches them towards appropriate data transformation units.

The Shared Data Area (SDA) is a main memory segment used by the application
transformation units. The SDA is divided into many sub-segments whose access can
be restricted to some units or be made public. The SDA offers some of the basic func-
tions of an In-Memory Data Base allowing fast search in lookup tables that works as
a cache for database tables. This feature is heavily used during surrogate key trans-
formation, done by transformation units.

The Appl. Units can contain different application specific transformation units
which transform the input data according to a specific application logic.

Unix Operating System
Oracle 8i/9i DBMS

DWPP

application
processes

SDA & IPC

Unix Operating System
Oracle 8i/9i DBMS

DWPP

application
processes

SDA & IPC

2.1 LSN Module – Input Data Dispatching

The Listener process takes care of collecting data-flows coming from local/remote
source systems and dispatching them to data transformation ProcessUnits. Each flow
consists of one or more set of files, each of them with associated pre-processing ac-
tion (split and specific termination criteria). As soon as possible file or chunk are sent
to destination ProcessUnit for transformation. DWPP identifies each flow assigned to
a particular ProcessUnit by:

- The incoming directory (local o remote) where Listener looks for files;
- The Process Unit to which files must be sent;
- The file name pattern; listener handles both flat and master-detail files, fixed

or variable record len;
- The waiting timeout;
- Pre-processing operation that Listener must compute (uncompress, split,

header and footer skip); .
- The number of threads dedicated for pre-processing operation
- The flow termination criteria (maximum number of files, timeout, custom

function).

8-4 Jovanka Adzic and Valter Fiore

The Listener process is a "declaration module": consists of a set of calls to DWPP
library function to define the characteristics of data flows as above indicated and a
control function that effectively manage the acquisition/dispatching process.

2.2 SDA Module – Shared Data Area

The Shared Data Area (SDA) is a main memory segment used by the application and
system processes to maintain useful data. The DWPP module named SHM exposes
an API to manage shared memory accesses. Allocation and de-allocation of SDA is
usually done by Master process and all other processes just have to gain access to it.

One of the very useful features in a data warehouse population is the possibility to
transform keys used by source systems into (surrogate) keys used inside the data
warehouse. This transformation involves a fast search on a lookup table. The time
consumed by this operation is critical in high volume population systems. DWPP
allows the managing of lookup tables into segment of SDA, called Rapid Search Area
(RSA). The function RSALoad permits the loading of data set (result of specified
query) from data base into SDA memory segment. In this way it’s possible to initial-
ize the lookup tables before the starting of any application ProcessUnits.

Each record of the lookup table is a structure containing all fields needed by the
data transformation functions, so there is no need to access DBMS during transforma-
tion. All data necessary for transformation are cached in SDA from data base.

A lookup table can be organized for binary search (ordered and only for read ac-
cess) or for hash search (not ordered and for read/write concurrent access). It is pos-
sible to define lookup table structures that are made of two tables in order to avoid
locking the whole lookup table for every access. This lookup table is made of a Pri-
mary table and a Secondary table (both hash). The fast search of records in the Pri-
mary table is done without locking. Records in this area are read-only and loaded
during the initialization phase. Only the accesses to the records in the Secondary table
need the locking mechanism. New records can be added or old record can be updated
only in the Secondary table.

The DWPP module named RSA (Rapid Search Area) exposes an API to manage
lookup tables: definition, initialization, data retrieval and data insert/update/upsert.

In NearRT scenarios, is possible to retain SDA in memory, between a cycle and
another, refreshing it only when necessary.

2.3 SYNC Module – Units Synchronization

The population system based on DWPP is made of elementary pieces, called Proces-
sUnit. The ProcessUnit can be Unix-process or thread implemented and multi-
instantiated to increase parallelism. The Master process is responsible for activation
and synchronization of all ProcessUnits during the population phase. Synchronization
is defined at ProcessUnits level. If a ProcessUnits Pi depends on ProcessUnits Pk
(Pk→Pi) that means that all instances of Pi can begin working when all instances of Pk
are terminated with a particular termination state. With the definition of dependency
rules for ProcessUnits, it is possible to specify also the expected termination states of

Data Warehouse Population Platform 8-5

the ProcessUnits another ProcessUnits depends on. The SYNC module allows the
definition of complex synchronization rules (AND / OR) that determine dependency
graph.

Each instance of a ProcessUnit can reach different states:
- QUIET/DOWN: state during system startup prior to allocation and initializa-

tion of data structures;
- READY: state after the initialization phase; waiting for the termination of the

ProcessUnits it depends on;
- STARTABLE: state when all instances of ProcessUnits it depends on are ter-

minated; it has the permission to start;
- WORKING: state during the data transformation phase;
- SUCCESS: termination state of a successfully terminated instance;
- WARNING: termination state of an successfully terminated instance but with

some warnings;
- FAILURE: termination state of an unsuccessfully terminated instance due to a

failure that has interrupted transformation phase.
- TIMEOUT: termination state of an unsuccessfully terminated instance due to

insufficient time to finish transformation.
Over the ProcessUnit structure and synchronization rules it is possible to define an

aggregation level called Component. A Component is a logical application task char-
acterized by atomicity. It has associated a special ProcessUnit – RecoveryProcessUnit
with save/restore logic. The Component has fundamental role in recovery in case of
failure during a regular population cycle and also gives a higher level to the structure
of the ETL activities.

Component can contains one or more ProcessUnits, and have two kind of depend-
ency: normal and on recovery dependency. A typical example of an on recovery
dependency is a case of initialization component from which all the other components
depends on.

When application runs day-by-day the SYNC Module evaluates the termination
status of every components and tracks this information in historical status table.
When a failure is detected, after understanding and removing cause of failure, we can
run the application in “recovery” mode simply with "master -r". Based on information
retrieved in historical tables, the SYNC Module automatically can detect the only
Components need to re-run (terminated with failure) and launch the ProcessUnits
part-of them. In this way, only the minimal part of the whole application (ETL Activi-
ties) will be re-run, automatically, in case of failure. The RecoveryProcessUnit is
responsible for maintaining data base integrity. Recovery does not occur only when
"application itself" fails: more even occurs when one of the source systems, or net-
work, or other fails.

In NearRT scenarios, where the application needs run every hour or few minutes
Sync support an similar techniques for recovery: a second instance of the master (run
as "master -cr") looks at status tables periodically for failures of the primary applica-
tion (Master operates in this case as a daemon which wakes up as defined in schedule
clause) and, when a failure is detected, automatically retry the population cycle. Some
simply rules define recovery depth and max retries: no other is necessary at code level

8-6 Jovanka Adzic and Valter Fiore

Like as a listener process, a Master process is simply formed of a set "declaration"
(set of call to DWPP function defining processUnit, components, dependencies and
so on) describing the structure of application ad a control function that effectively
manage the syncronisations process.

2.4 LDR Module – Transforming & Loading Data

All DWPP application process use the loading module (LDR) to transform and load
data into the Data Warehouse tables.

The LDR module is one of the most important and most performing module of
DWPP, characterized by so-called “Asynchronous Read/Transform/Write” with com-
plete parallelism of read, transform and write activities. The LDR module has an
internal multi-threaded structure based on in-memory structure (buffer pools) and two
kinds of specialized thread groups:
! Input Buffer Pool – memory segments used by Readers (from Readers Thread

Pool) for storing input data;
! Output Buffer Pool – memory segments used by ProcessUnits to write trans-

formed data ready to be loaded by Writers (from Writers Thread Pool);
! Reader Thread Pool - threads that open the input data files or chunks, once that

the appropriate message has been detected from the Listener, and spread that data
over the Input Buffer Pool;

! Writer Thread Pool – threads that move transformed data from Output Buffer
Pool to database tables (in direct or conventional path) or flat files.

The ProcessUnit (thread) implements the transformation logic from over Input
Buffer Pool data and move transformed data to Output Buffer Pool. DWPP offers lot
of pre-defined functions/macros useful for transformation logic. Tipically, in this
stage the input block is analyzed field by field, operates the key valorisation and other
transformations and compose the row in the output block.

The sharing of the Input and Output Buffer Pool between different kind of Proces-
sUnits is managed by LDR Module structure: Input Channel – logical flow of data
that comes in the ProcessUnit and Output Channel – logical flow of data that comes
out of the ProcessUnit. One ProcessUnit can have one Input Channel and multiple
Output Channels.

This kind of partitioning and pipelining of ETL activities, based on threads instead
of processes and chunks instead of records, is very performing and all synchroniza-
tion activities is done by LDR infrastructure.

LDR Module offer API interface for defining Buffer Pools, Channels and Proces-
sUnits.

Data Warehouse Population Platform 8-7

Chuck from
LSN To dbms,

flat file

LDR Module

thread pool
reader

Thread pool
writer

Output buffer
pool

input buffer
pool

Elab processUnit

To dbms,
flat fil,

LDR Module

Chuck from
LSN To dbms,

flat file

LDR Module

thread pool
reader

Thread pool
writer

Output buffer
pool

input buffer
pool

Elab processUnit

To dbms,
flat fil,

LDR Module

2.5 DBA Module – Administration

In data warehouse environment “history” and “time” are unavoidable factors to con-
sider at the Data Warehouse design time. Incremental loading, scheduled on a regular
basis, into a target table that cumulates historical data (usually fact table) is typical
situation in Data Warehouse environment. Data partitioning is therefore a key Data
Warehouse design issue.

The DBA Module provide APIs for defining different type of partitioned tables,
related indexes, time period that you have to keep the data in Data Warehouse and it
is based on some strict naming convention. The DBA module provide useful API
interface for “managing history” and common related DBA tasks in a Data Ware-
house environment (index maintenance, add/drop partition, export for backup,..).
DBA module also provides an original technique for merging partitions with different
time slot (daily, monthly) maintaining free access and transactional consistency dur-
ing whole process.

3 Case Study

The population system for Mobile Network Traffic Data Warehouse has been devel-
oped using the Data Warehouse Population Platform (DWPP) and deployed for one
of the biggest mobile network operator. This Data Warehouse is aimed to store cellu-
lar network traffic data (CDRs), billing and other customer data in order to enable
different kind of analysis, principally off-line fraudulent behavior analysis.

8-8 Jovanka Adzic and Valter Fiore

The Data Warehouse Population System elaborates, day by day, the entire mobile
network traffic, customer data and data coming from billing system and interacts with
on-line Fraud Detection and Management System. The Data Warehouse population
system is able to transform and load about 80 million CDRs (about 20 columns/row)
per hour for the entire process (ftp of files, uncompress, transformation and loading).

The Data Warehouse, based on Oracle8i, is made up of different federated logical
Data Marts. There are two different sub-systems related to different customers seg-
ments: subscribers and pre-paid cards. The entire Data Warehouse is about 2 TB, 0.5
TB related to subscribers and 1.5 TB related to pre-paid cards. The database server is
Oracle8i Enterprise Server on a Digital Unix Alpha Server GS160 (12 cpu's 567
MHz, 16Gb Ram). The system, during population and recovery is always "ready to
analysis".

The Data Warehouse are organized in star schemas with dimensional and fact ta-
bles. The principal dimension tables are: Customer, Location, Direction, CDR Type,
Time. The fact tables contain traffic detail data. All fact tables are partitioned by
value and hash sub-partitioned due to:
! “managing history” needs - every day you have to add new partition and drop

the oldest; you have to export for backup needs only the just loaded partition;
! performance needs - Parallel Query Servers work on different sub-partitions.

The main fact table, containing traffic detail data of all customers, has about 3 Bil-
lion of records. The Customer dimension table is also hash partitioned due to volumes
of data (about 26 Million of Customers).

Data stored in the Data Warehouse are accessed by different kind of analytical
tools in order to monitor traffic trends (risk directions) and discover patterns that
describe or predict fraudulent behaviors. The OLAP tool is Oracle Discoverer; the
Data Mining tool is SAS Enterprise Miner. Oracle Developer has been used to de-
velop the “ad-hoc query” client application used for browsing detail data about cus-
tomer.

4 Conclusions

DWPP was built to meet primarily the following objectives:
! user requirements in ETL are often characterized by specific needs, environ-

ments, particular conditions: so needs great adaptability and flexibility to meets
this requirements;

! large volumes, or strictly timing deadlines or both of them, impose the maximum
attention to performances issues;

! service and maintenance of the ETL system requires simple and reliable recovery
techniques.

DWPP meets these objectives; in several contexts significantly reduce effort in
building systems with well organized and comprehensible application code.

Data Warehouse Population Platform 8-9

References

1. Ralph Kimball, et. al., “Data Warehouse Life Cycle Toolkit”, John Willey & Sons, Inc.,
1998 ISBN: 0-471-25547-5

2. Dr. Yu Gong: “Partition Exchange Loading: A new Performance feature in Oracle Ware-
house Builder, Release 3i”, An Oracle Technical White Paper, May 2001:

