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{sandra.garcia,santiago.mola}@bitsnbrains.net

2 Imperial College London, UK – rdanger@imperial.ac.uk
3 NLE Lab. - ELiRF, DSIC, Universidad Politécnica de Valencia, Spain –
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Abstract. A Drug-Drug Interaction (DDI) occurs when the effects of
a drug are modified by the presence of other drugs. DDIExtraction2011
proposes a first challenge task, Drug-Drug Interaction Extraction, to
compare different techniques for DDI extraction and to set a benchmark
that will enable future systems to be tested. The goal of the competition
is for every pair of drugs in a sentence, decide whether an interaction
is being described or not. We built a system based on machine learning
based on bag of words and pattern extraction. Bag of words and other
drug-level and character-level have been proven to have a high discrim-
inative power for detecting DDI, while pattern extraction provided a
moderated improvement indicating a good line for further research.

1 Introduction

A Drug-Drug Interaction (DDI) occurs when the effects of a drug are modified
by the presence of other drugs. The consequences of a DDI may be very harmful
for the patient’s health, therefore it is very important that health-care profes-
sionals keep their databases up-to-date with respect to new DDI reported in the
literature.

DDIExtraction2011 proposes a first challenge task, DDI Extraction, to com-
pare different techniques for DDI extraction and to set a benchmark that will
enable future systems to be tested. The goal of the competition is for every pair
of drugs in a sentence, decide whether an interaction is being described or not.
The corpus used was the DrugDDI corpus [1]. Two formats of the corpus were
provided, MMTx format and Unified format. Our system uses Unified format,
which only contains labels for drugs. Table 1 shows the corpus statistics4.

The paper is structured as follows: Section 2 overviews related work. Section 3
describes the system used as well as its features. In section 4 we discuss the
evaluation and results and in Section 5 we draw some conclusions.
4 These statistics cover only documents and sentences that contain, at least, one drug
pair.
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Table 1. DrugDDI corpus statistics.

Training Test Total

Documents 399 134 533
Sentences 2812 965 3777
Pairs of drugs 23827 7026 30853
Interactions 2397 755 3152

2 Related Work

Even though the problem of DDI extraction is relatively new, some authors
have already presented approximations to solve it. In [2], the author presents
two approximations to face the problem: a hybrid approach, combining shallow
parsing and matching of patterns described by a pharmacist; and an approxi-
mation based on kernel methods that obtained better results that the hybrid
approach, reaching 55% precision and 84% recall.

In [3] the authors propose a first approximation for DDI detection based
on automatically determining the patterns that identify DDI from a training
set. The patterns extracted were Maximal Frequent Sequences (MFS), based on
[4]. In this work, the identified MFS were used to determine whether a sentence
contains or not a description of a DDI, without identifying the pair of interacting
drugs. MFS have been useful in different tasks such as text summarization [5],
measuring text similarities [6] and authorship attribution [7]. MFS will also be
part of our approximation, and will be defined further on.

Protein-Protein Interaction (PPI) extraction is an area of research very sim-
ilar to DDI extraction that has received a bigger attention from the scientific
comunity. The BioCreative III Workshop hosted two tasks of PPI document clas-
sification and interaction extraction [8]. Some of the features present in a wide
range of participants were bag-of-words, bigrams, co-occurrences and character
ngrams. This kind of features will have a key role in our system. In [9] the authors
use patterns as one of their main features to extract PPI. In [10], the authors
use a hybrid approach with clustering and machine learning classification using
Support Vector Machines (SVM).

3 Our System

We built a system based on machine learning5, therefore we had to define a
feature set to estimate the model. Each sample is one possible interaction, this
is, each unique combination of two drugs appearing in a sentence of the corpus.
Given the small size of the corpus and the difficulty of properly estimating the
model, it was necessary to represent the features in a reduced space.

The first step was to preprocess the corpus. For doing so, each sentence was
tokenized6 with standard English tokenization rules (e.g. split by spaces, removal

5 We used RapidMiner for every classification and clustering model. Available at http:
//rapid-i.com/.

6 The tokenization was performed with Apache Lucene. Available at http://lucene.
apache.org.
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of apostrophes, conversion to lower case, removal of punctuation marks) with the
following particularities:

– Each group of tokens that represent a drug were replaced by #drug#.

– Numbers were replaced by num .

– Stop words were not removed.

– Stemming was applied7.

– Percentage symbols were preserved as independent tokens.

In the following subsections, we will describe the different features used in
the system.

3.1 Bag of Words

From the set of all words appearing in the preprocessed corpus, we discarded
those with a frequency lower than 3 and stop words. With the resulting set of
words, we generated a dataset where each sample was a possible interaction in
the corpus and each feature was the presence or not of each word between the
two drugs of the potential interaction. Using this dataset, every word was ranked
using information gain ratio with respect to the label 8. Then, every word with
an information gain ratio lower than 0.0001 was discarded. The presence of each
of the remaining words was a feature in the final dataset. Finally, 1,010 words
were kept.

Samples of words with a high gain ratio are: exceed, add, solubl, amphetamin,
below, lowest, second, defici, occurr, stimul and acceler.

3.2 Word Categories

In biomedical literature complex sentences are used very frequently. MFS and
bag of words are not able to capture relations that are far apart inside a sen-
tence. To somehow reflect the structure of the sentence, we defined some word
categories. This way, we can have some information about dependent and in-
dependent clauses, coordinate and subordinate structures, etc. Some of these
categories were also included in [2]. We added two categories that include abso-
lute terms and quantifiers, as well as a category for negations. Table 2 enumerates
the words included in each category.

For each word category we defined two features. One indicating how many
times the words in the category appeared in the sentence, and the other indi-
cating how many times they appeared between the two drugs of the potential
interaction.

7 The stemming algorithm used was Snowball for English. Available at http://

snowball.tartarus.org.
8 Information Gain Ratio was calculated using Weka. Available at http://www.cs.

waikato.ac.nz/ml/weka/.
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Table 2. Word Categories.

Category Words included

Subordinate after, although, as, because, before, if, since, though, unless, until, what-
ever, when, whenever, whether, while.

Independent markers however, moreover, furthermore, consequently, nevertheless, therefore.
Appositions like, including, e.g., i.e.
Coordinators for, and, nor, but, or, yet, so.
Absolute never, always.
Quantifiers higher, lower.
Negations no, not.

3.3 Maximal Frequent Sequences

Similar to bag of words, we used sequences of words as features. For this, we used
Maximal Frequent Sequences (MFS).9 Following [4], a sequence is defined as an
ordered list of elements, in this case, words. A sequence is maximal if it is not
a subsequence of any other, this is, if it does not appear in any other sequence
in the same order. Given a collection of sentences, a sequence is β-frequent if it
appears in at least β sentences, where β is the defined frequency threshold. MFS
are all the sequences that are β-frequent and maximal.

We extracted all the MFS from the training corpus, with a β of 10 minimum
length of 2. Given the size of the corpus, sometimes very long MFS have no capa-
bility to generalize knowledge because they sometimes represent full sentences,
instead of patterns that should be frequent in a kind of sentence. To avoid this,
we restricted the MFS to a maximum length of 7 words. With this, we obtained
1.010 patterns. In order to reduce the feature space we calculated clusters of
MFS.

Clusters were calculated with the Kernel K-Means algorithm [11], using ra-
dial kernel, with respect to the relative frequency of each MFS in the following
contexts: a) sentences, b) sentences containing an interaction, c) MFS appearing
between two drugs, c) MFS appearing before the first drug of an interaction
and d) MFS appearing after the last drug of an interaction. Clustering helped
to avoid pattern redundancy. This was necessary because some patterns could
be considered equivalent since they only differed in one or a few words not rele-
vant in the context of DDI. We obtained 274 clusters. Each of this clusters is a
feature of the final dataset which is set to 1 if, at least, one of the MFS of the
cluster matches with the potential interaction. The matching algorithm is shown
in Algorithm 1.

3.4 Token and Char Level Features

At the token and char level, several features were defined. We must recall that,
during preprocessing, every token or group of tokens labeled as drugs where
replaced by the token #drug#. Table 3 describes this subset of features. Each
one of these features appears twice in the final dataset, once computed on the

9 We used a proprietary library by bitsnbrains, http://bitsnbrains.net.
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Algorithm 1: MFS matching algorithm.

Input: mfs, sentence, drug1index, drug2index
Output: match
startThreshold ← 0
endThreshold ← 0
if ”#drug#” ∈ mfs then

startThreshold ← First index of ”#drug#” in mfs
endThreshold ← length(mfs)− last index of ”#drug#” in mfs

startIndex ← drug1index− startThreshold
if startIndex < 0 then

startIndex ← 0
endIndex ← drug2index+ endThreshold
if endIndex > length(sentence) then

endIndex ← length(sentence)
textBetweenDrugs ← Substring of sentence from index startIndex to
endIndex
if mfs is subsequence of textBetweenDrugs then

match ← 1
else

match ← 0

whole sentence and once computed only in the text between the two drugs of
the potential interaction.

Table 3. Token and char level features.

Feature Description

Tokens Number of tokens.
Token #drug# Number of times the #drug# token appears.
Chars Number of chars.
Commas Number of commas.
Semicolons Number of semicolons.
Colons Number of colons.
Percentages Number of times the character % appears.

3.5 Drug Level Features

With the features defined so far, we have not taken into account the two drugs
of the potential interaction. We believe this is important in order to have more
information when deciding wether if they interact or not.

For each document, we calculated the main drug as the drug after which the
document was named, this is, the name of the article of the DrugBank database
where the text was extracted from. In the case of scientific articles, the main
drug would be calculated as the drug or drug names appearing in the title of the
article, if any. Also for each document, we calculated the most frequent drug as
the token labeled as drug that appeared more times in the document.
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We noticed that, sometimes, drugs are referred to using their trade names. To
ensure good treatment of drugs in the drug level features, we replaced each trade
name with the original drug name10. Table 4 describes the drug level features.

Table 4. Drug level features for candidate interactions (CI)

Feature Description

Main drug True if one of of the two drugs in the CI is the document name.
Most frequent drug True if one of the two drugs in the CI is the most frequent drug

in the document.
Cross reference True if, at least, one of the two drugs in the CI is drug,medication

or medicine.
Alcohol True if, at least, one of the two drugs in the CI is alcohol or

ethanol.
Is same drug True if both drugs in the CI are the same.

3.6 Classification Model

During preliminary research, we explored the performance of a wide range of
classification models, notably Support Vector Machines, Decision Trees and mul-
tiple ensemble classifiers such as Bagging, MetaCost and Random Forests [12].
Our best choice was Random Forest with 100 iterations and 100 attributes per
iteration.

4 Evaluation

We evaluated our model with standard performance measures for binary classi-
fication: Precision (P), Recall (R) and F-Measure (F). For each label, our model
outputs a confidence value. In order to decide the label, we define a confidence
threshold above which the decision will be positive and below which it will be
negative. A quick way to visualize every possible set up of the system is the
PR curve, where P and R are ploted for different confidence thresholds. Analo-
gously, we can plot F-Measure and confidence thresholds to visualize the opti-
mum threshold with respect F-Measure. AUC-PR is defined as the area under
the PR curve. AUC-PR is a very stable measure to compare binary classification
models.

We are evaluating the performance of our system for the test set, with and
without MFS. Figure 1 shows PR and F curves for both settings. The PR curves
are convex, which makes the decision of an optimum threshold much easier and
less risky. Table 5 shows Precision, Recall, F-Measure, AUC-PR, precision at
recall 0.8 and recall at precision 0.8 for test with MFS.

10 Trade names were extracted from the KEGG DRUG database, from the Kyoto
Encyclopedia of Genes and Genomes. Available at http://www.genome.jp/kegg/

drug/
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MFS improve moderately the performance of the system, increasing about
0.02 in AUC-PR. We expected more influence of MFS. Patterns were extracted
using all sentences, even the ones that did not include any drug interaction. We
believe that this could have reduced the performance.
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Fig. 1. PR and F curves for test with and without MFS.

Table 5. Performance measures for test with and without MFS.

P R F AUC-PR P@R 0.8 R@P 0.8

Test 0.6122 0.5563 0.5829 0.6341 0.4309 0.3205
Test w/o MFS 0.6069 0.5563 0.5805 0.6142 0.4113 0.2808

5 Conclusions

We presented a system for DDI extraction based on bag-of-words and Maximal
Frequent Sequences, as used for the DDIExtraction2011 competition. Our sub-
mission obtained a F-Measure of 0.5829 and a AUC-PR of 0.6341 for the test
corpus. Our system can be set up to reach recall of 0.3205 with a precision of
0.8, or precision of 0.4309 and a recall 0.8. The use of MFS increased AUC-PR
by 0.02.

One of the main problems we have encountered is the complexity of the
language structures used in biomedical literature. Most of the sentence contained
appositions, coordinators, etc. Therefore it was very difficult to reflect those
structures using MFS. The reduced size of the corpus is also a serious limitation
for our approach.

Our system should be improved by complementing it with other state-of-
the-art techniques used in the PPI field that have not been explored yet during
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our participation, such as character n-grams and co-occurrences. It could also
be improved by extracting MFS with reduced restrictions and improving the
clustering step.
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5. Garćıa, R.A.: Algoritmos para el descubrimiento de patrones secuenciales maxi-
males. PhD thesis, INAOE, Mexico (September 2007)
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