
Requirements Engineering for Social Applications

Amit K. Chopra and Paolo Giorgini

University of Trento, Italy

chopra@disi.unitn.it, giorgini@disi.unitn.it

Abstract. We characterize social applications as those involving interaction

among multiple autonomous agents. We are interested in the essential concepts

and approaches for modeling such applications. We make the case that i* has

some limitations with respect to the modeling of social applications. The prob-

lem is in the intentional nature of i*. The deeper roots though lie in the centralized

machine-oriented approach of current requirements engineering approaches. We

recommend an interaction-oriented approach to requirements modeling, model-

ing in terms of social commitments rather than dependencies, and in general, ac-

commodating a distributed perspective right from the earliest phases of software

engineering. For clarity, we also distinguish social commitments from various

similar-sounding notions in the literature.

1 Introduction

Many of the applications that we use are social in the sense that they involve commu-

nication among two or more social agents. Banking, healthcare, e-business, emergency

services, and meeting scheduling are in this sense social applications.

Let us say we want to design a meeting scheduling application. Let us consider that

any meeting scheduling enactment involves agents that play convener, scheduler, and

participant. There are two ways to approach the design.

In one approach, you consider a set of requirements and build a machine that meets

the requirements. This is the approach one would apply when specifying a washing

machine, an LCD monitor, a gate controller, or an aircraft’s fly-by-wire controls. In

other words, this is the approach we use to design technical artifacts. The convener,

scheduler, and the participants are still social agents, but from the perspective of the

machine they are merely users.

In the other approach, you specify (or choose or compose from existing ones) a

protocol that supports your goal of scheduling meetings. A protocol is a specification of

interaction specified with reference to roles that social agents may adopt. The meeting

scheduler protocol would have the roles convener, scheduler, and assistant. It does

not matter which particular social agent adopts the role. Nor does it matter what its

goals are, if any. This approach preserves the original social nature of the application.

Designing a system with new requirements means designing a protocol that meets those

requirements.

We term the former approach machine-oriented and the latter interaction-oriented.

The latter is about the design of protocols. In fact, the system is in a sense the protocol.

There is the separate question though about the design of the participants in a protocol.

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

138



Suppose you are a social agent who notices that some other social agents have adopted

the roles of convener and participant, but are waiting for someone to adopt the role of

scheduler. You are willing to play the role provided some of your requirements are met

by participating in the system (for example, payment for scheduling services). You do

not know the design or motivations of the other participants, but what you can do is

check if the meeting scheduling system, that is, the protocol, supports your require-

ments. Further, you may design a software artifact that encodes part of your decision-

making, interacts accordingly with the other participants, and in effect represents you

in the system. For the purposes of this paper, we refer to this artifact as a social agent’s

surrogate.

Interaction-orientation preserves the nature of the social application. It accommo-

dates both the design and runtime autonomy of agents. Machine-orientation does not.

The allusion to current practices in requirements engineering would not be lost upon

anyone. Current practices in requirements engineering are machine-oriented. The essen-

tial idea is to come up with the specification of a machine that along with the domain

assumptions satisfies the requirements of the stakeholders. RE emphasizes two kinds

of systems: system-as-is and system-to-be. The former is the system as it exists with-

out the machine. It helps in understanding the environment in which the machine will

be introduced. The latter is what the system will be when the machine is introduced.

Presumably, in the system-to-be, the stakeholders’ requirements are satisfied.

2 Objectives

Our broad objective is to understand and improve upon the software engineering of

social applications. Two questions follow naturally from the discussion above.

1. What are the methodologies for designing protocols?

2. What are the methodologies for designing surrogates?

Our immediate objective though is to understand whether i* [17] is suitable (in

terms of concepts) for the modeling of social applications. i* has had considerable

success in the requirements engineering community, and researchers are applying it

to model all kinds of applications. Obviously, the question turns on whether i* can

be used to model interactions. To do this, in the following section, we outline the i*

methodology, and then analyze some of its critical constructs.

3 Scientific Contributions

The idea of interaction-oriented programming traces it roots to Singh [11]. It is an idea

distinct from that of agent-oriented software engineering, where the focus is on creating

intelligent agents. As stated earlier, interaction-orientation says nothing about any par-

ticular agent’s rationale or the design of its surrogate or any other internal information

system [13].

There has been considerable progress in methodologies for designing protocols,

especially as concerns the nature of protocol specifications. A great leap here came

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

139



with the idea that protocols ought to specify the meaning of communication, not its

flow [12]. Social commitments have emerged as a key element of meaning. Further, it is

broadly accepted that protocols cannot be formalized in terms of the goals or intentions

of agents [1]. Methodologies for protocol specification have also received attention [8,

4].

The second question has received less attention in the software engineering commu-

nity. In some recent work, we have shown how an individual agent may reason about

his goals in light of his potential communications, specifically the social commitments

he can potentially be involved in [3, 2]. In further work, we have extended this idea to

address adaptation in social applications [7]. The key idea there is that it is not systems

that adapt. After all, the system is nothing but a protocol. Instead it is the social agents

(or their surrogates) that adapt, each autonomously from other agents in the system.

3.1 The Nature of i*

At the basic level, i* follows the standard RE conceptualization sketched above. Indeed,

i* is a machine-oriented methodology; it is not interaction-oriented. Where i* differs is

in the explicit modeling of organizational agents (actor in i* terms) and their require-

ments. The requirements themselves are understood in terms of the goals of the agents.

The agents are related to each other by means of intentional dependencies.

The notion of agent within i* seems to be a broad one. A stakeholder could be agent;

so could a legacy system; so could a service. The core idea is to model the relevant

aspects of the environment via the notion of agents. The system-as-is is modeled in i*

as a network of the existing agents with the intentional dependencies among them as the

links. The system-to-be would introduce a machine, also an agent, towards satisfying

the requirements in a suitably modified network.

The notion of intentional dependency in i*, a central one, deserves special attention.

(We talk about goal dependencies but the discussion applies to other kinds of i* depen-

dencies as well.) An i* goal dependency between two agents x and y for some goal p

means that x wants p, and y is able to achieve p and in addition intends to achieve p.

For example, in i* one would say that the convener depends on the scheduler for its

goal that the meeting be scheduled. This dependency means that (1) the convener wants

the meeting to be scheduled, (2) the scheduler is able to schedule the meeting, and (3)

the scheduler intends to schedule the meeting. Equivalently, in i* terminology, one cay

say that the convener has delegated its goal scheduled to the scheduler.

It is interesting to contrast the notion of goal dependency with the notion of social

commitment. A social commitment C(x, y, p, q) means that x is committed to y for q if

p holds. It doesn’t mean that y wants q or x wants p. Nor does it say anything about the

ability of the agents to deliver p or q. Nor does it say anything about any agent’s inten-

tions. A social commitment only comes about due to interaction among the agents. This

is fundamentally different from the notion of a goal dependency, as discussed above.

Notably, intends to in i* is stated in terms of an internal commitment. However, inter-

nal commitment is not the same as social commitment [10]. The interaction-oriented

approach talks only about social commitments.

Consider that based on the requirements analysis done with the help of the i* strate-

gic dependency and strategic rationale diagrams, a machine for scheduling is deployed.

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

140



Later, the organization finds that the maintenance of the scheduler is too costly and

therefore decides to outsource meeting scheduling to an external organization. In such

a situation, one would not have information about the external organization’s goals,

intentions, or abilities. Hence, all the analysis done earlier with the in-house meeting

scheduler would come to naught.

Consider instead that an organization went about meeting scheduling in an interaction-

oriented way. First, it selected an industry-standard meeting scheduling protocol. Then

it created a surrogate to play the role of the scheduler. Later it found that the surro-

gate was too difficult to maintain. So it outsources the scheduling to a service provider

that had advertised itself as following the protocol. The interaction-oriented approach

naturally supports such substitution.

3.2 Social Commitments

We have found that the notion of social commitments we refer to is often confused

with other notions in the literature. We take the opportunity here to distinguish social

commitments from related concepts in the literature.

Internal Commitment Cohen and Levesque’s work [6] formulated a rich theory of

rational action based on the concepts of intention and internal commitment to in-

tention. Broadly, the idea is that for an agent to succeed with its intentions, it must

be internally committed to realizing them. Internal commitment refers to an agent’s

psychological entrenchment.

Obligations Commitments are not obligations. Commitments come about only due to

communication and hold irrespective of what exists in the agents’ internal states.

This is the essence of a public semantics of communication. The representation of a

commitment may appear similar to that of an obligation; however, that is where the

similarity ends. Obligations, as studied in the literature, represent a mental concept.

For example, just because C(Barbara,Alice, paid , deliverPhone) does not imply

O(Barbara,Alice, paid , deliverPhone). Neither does the implication hold in the

other direction. Obligations are in the spirit of internal commitment.

Responsibilities The notion of responsibility has been applied toward the modeling of

sociotechnical systems [15, 14]. The idea is that if one knows an agent’s respon-

sibilities, one can derive its requirements. However, responsibility is modeled as

something that comes about because of the passing of an obligation from one agent

to another via delegation. For example, a professor can delegate his obligation of

going to a meeting to a Ph.D. student. The student then becomes responsible for

fulfilling that obligation. However, tying responsibility to delegation definitionally

unnecessarily limits the kind of responsibilities that can be captured. When an agent

makes a social commitment, he is socially accountable to the creditor for its fulfill-

ment. There is no delegation involved here, but there still is a sense of responsibility.

Further, keeping an agent’s autonomy in mind, only an agent itself can create social

commitments. This is not to say we rule out the notion of delegation. In general,

for delegation to succeed, other commitments must first be set up; for example, the

delegatee must have a prior commitment to the delegator for honoring delegations

[5].

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

141



Norms We understand norms as (public) conventions. Social commitments are dou-

bly normative. One, protocols are conventions: they specify the commitments that

would arise from the agents’ communications. Two, commitments form the basis

of compliance checking. A violation of a commitment may represent a serious ex-

ception, and creditors and the contextual community may request sanctions on the

offending debtor for the violation.

4 Conclusions and Future Work

In the current paper, we advance the theme we have been pursuing for two years, but

with more details specific to i*. We discussed the main limitations with respect to engi-

neering social applications. The intentional approach of i* works for the traditional RE

setting where the idea is to design a centralized machine that meets the stakeholders’

requirements. However, an intentional approach is an integration-based approach. So-

cial applications, on the other hand, necessarily have to adopt an interoperation-based

approach because there is no central machine.

The distinction between mentalist (cognitive) and social notions is worth pointing

out. When one talks about agents, concepts such as goals, beliefs, intentions, strate-

gies, plans, and so on are mentalist concepts. Communication, convention, and social

commitments are social concepts. When one models a system of social agents using

mentalist concepts, the results are vastly inferior to when one models the same system

using social concepts [12]. i* models rely exclusively on mentalist concepts (Yu uses

the term intentional). Nowhere does communication come into the picture. Therefore, it

is not clear in which sense i* would be a social approach [16]. Some other recent work

[9] also fails to make the distinction between mentalist and social.

Lately there has been some work talking about the unmanageability of i* diagrams.

i* has some modularity via the notion of agents; but the problem is there is no encap-

sulation. Dependencies do not stop at agent boundaries; they connect agents internals.

In social systems, the basic assumption is that agent internals are not known. This im-

plies encapsulation is not broken. Social commitments help us reason about such well-

encapsulated agents. Social commitments would greatly enhance the manageability of

specifications.

In general, RE must move away from the centralized machine-oriented perspective

to a more distributed perspective that conceptualizes a system as being constituted from

independently designed agents. The methodological ingredients of such an approach is

the direction of research we are currently pursuing.

Acknowledgments. Numerous discussions with Munindar Singh, Fabiano Dalpiaz, and

John Mylopoulos over the past two years led to the ideas in the paper. Amit Chopra was

supported by a Marie Curie Trentino award. Paolo Giorgini was supported by the EU-

FP7-IST-IP-ANIKETOS and EU-FP7-IST-NOE-NESSOS projects.

References

1. Amit K. Chopra, Alexander Artikis, Jamal Bentahar, Marco Colombetti, Frank Dignum,

Nicoletta Fornara, Andrew J. I. Jones, Munindar P. Singh, and Pınar Yolum. Research di-

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

142



rections in agent commmunication. ACM Transactions on Intelligent Systems, 2011. To

appear.

2. Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Modeling and

reasoning about service-oriented applications via goals and commitments. In Proceedings of

the 22nd International Conference on Advanced Information Systems Engineering (CAiSE),

volume 6051 of LNCS, pages 113–128. Springer, 2010.

3. Amit K. Chopra, Fabiano Dalpiaz, Paolo Giorgini, and John Mylopoulos. Reasoning about

agents and protocols via goals and commitments. In Proceedings of the Ninth International

Conference on Autonomous Agents and Multiagent Systems (AAMAS), pages 457–464, 2010.

4. Amit K. Chopra and Munindar P. Singh. Colaba: Collaborative design of cross-

organizational business processes. In Proceedings of the Workshop on Requirements En-

gineering for Systems, Services, and Systems of Systems, 2011. to appear.

5. Amit K. Chopra and Munindar P. Singh. Specifying and applying commitment-based busi-

ness patterns. In Proceedings of the Tenth International Conference on Autonomous Agents

and MultiAgent Systems, 2011.

6. Philip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial

Intelligence, 42:213–261, 1990.

7. Fabiano Dalpiaz, Amit K. Chopra, Paolo Giorgini, and John Mylopoulos. Adaptation in

open systems: Giving interaction its rightful place. In Proceedings of the 29th International

Conference on Conceptual Modeling, volume 6412 of LNCS, pages 31–45. Springer, 2010.

8. Nirmit Desai, Amit K. Chopra, and Munindar P. Singh. Amoeba: A methodology for model-

ing and evolution of cross-organizational business processes. ACM Transactions on Software

Engineering and Methodology, 19(2):6:1–6:45, 2010.

9. Renata S. S. Guizzardi and Giancarlo Guizzardi. Applying the UFO ontology to design an

agent-oriented engineering language. In Proceedings of the 14th East European Conference

on Advances in Databases and Information Systems, pages 190–203, 2010.

10. Munindar P. Singh. Social and psychological commitments in multiagent systems. In AAAI

Fall Symposium on Knowledge and Action at Social and Organizational Levels, pages 104–

106, 1991.

11. Munindar P. Singh. Toward interaction-oriented programming. TR 96-15, Department

of Computer Science, North Carolina State University, Raleigh, May 1996. Available at

www4.ncsu.edu/eos/info/ dblab/www/mpsingh/ papers/mas/ iop.ps.

12. Munindar P. Singh. Agent communication languages: Rethinking the principles. IEEE Com-

puter, 31(12):40–47, December 1998.

13. Munindar P. Singh and Amit K. Chopra. Programming multiagent systems without program-

ming agents. In Proceedings of the 7th International Workshop on Programming Multi-Agent

Systems, volume 5919 of LNCS, pages 1–14. Springer, 2010.

14. Ian Sommerville, Russell Lock, Tim Storer, and John Dobson. Deriving information require-

ments from responsibility models. In Proceedings of the 21st International Conference on

Advanced Information Systems Engineering, pages 515–529, Amsterdam, 2009.

15. Ros Strens and John Dobson. How responsibility modelling leads to security requirements.

In Proceedings of the New Security Paradigms Workshop, pages 143–149, 1993.

16. Eric S. Yu. Social modeling and i*. In Alexander T. Borgida, Vinay K. Chaudhri, Paolo

Giorgini, and Eric S. Yu, editors, Conceptual Modeling: Foundations and Applications,

pages 99–121. Springer-Verlag, 2009.

17. Eric S.K. Yu. Towards modelling and reasoning support for early-phase requirements en-

gineering. In Proceedings of the Third IEEE International Symposium on Requirements

Engineering, pages 226–235, 1997.

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

143


