
A Flexible Approach for Validating ı̇
∗ Models

Ralf Laue, Arian Storch

Chair of Applied Telematics / e-Business, University of Leipzig, Germany
laue@ebus.informatik.uni-leipzig.de

Abstract. In this article, we present a flexible approach to verify the
syntactical correctness of ı̇∗ models. We translate the information that
is included in an ı̇

∗ model into a set of Prolog facts. Logical reasoning is
applied for finding problems in a model.

Our validation method has been implemented in the openOME mod-
elling tool. By using our validation add-on, modellers get feedback about
problems and possible improvements of the model.

1 Introduction

Based on experiences from teaching the ı̇
∗ framework to students it has been

reported that beginners often misunderstand the concept of some elements of
the ı̇

∗ modelling language [1]. They would profit from a modelling tool that can
not only locate problems resulting from such misunderstandings, but also gives
feedback on correcting the model.

Furthermore, the ı̇
∗ framework is open to extensions and adaptions. For

this reason, a modelling tool should support various modelling styles. It should
be able to check whether a model conforms to a given style or to modelling
conventions that exist in an organisation.

2 Objectives of the Research

The aim of our research is to provide a mechanism for validating ı̇
∗ models that

has the following properties:

– The modeller gets an immediate feedback about possible problems.

– If a problem is detected in the model, the modeller has the possibility to
learn about the reasons for the problem and about possibilities to model the
intended meaning of the model in a correct way.

– Own validation rules can easily be added, for example based on company-
wide style guidelines.

– The user is able to select the rules that should be applied in the validation.

– The validation procedure is flexible enough to allow an analysis of the textual
model element labels.

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

32



3 Scientific Contributions

A modelling tool should assist its users when they have to create models that ad-
here to the restrictions of the modelling language. First and foremost, the model
has to conform to the metamodel of the language. For the language ı̇

∗, several
publications have suggested such a metamodel [2]. By enforcing metamodel con-
formance, an ı̇

∗ modelling tool can prevent syntactical modelling errors like an
actor being modelled inside another actor. However, metamodel conformance
does not yet mean that a model is correct with respect to the language defini-
tion. There are additional semantic constraints such as “There should not be a
cycle made from actor association links”.

For checking this type of constraints, the use of the Object Constraint Lan-
guage (OCL) has been suggested in [3]. When we integrated validation support
into the ı̇∗ modelling tool OpenOME, we followed another approach that is based
on logic programming: First, we translate the information that is contained in a
model into a set of Prolog facts. Afterwards, logical reasoning is used for locating
problems. For translating an ı̇

∗ model into the corresponding Prolog facts, we
use a simple XSLT transformation. An ı̇

∗ model that needs to be validated is
translated automatically into a set of Prolog facts by this XSLT transformation.

Fig. 1. the ı̇
∗ model...

role(’_nKlm’).

elementname(’_nKlm’, ’Internet Provider’).

task(’_LX3l’).

elementname(’_LX3l’, ’Provide Internet Access’).

contains(’_nKlm’, ’_LX3l0’).

softgoal(’_xdXW’).

elementname(’_vgGY’, ’Security and Privacy’).

contains(’_nKlm’, ’_vgGY’).

anddecomposition(’_LX3l0’, ’_xdXW’).

shape(’_nKlm’, 2005, 822, 1096, 924).

shape(’_LX3l’, 190, 423, NaN, NaN).

shape(’_xdXW’, 1730, 1356, NaN, NaN).

Fig. 2. ...and the corresponding Prolog facts

Fig. 1 and 2 show an ı̇
∗ model fragment and the corresponding Prolog facts.

For the sake of readability, we have shortened the unique identifiers that have
been associated to each model element by Eclipse’s XMI serialisation.

Once the information from the ı̇
∗ model is available as Prolog facts, it is

very simple to locate problems. For example, the code for searching a goal that
is wrongly connected to another goal using a means-ends link can be found
by the query goal(G1),me(G1,G2),goal(G2). In general, means-ends links
used wrongly (i.e. not linking a task to a goal) can be identified by the query
me(E,Partner),(not(task(E));not(goal(Partner))). It is also no problem

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

33



Fig. 3. Syntactical correct, but the layout of the tasks is misleading (source: ı̇∗ wiki
modelling guidelines)

to detect issues like the mentioned problem of cycles within actor dependency
links.

Note that the size of position of the modelling elements are available as
Prolog facts as well, allowing reasoning about the layout of the model. This
allows to search for problems like the one depicted in Fig. 3. While the model is
syntactically correct, the direction of one of the task decomposition links should
be changed such that a task that is decomposed into a sub-task is always located
above the sub-task. The possibility to deal with this kind of layout problems is an
advantage of our approach compared to the OCL-based method described in [3].
Another advantage is that by exporting the model as Prolog facts, we have access
to a variety of methods that can analyse the textual labels of model elements.
This can be used for finding violations of naming conventions. In our current
implementation, we use a heuristic method that analyses the labels and tries to
detect two common types of errors: goals that have wrongly been modelled as
tasks and softgoals that have been wrongly modelled as goals.

We have included all rules about semantic constraints that can be found in
the ı̇

∗ wiki (http://istar.rwth-aachen.de) as well as some other validation rules
described in the literature [3–5] or identified by our own analysis. It is possible
to configure the subset of rules to be applied, which allows to use different styles
for ı̇

∗ models. For all ı̇∗ models validated so far (including rather large mod-
els with more than 100 elements), our validation mechanism delivered a result
within one second. In order to prevent performance problems due to running the
validation in background, we start the validation mechanism by executing it on
demand by selecting a menu item. It should, however, be possible to use the val-
idation mechanism as a background process without affecting the performance
(as reported in [6] for a similar case).

Fig. 4 shows how detected problems are reported by the modelling tool: Each
problem is shown as error or warning in the “Problems View” of the modelling
tool. Also, a visual marker is added to the model element for which the problem
has been found. If the modeller needs more information about the detected
problem, it is possible to look up additional information about each problem
class on a web site. We have already established links to the various guidelines
available on the ı̇∗ wiki. A novice user can quickly learn to draw correct ı̇∗ models

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

34



by following the cycle “Model – Validate – Learn about the reported errors –
Correct”.

Fig. 4. Errors, Warnings and Information shown in openOME

4 Conclusions

The approach described in this paper has been implemented as a plugin into the
Eclipse-based tool openOME. It is flexible enough to be used with every model
editor that is based on Eclipse EMF/GMF. Previously, we have implemented
the same validation mechanism into the business process model editor bflow*

Toolbox. In a controlled experiment [7], we made the observation that providing
an immediate feedback about modelling errors had a significant influence on
model quality: The group provided with validation support made 6 errors in 7
models. For the control group which had to solve the same modelling task using
the same tool without validation support we counted 24 errors in 6 models [8].

5 Ongoing and Future Work

We are interested in extending the approach described in this paper by analysing
the texts used in the models more deeply. This would make it possible to check

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

35



for style rules such as “The infinitive of a verb together with an object has to
be used for describing a task.” Other interesting challenges would be to inte-
grate the ideas of the Goal Clarification Method described in [9] and to develop
recommendations for correcting a erroneous model.

Developers who are interested in using or improving our plug-in are invited to
do so. More information about the plugins can be found at the Eclipse Modeling
Toolbox project site http://sourceforge.net/projects/eclipsemodeling.

References

1. Horkoff, J., Elahi, G., Abdulhadi, S., Yu, E.: Reflective analysis of the syntax and
semantics of the i* framework. In: Advances in Conceptual Modeling, Challenges
and Opportunities. Volume 5232 of Lecture Notes in Computer Science. Springer
(2008) 249–260

2. Cares, C., Franch, X., Lopez, L., Marco, J.: Definition and uses of the i* metamodel.
In: Proceedings of the 4th International i* Workshop, Hammamet, Tunisia. Volume
586 of CEUR Workshop Proceedings., CEUR-WS.org (2010) 20–25

3. Amyot, D., Yan, J.B.: Flexible verification of user-defined semantic constraints in
modelling tools. In: Proceedings of the 2008 Conference of the Center for Advanced
Studies on Collaborative Eesearch: Meeting of Minds. (2008) 7:81–7:95

4. Amyot, D., Horkoff, J., Gross, D., Mussbacher, G.: A lightweight GRL profile for
i* modeling. In: Advances in Conceptual Modeling - Challenging Perspectives, ER
2009 Workshops. Volume 5833 of Lecture Notes in Computer Science., Springer
(2009) 254–264

5. de Pádua Albuquerque Oliveira, A., do Prado Leite, J.C.S., Cysneiros, L.M.: Using
i* meta modeling for verifying i* models. In: Proceedings of the 4th International
i* Workshop, Hammamet, Tunisia. Volume 586 of CEUR Workshop Proceedings.,
CEUR-WS.org (2010) 76–80

6. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: ICSE ’08: Proceedings of the 30th
International Conference on Software engineering, New York, USA, ACM (2008)
511–520

7. Laue, R., Kühne, S., Gadatsch, A.: Evaluating the Effect of Feedback on Syntac-
tic Errors for Novice Modellers. In: EPK 2009, Geschäftsprozessmanagement mit
Ereignisgesteuerten Prozessketten. CEUR Workshop Proceedings (2009)

8. Gruhn, V., Laue, R.: A heuristic method for detecting problems in business process
models. Business Process Management Journal 16 (2010) 806–821

9. Jureta, I., Faulkner, S.: Clarifying goal models. In: Challenges in Conceptual
Modelling. Tutorials, posters, panels and industrial contributions at the 26th In-
ternational Conference on Conceptual Modeling - ER 2007. Volume 83 of CRPIT.,
Australian Computer Society (2007) 139–144

CEUR Proceedings of the 5th International i* Workshop (iStar 2011)

36


