
Ideas for a MathWiki Editor
Sebastian Reichelt

SebastianR@gmx.de

Abstract

We present some functional and non-functional requirements and wishes for a web-based editor
for formalized mathematics, in particular for use in the MathWiki project at RU Nijmegen [13]. We
discuss possible implementation alternatives, and argue for a holistic design of the entire wiki with
editor features in mind.

1 Introduction

Since the invention of proof assistants, researchers have argued for a library of mathematics formalized in
a machine-readable format; this goal is stated and explained in the QED manifesto [1], for example. Such
a library would have a vast amount of use cases from the verification of complicated proofs (as in the
Flyspeck project [4]), to computer algebra systems with strong correctness guarantees, and to learning
environments for students to become familiar with mathematical proofs and check their results [17].
Most importantly, it could serve as a uniform repository for present and future mathematical theories, to
ensure that no mathematical developments become “lost” in the ever-growing body of results.

Formal math differs from other variants of mathematics done on a computer in that definitions, state-
ments, and proofs are built from a limited set of basic principles, so that the computer can be said to
actually “understand” the contents of the library (to the extent possible). This enables to a degree of
correctness and homogeneity that cannot be achieved any other way.

However, the amount of work necessary to build such a library is prohibitive for any single person
or project [16]. One possible solution is to organize its development in a collaborative fashion, using
wiki-like technology [13]. In contrast to regular wikis, only meaningful formal definitions and correct
proofs can be entered. Still, a combination with informal content is possible and beneficial, potentially
bringing together formerly separate user communities.

Compared to desktop-based proof assistant IDEs, the wiki approach trades performance and simplic-
ity for ease of use and availability. The major benefits of a web-based solution are the lack of client-side
installation and the ability to work directly on a single consistent library. Performance is not expected to
be a large problem as long as the number of contributors is low. If the required server-side computation
becomes too expensive in the future, a hybrid desktop/internet solution (i.e., client software accessing a
remote library) may become a better alternative. At the moment, we favor a fully web-based solution
because of its potential to attract more contributors in the first place.

A major caveat, however, is that formalization is not only time-consuming but also rather diffi-
cult. In particular, the learning curve is currently too steep to appeal to a significant number of novice
users. Moreover, formal math is still closer to the source code of a computer program than to informal
math [17]. For this reason, the features of a wiki editor strongly affect the potential user base: The
more guidance and readily accessible information the editor provides, the easier and quicker the input of
formalized mathematics will become, all other things being equal.

In addition, since new users first face the obstacle of having to learn about already existing formal
content, it is even more important for the static (non-editing) part of the wiki to provide as many cues as
the accompanying editor; one way to achieve this is to use the same rendering mechanisms in viewing
and editing mode wherever possible. Since websites showing appropriately post-processed formal math-
ematics already exist (e.g. isarmathlib.org), the actual challenge lies in bringing the same features to
an editor. Present systems such as the current MathWiki editor [13] or wikiproofs.org offer essentially

SebastianR@gmx.de


MathWiki Editor Reichelt

a raw text editor, in contrast to feature-rich desktop IDEs like Proof General [2] or CoqIDE [12]. The
ProofWeb system [6] contains an editor modeled after such IDEs, but it is specific to Coq at the moment
and does not offer many of the features we envision. Especially, incorporating ProofWeb would imply
that viewing and editing rely on entirely different code bases, so features would have to be implemented
twice.

To develop an editor for the MathWiki project [13], we would especially like to leverage some of
our experience gained from developing the HLM proof assistant [8, 9]: Its defining characteristic is a
graphical user interface that is tightly integrated with the verifier component, so that many useful features
can be implemented directly on top of the formal data structures. However, the intention of MathWiki
is to provide access to a number of different existing proof assistants, such as Mizar [10] and Coq [12].
This is a compromise: Ideally, we would like to specify the formal content just once, using a rich user
interface with HLM-like features and a general interchange format such as OMDoc [7], and use the
resulting data to generate formalization for different proof assistants. However, since the conversion
of formal mathematics between different proof assistants is problematic [18] (at the moment, at least),
supporting different proof assistants in parallel seems to be the safer route to take.

This paper presents the result of a first investigation into the possibilities of implementing auxiliary
features (for example those known from proof assistant IDEs or from HLM) in a MathWiki editor, on
top of different provers.

2 Requirements

As indicated in the introduction, an editor for a mathematical wiki must be both easy to use and flexible
with respect to the underlying prover technology. In this regard, different modes of interaction of existing
proof assistants present a special challenge. Even just considering technological differences and ignoring
mathematical foundations, there are actually several dimensions along which provers differ:

• The most well-understood dimension concerns the proof language, which can be either declarative
or procedural [19]. Roughly speaking, declarative proofs consist mostly of lists of statements
that are proved to hold, along with hints that guide the prover towards the verification of these
statements. Procedural proofs contain commands (or “tactics”) that tell the prover exactly how
to proceed (in contrast to the hints in declarative proofs, which merely need to contain enough
information to prove the statement in question). Since these commands fully describe the proof,
intermediate results are usually not included in the proof script, and can only be obtained by
“replaying” the proof in the prover. (The Proviola tool [11] aims to address this shortcoming.)
One requirement for a MathWiki editor is that procedural proofs should be just as easy to edit as
declarative proofs. In other words, the editor needs to provide additional information to the user in
order to make procedural proofs readable.

• A related but separate dimension is whether the prover maintains some internal state in addition
to the input text. In most procedural provers, every line of input constitutes a state change. This
state influences the information that is shown to the user and is necessary to understand procedu-
ral proofs. Coq, in particular, also has an “undo” feature to revert the last step [5]; this enables
an editor like CoqIDE [12] to maintain a movable cursor indicating the portion of the input text
that has been sent to the prover. If the proof language is declarative, no additional state is neces-
sary; Mizar [10] is an example of a stateless prover. However, declarative languages have been
developed for stateful proof assistants as well. Also, HLM [9] can be described as procedural but
stateless: Its user input comes from context menus instead of text, and the contents of these menus



MathWiki Editor Reichelt

contain the information that would normally depend on the prover state (but in this case merely
depends on the the location or context of each menu, i.e. on the library contents).

• The graphical input method in HLM presents another challenge: It would seem that a text editor
would be a basic ingredient of a generic MathWiki editor, but HLM proofs cannot feasibly be
edited as text. On the other hand, an additional graphical interface would be helpful even if the
primary input is in text form.

• Finally, a web-based front end is usually inherently asynchronous, while most existing software
operates in a synchronous fashion (recent Isabelle developments being a notable exception [15]).
There are two reasons for the asynchronous nature of websites: the potentially large latency of
all operations that require client/server communication, and the standard mode of operation of text
editor controls in browsers. In a declarative and stateless scenario, asynchronous verification is un-
problematic: Whenever the input text changes, the prover can re-verify it and show the results to
the user when they are available. Stateful provers are more difficult to connect to an asynchronous
front end because the intended, actual, and observed state can diverge quickly. Finally, HLM con-
stitutes a special case again: It is inherently synchronous because possible inputs are determined
by menu contents that change after every operation which modifies the library.

Some compromises are necessary to accommodate all flavors of proof assistants, even in principle.
In addition, the editor must integrate well with the rest of the wiki. A number of features (most of
which are available in HLM, for example) would be desirable both in the wiki and its editor. We will
briefly characterize their value according to the methodology of Cognitive Dimensions (CD) [3]. Of
the four types of user activity mentioned in CD literature, incrementation, transcription, and exploratory
design seem especially important at the current stage, whereas modification (of existing formal content)
will most likely remain the job of a few experts for the foreseeable future. In addition, the ability to
understand and browse existing data is vital, even though it is not classified as a user activity in the CD
sense.

• The most obvious enhancement in a web-based viewer and editor is the use of (automatically
generated) hyperlinks to navigate to referenced definitions and theorems. In terms of Cognitive
Dimensions, such links improve the “visibility,” or accessibility, of referenced objects, enabling
exploration and modification. Since placing links in a text editor may be difficult to impossible,
links may need to be shown separately in editing mode.

• When the user moves the mouse over a clickable link, an abbreviated version of the linked item
can be displayed as a tooltip. This feature has the potential to greatly increase usability of a mathe-
matical wiki because it reduces the number of pages that need to be opened in order to understand
a given item. The general user-friendliness of tooltips stems from their non-disruptiveness: They
typically disappear whenever they would stand in the way. However, since mathematical defini-
tions are often complex, the size of the tooltip area can become a problem, especially since tooltips
will typically appear at locations where they hide relevant content of the current page. Thus, an
even less disruptive alternative would be a dedicated area on the page instead of a floating tooltip.

In CD terms, temporarily showing the contents of a referenced item corresponds to the “juxta-
position” of that item with the one the user is currently viewing or editing. This helps the user
understand the contents of the current item more quickly, and can also prevent errors due to incor-
rect definitions or theorem statements.

• Definitions, theorems, and proofs should be rendered in a visually pleasant form. One important
ingredient is the use of common mathematical symbols; for example, the author of a definition



MathWiki Editor Reichelt

could specify a custom symbol that represents the defined object at all places where it is used.
Ideally, it should be possible to reproduce the usual mathematical notation even in cases where
that involves more than a single symbol. In HLM, the notation for a definition in the library can be
specified as a two-dimensional “layout” that includes placement of arguments and is augmented
by further information such as rules for parentheses. The inclusion of arguments in the notation is
possible because library entries cannot be referenced as mathematical entities; like “functors” and
“predicates” in Mizar they are always referenced with specific arguments. In type-theoretical proof
assistants, such definitions yield functions in the mathematical sense, which can be referenced on
their own. In this case, the notation feature can only be reproduced approximately.

A user-defined notation for mathematical objects is a “secondary notation” according to CD, as
it provides visual hints beyond the raw formal content, aiding in transcription and modification
(assuming it is actually available in the editor, not just in the viewer). In this context, it especially
reduces the “hard mental operation” of deciphering formal mathematics, by relating it to known
informal math. This is desirable for all possible user activities.

• Although outside of the scope of this paper, we propose a tree or a tree-like menu of all definitions
and theorems for navigation in the wiki, which should be available in all situations. As HLM
shows, such a tree is much easier to browse if items are shown in their custom notation, and
previews of items are shown as tooltips prior to opening them.

• The text editor should include syntax highlighting, at least for basic keywords (which is the prime
example of a “secondary notation”).

3 Design Alternatives

Different approaches are possible depending on the importance of each requirement. In the current
MathWiki implementation, the wiki and editor are entirely separate. Since the editor is a raw text editor
at the moment, non-essential features like hyperlinks are available only for finished formalizations, after
they have been submitted and verified. The simplest approach would be to enhance the text editor with as
many features as possible, for example automatic asynchronous verification and highlighting of errors.

Although this approach is compelling especially because of its incremental nature, it bears two sig-
nificant problems: First, most of the information that the user needs in addition to the raw text has to be
displayed separately, and updated through a complex client/server protocol. Second, such an individual
piece of software easily becomes more and more detached from the rest of the wiki as more features are
added to it. For example, to accommodate stateful provers with procedural proof languages, there needs
to be a display of the current state, but this display is then unavailable on the main page even though it
would be equally important there.

In other words, such a design would be feasible but rather short-sighted: Over time, similar features
would be desired on both wiki pages and editor pages, but most of the features described in section 2
would need to be implemented twice. In addition, the differences between provers could lead to separate
editor implementations, requiring further duplication of features.

At the other end of the spectrum, there is the possibility of displaying and editing everything at
a higher level, hiding the underlying textual representation. If the high-level representation is fully
equivalent to its textual counterpart, it can be used equally for viewing and editing formal content, and
all conceptual differences between proof assistants can be concealed by this abstraction layer.

This is very similar to the approach taken by the HLM proof assistant, although HLM goes one step
further by omitting the textual representation entirely. The idea of HLM is that everything (including
definitions, statements, and proofs) is displayed in a natural mathematical style, and input happens via



MathWiki Editor Reichelt

menus which contain pre-rendered versions of the corresponding result. For example, if the goal of
a proof is a universally quantified statement ∀x ∈ S : P(x), the menu item corresponding to universal
generalization will simply show “Let x ∈ S.” In terms of Cognitive Dimensions, this reduces the “hard
mental operation” of having to figure out the command for universal generalization (or even just realizing
that universal generalization is the correct next step).

The existence of HLM shows that this method of proof input is viable but requires complex dialogs to
input parameters of proof steps. One should also keep in mind that the HLM logic is designed especially
to facilitate menu-based input; it is difficult to imagine how the same mechanism could be used as the
primary or sole input method for an existing proof assistant.

However, a middle ground exists as well. The basic idea is to provide both a textual and a high-
level representation side-by-side (or just the high-level representation if HLM is used as the underlying
system). The additional high-level view provides all of the desired features such as hyperlinks, tooltips,
custom notation, etc., but only limited editing facilities. It is shared between the main page and the editor
page.

While this might seem like an obvious solution, the actual difficulty lies in the connection between
these two views. With a declarative, stateless, and asynchronous system underneath, the high-level
view can simply be updated at regular intervals. For example, if the Mizar system is used, an existing
Mizar-to-XML translation [14] appears suitable as an intermediate representation from which a readable
version of the document can be computed. With HLM, there is no text input, and all editing happens
synchronously in the high-level view. However, procedural stateful provers present a challenge because
the user expects to see the current state, and because a change at one position in the input text tends to
break all commands beyond that position.

Our proposed solution is to limit the high-level view to the commands that have already been verified,
and to merge the state display into it. In the case of proving ∀x ∈ S : P(x) as above, at the beginning the
high-level view simply contains this goal statement. After the user submits the appropriate command for
universal generalization, a new line is added to the high-level view, showing “Let x ∈ S. Then P(x):” to
indicate the current hypothesis and goal.

In general, the contents of the high-level view are computed from all of the prover states after sending
each command to the prover, up to the current state, rather than from the raw input text. Thus, no
additional parsing of user input is necessary, and the display can be enhanced with all useful information
that can be obtained from the prover.

If the user has to trigger every state change manually (for example using “up,” “down,” and “go to
cursor” buttons as in existing proof assistant IDEs), the connection between both views becomes very
loose, in contrast to the automatic updating in declarative mode. This problem becomes worse in a
web front end because custom keyboard shortcuts are usually not available. However, because of the
importance of the state display, the user presumably needs full control over the position that separates
the verified and unverified parts.

Thus, we suggest that the input cursor be used to determine this position, which is equivalent to an
automatic “go to cursor” operation whenever the cursor position changes. In particular, whenever the
user finishes entering a command, that command is automatically sent to the prover. Besides requiring
less keystrokes, a special advantage is that the verified part of the text does not need to be locked: If
the user moves the cursor into this part in order to edit it, the prover will be instructed to backtrack to
this position anyway. The lack of locking makes the editor “less synchronous,” mitigating one of the
differences between provers.

This feature can be regarded as an extended variant of the “electric terminator mode” available in
Proof General [2]. The difference is that Proof General only reacts to the input of specific characters
terminating the pieces of text that can be sent to the prover on their own; it does not change the prover
state every time the user moves the cursor or presses backspace to remove a “terminator” character.



MathWiki Editor Reichelt

Although the elimination of all explicit navigation is a rather radical change from the user’s point of
view, first experiments with an implementation in CoqIDE look encouraging: The lack of interruptions
from regular text input actually tends to make proof input somewhat smoother.

4 Conclusion and Future Work

We have presented requirements and design alternatives for an editor that is integrated into a mathemat-
ical wiki. The desire to support several proof assistants with different interaction styles, and to present
formal content in a more high-level form than raw text, requires a compromise between a text editor
and a structural view or editor. We have argued for a side-by-side presentation both in the editor and in
the wiki itself, and described how a text editor can be connected to a high-level view, depending on the
interaction mode of the underlying prover.

The next step will be to implement, within the MathWiki framework, the proposed method of inter-
acting with provers. A particularly interesting question is how well the automatic “go to cursor” feature
works together with asynchronous updating of the input text, and how much a delayed display of the
current prover state (due to network latency) affects usability.

Many thanks go to Josef Urban for his support and very helpful discussions, and to the anonymous
reviewers for their detailed comments (including a pointer to the concept of Cognitive Dimensions).

References

[1] The QED manifesto. In Proceedings of the 12th International Conference on Automated Deduction, CADE-
12, pages 238–251. Springer-Verlag, 1994.

[2] David Aspinall and Thomas Kleymann. Proof General user manual. http://proofgeneral.inf.ed.ac.
uk/userman.

[3] Thomas Green and Alan Blackwell. Cognitive dimensions of information artefacts: a tutorial. In BCS HCI
Conference, 1998.

[4] Thomas C. Hales. Flyspeck: A blueprint of the formal proof of the Kepler conjecture. http://flyspeck.
googlecode.com/files/flypaper.pdf.

[5] G. Huet, G. Kahn, and Ch. Paulin-Mohring. The Coq Proof Assistant – A tutorial, April 2004. http:

//coq.inria.fr/getting-started.
[6] Cezary Kaliszyk. Web interfaces for proof assistants. In S. Autexier and C. Benzmüller, editors, Proc. of the

Workshop on User Interfaces for Theorem Provers (UITP’06), volume 174[2] of ENTCS, pages 49–61, 2007.
[7] Michael Kohlhase. OMDOC – An open markup format for mathematical documents [Version 1.2]. Number

4180 in LNAI. Springer Verlag, 2006.
[8] Sebastian Reichelt. The HLM proof assistant (website). http://hlm.sourceforge.net/.
[9] Sebastian Reichelt. Treating sets as types in a proof assistant for ordinary mathematics. (Unpublished note

accompanying presentation at TYPES’10.) http://hlm.sourceforge.net/types.pdf, 2010.
[10] Piotr Rudnicki. An overview of the MIZAR project. In Types for Proofs and Programs, pages 311–332,

1992.
[11] Carst Tankink, Herman Geuvers, James McKinna, and Freek Wiedijk. Proviola: a tool for proof re-animation.

In Proceedings of the 10th ASIC and 9th MKM international conference, and 17th Calculemus conference
on Intelligent computer mathematics, AISC’10/MKM’10/Calculemus’10, pages 440–454. Springer-Verlag,
2010.

[12] The Coq Development Team. The Coq Proof Assistant Reference Manual. http://coq.inria.fr/

refman/.
[13] Josef Urban, Jesse Alama, Piotr Rudnicki, and Herman Geuvers. A wiki for Mizar: motivation, consider-

ations, and initial prototype. In Proceedings of the 10th ASIC and 9th MKM international conference, and

http://proofgeneral.inf.ed.ac.uk/userman
http://proofgeneral.inf.ed.ac.uk/userman
http://flyspeck.googlecode.com/files/flypaper.pdf
http://flyspeck.googlecode.com/files/flypaper.pdf
http://coq.inria.fr/getting-started
http://coq.inria.fr/getting-started
http://hlm.sourceforge.net/
http://hlm.sourceforge.net/types.pdf
http://coq.inria.fr/refman/
http://coq.inria.fr/refman/


MathWiki Editor Reichelt

17th Calculemus conference on Intelligent computer mathematics, AISC’10/MKM’10/Calculemus’10, pages
455–469. Springer-Verlag, 2010.

[14] Josef Urban and Grzegorz Bancerek. Presenting and explaining Mizar. Electron. Notes Theor. Comput. Sci.,
174:63–74, May 2007.

[15] Makarius Wenzel. Asynchronous proof processing with Isabelle/Scala and Isabelle/jEdit. http://www4.

in.tum.de/~wenzelm/papers/async-isabelle-scala.pdf, 2010.
[16] Freek Wiedijk. Estimating the cost of a standard library for a mathematical proof checker. http://www.

cs.ru.nl/~freek/notes/mathstdlib2.pdf, 2002.
[17] Freek Wiedijk. The QED Manifesto revisited. Studies in Logic, Grammar and Rhetoric, 10(23):121–133,

2007.
[18] Freek Wiedijk. Encoding the HOL Light logic in Coq. http://www.cs.ru.nl/~freek/notes/

holl2coq.pdf, 2010.
[19] Freek Wiedijk. A synthesis of the procedural and declarative proof styles of interactive theorem proving.

http://www.cs.ru.nl/~freek/miz3/miz3.pdf, 2010.

http://www4.in.tum.de/~wenzelm/papers/async-isabelle-scala.pdf
http://www4.in.tum.de/~wenzelm/papers/async-isabelle-scala.pdf
http://www.cs.ru.nl/~freek/notes/mathstdlib2.pdf
http://www.cs.ru.nl/~freek/notes/mathstdlib2.pdf
http://www.cs.ru.nl/~freek/notes/holl2coq.pdf
http://www.cs.ru.nl/~freek/notes/holl2coq.pdf
http://www.cs.ru.nl/~freek/miz3/miz3.pdf

	Introduction
	Requirements
	Design Alternatives
	Conclusion and Future Work

