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Abstract. We introduce a system developed to extract drug-drug in-
teractions (DDI) for drug mention pairs found in biomedical texts. This
system was developed for the DDI Extraction First Challenge Task 2011
and is based on our publicly available Turku Event Extraction System,
which we adapt for the domain of drug-drug interactions. This system
relies heavily on deep syntactic parsing to build a representation of the
relations between drug mentions. In developing the DDI extraction sys-
tem, we evaluate the suitability of both text-based and database derived
features for DDI detection. For machine learning, we test both support
vector machine (SVM) and regularized least-squares (RLS) classifiers,
with detailed experiments for determining the optimal parameters and
training approach. Our system achieves a performance of 62.99% F-score
on the DDI Extraction 2011 task.

1 Introduction

Biomedical Natural Language Processing (BioNLP) is the application of natural
language processing methods to analyse textual data on biology and medicine,
often research articles. Information extraction techniques can be used to mine
large text datasets for relevant information, such as relations between specific
types of entities.

In drug-drug interactions (DDI) one administered drug has an impact on
the level or activity of another drug. Knowing all potential interactions is very
important for physicians prescribing varying combinations of drugs for their
patients. In addition to existing databases, drug-drug information could be ex-
tracted from textual sources, such as research articles. The DDI Extraction 2011
Shared Task3 is a competitive evaluation of text mining methods for extraction
of drug-drug interactions, using a corpus annotated for the task [13]. In the DDI
corpus drug-drug interactions are represented as pairwise interactions between
two drug mentions in the same sentence.

The DDI Extraction task organizers have also developed a shallow linguistic
kernel method for DDI extraction, demonstrating the suitability of the dataset

3 http://labda.inf.uc3m.es/DDIExtraction2011/
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for machine learning based information extraction [13]. They have also extended
this work into an online service for retrieving drug-drug interactions from the
Medline 2010 database [12].

We apply for the DDI Shared Task our open source Turku Event Extraction
System, which was the best performing system in the popular BioNLP 2009
Shared Task on Event Extraction, and which we have recently upgraded for the
BioNLP 2011 Shared Task, demonstrating again competitive performance [1].
Event extraction is the retrieval of complex, detailed relation structures, but
these structures are ultimately comprised of pairwise relations between text-
bound entities. The Turku Event Extraction System has modules for extraction
of full complex events, as well as for direct pairwise relations, which we use for
DDI extraction.

The DDI corpus is provided in two formats, in a MetaMap (MTMX) [2] XML
format, and a unified Protein-Protein Interaction XML format [10]. The Turku
Event Extraction System uses the latter format as its native data representation,
making it a suitable system for adapting to the current task.

In this work we test several feature representations applicable for DDI ex-
traction. We test two different classification methods, and demonstrate the im-
portance of thorough parameter optimization for obtaining optimal performance
on the DDI Shared Task.

2 Methods

2.1 System Overview

The Turku Event Extraction System abstracts event and relation extraction
by using an extendable graph format. The system extracts information in two
main steps: detection of trigger words (nodes) denoting entities in the text,
and detection of their relationships (edges). Additional processing steps can e.g.
refine the resulting graph structure or convert it to other formats. In the DDI
Extraction 2011 task all entities, the drug mentions, are given for both training
and test data. Thus, we only use the edge detector part of the Turku Event
Extraction System. Each undirected drug entity pair in a sentence is a drug-
drug interaction candidate, marked as a positive or negative example by the
annotation. In the graph format, the drug entities are the nodes, and all of their
pairs, connected through the dependency parse, are the edge examples to be
classified (See Figure 1).

We adapt the Turku Event Extraction System to the DDI task by extending
it with a new example builder module, which converts the DDI corpus into
machine learning classification examples, taking into account information specific
for drug-drug interactions.

2.2 Data Preparation

The DDI corpus provided for the shared task was divided into a training corpus
of 4267 sentences for system development, and a test corpus of 1539 sentences
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Fig. 1. A potential drug-drug interaction (DDI) can exist for each pair of drug entities
in the sentence. This example sentence from the DrugDDI corpus training set has one
positive interaction. The automatically generated syntactic deep dependency parse is
shown above the sentence. Our system classifies drug entity pairs based on features
built primarily from the shortest path of dependencies, shown with the dotted line.

that was only made available without labels for running the final results (labels
are available now that the task has ended). To develop a machine learning based
system, one needs to optimize the parameters of the learned model, by testing
experimentally a number of values on data not used for learning. We therefore
divided the training corpus into a 3297 sentence learning set and a 970 sentence
parameter optimization set in roughly a ratio of 3:1.

The training corpus was provided in a set of 436 files, each containing sen-
tences relevant to a specific drug. We put all sentences from the same file into
either the learning or the optimization set, to prevent the classifier relying too
much on specific drug names. The number of negative pairs varied from 1 to 87
and positive pairs from 0 to 29 per file. To maintain a balanced class distribution,
and to ensure a representative sample of interactions in both the learning and
optimization sets, we divided the files by first sorting by positive interactions,
then distributing the files every 3 to learning set and 1 to optimization set. This
division distributed the positive interactions almost exactly 3:1 (1156 vs. 374)
between the learning and optimization sets. The positive/negative class ratio for
the learning set was 54% (1156/2138) vs. 63% (374/596) for the optimization set,
a difference we considered acceptable for optimizing the class ratio dependent
F-score.

2.3 Parsing

Before we could build the machine learning examples, all sentences needed to be
processed with deep syntactic parsing, using the tool chain implemented for the
Turku Event Extraction System in previous work [1]. This tool chain performs
parsing in two steps: the Charniak-Johnson parser [3] first generates a PENN
parse tree, which is converted to a dependency parse with the Stanford parser
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Fig. 2. Skipping the conj and dependencies when determining the shortest path (dotted
line) allows more tokens relevant for the potential interaction to be included in the path.

tools [7]. A dependency parse represents syntax in a form useful for semantic
information extraction [8]. With the Charniak-Johnson parser, we used David
McClosky’s domain-adapted biomodel trained on the biomedical GENIA corpus
and unlabeled PubMed articles [6].

2.4 Feature Representations

We use a component derived from the event argument detector of the Turku
Event Extraction System. This module is designed to detect relations between
two known entities in text, which in this task are the drug-drug pairs. We use
the module in the undirected mode, since the drug-drug interactions do not
have a defined direction in the current task. Our basic feature representation
is the one produced by this system, comprised of e.g. token and dependency n-
grams built from the shortest path of dependencies (See Figure 1), path terminal
token attributes and sentence word count features. The token and dependency
types, POS tags and text, also stemmed with the Porter stemmer [9], are used
in different combinations to build variations of these features.

As a modification of the Turku Event Extraction System event argument de-
tector we remove conj and type dependencies from the calculation of the shortest
path. The event argument edges that the system was developed to detect usu-
ally link a protein name to a defined interaction trigger word (such as the verb
defining the interaction). In the case of DDIs, such words are not part of the
annotation, but can still be important for classification. Dependencies of type
conj and can lead to a shortest path that directly connects a drug entity pair,
without travelling through other words important for the interaction (See Fig-
ure 2). Skipping conj and dependencies increased the F-score on the optimization
set by 0.42 percentage points.

We further improve extraction performance by using external datasets con-
taining information about the drug-drug pairs in the text. DrugBank [16], the
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database on which the DrugDDI corpus is based, contains manually curated in-
formation on known drug-drug interaction pairs. We mark as a feature for each
candidate pair whether it is present in DrugBank, and whether it is there as a
known interacting pair.

We also use the data from the MetaMap (MTMX) [2] version of the DDI
corpus. For both entities in a candidate pair, we add as MetaMap features their
CUI numbers, predicted long and short names, prediction probabilities and se-
mantic types. We also mark whether an annotated drug name has not been given
a known name by MetaMap, and whether both entities have received the same
name. We normalize the prediction probabilities into the range [0,1] and sort
them as the minimum and maximum MetaMap probability for the candidate
pair. For the semantic types, we build a feature for each type of both entities,
as well as each combination of the entities’ types.

2.5 Classification

We tested two similar classifier training methods, the (soft margin) support
vector machine (SVM) [15] and the regularized least-squares (RLS) [11]. Both of
the methods are regularized kernel methods, and are known to be closely related
both theoretically and in terms of expected classification performance [4, 11].

Given a set of m training examples {(xi, yi)}mi=1, where xi are n-dimensional
feature vectors and y1 are class labels, both methods under consideration can be
formulated as the following regularized risk minimization problem [4]:

w∗ = argmin
w∈Rn

{
m∑
i=1

l
(
xT
i w, yi

)
+ λwTw

}
, (1)

where the first term measures with a loss function l how well w fits the training
data, the second term is the quadratic regularizer that measures the learner com-
plexity, and λ > 0 is a regularization parameter controlling the trade-off between
the two terms. In standard SVM formulations, the regularization parameter is
often replaced with its inverse C = 1

λ . The hinge loss, defined as

l(f, y) = max (1− fy, 0) , (2)

leads to the SVM and the squared loss, defined as

l(f, y) = (f − y)2, (3)

to the RLS classifiers [11], when inserted into equation (1).
Natural language based feature representations are typically characterized by

high dimensionality, where the number of possible features may correspond to
the size of some vocabulary, or to some power of such number. Further, the data
is typically sparse, meaning that most of the features are zero valued. Linear
models are typically sufficiently expressive in such high dimensions. Further,
efficient algorithms that can make use of the sparsity of the data, so that their
computational and memory costs scale linearly with respect to the number of
non-zero features in the training set, are known for both SVM [5] and RLS [11].
For these reasons, we chose to train the models using the linear kernel.
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3 Results

In the experiments the optimization set was used for learner parameter selection.
The final models were trained on all training data, using the learner parameters
that resulted in best performance on the optimization set. For both SVM and
RLS, the regularization parameter value was chosen using grid search on an
exponential grid. The RLS experiments were run using our RLScore open source
software4, whereas the SVM experiments were implemented with the Joachims

SVMmulticlass program5 [14].
Both RLS and SVM models produce real-valued predictions. Typically, one

assigns a data point to the positive class if the prediction is larger than zero, and
to the negative if it is smaller than zero. Since the learning methods are based
on optimizing an approximation of classification error rate, the learned models
may not be optimal in terms of F-score performance. For this reason, we tested
re-calibrating the learned RLS model. We set the threshold at which negative
class predictions change to positive to the point on the precision-recall curve
that lead to the highest F-score on the development set. The threshold was set
to a negative value, indicating that the re-calibration trades precision in order
to gain recall. Due to time constraints the same approach was tested with SVMs
only after the final DDI Extraction 2011 task results had been submitted.

The RLS results of 62.99% F-score are clearly higher than any of the submit-
ted SVM results. This is mostly due to the re-calibration of the RLS model, which
leads to higher recall with some loss of precision, but overall better F-score. A
corresponding experiment with an SVM, performed after the competition, con-
firms that this threshold optimization is largely independent of the classifier used
(See Table 3), although the RLS still has a slightly higher performance. With
755 positives and 6271 negatives in the test set, the all-positive F-score for the
test set is 19.41%, a baseline above which all of our results clearly are.

Adding features based on information from external databases clearly im-
proves performance. Using known DrugBank interaction pairs increases perfor-
mance by 0.94 percentage points and adding the MetaMap annotation a further
0.99 percentage points, a total improvement of 1.93 percentage points over result
number 1 which uses only information extracted from the corpus text.

4 Discussion and Conclusions

The results demonstrate that combining rich feature representations with state-
of-the art classifiers such as RLS or SVM provides a straightforward approach to
automatically constructing drug-drug interaction extraction systems. The high
impact of the threshold optimization on both RLS and SVM results outlines the
importance of finding the optimal trade-off between precision and recall. The
RLS slightly outperforms SVM in our experiments, resulting in our final DDI

4 available at www.tucs.fi/rlscore
5 http://svmlight.joachims.org/svm multiclass.html
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Table 1. DDI Extraction 2011 results. This table shows the extraction performance
for the four results (1-4) submitted for the shared task, as well as a post-competition
experiment (pce). The features are the baseline features, built only from the DDI
corpus, features built from known DrugBank interaction pairs, and features based
on the provided MetaMap annotation. For classification, either an SVM or an RLS
classifier was used, potentially with an optimal threshold for parameter selection.

Result Features Classifier Threshold Precision Recall F-score

1 corpus SVM - 67.05 46.36 54.82
2 corpus+DrugBank SVM - 65.13 48.74 55.76
pce corpus+DrugBank SVM + 62.53 62.12 62.33
3 corpus+DrugBank RLS + 58.04 68.87 62.99
4 corpus+DrugBank+MetaMap SVM - 67.40 49.01 56.75

Extraction 2001 task F-score of 62.99%. Using also MetaMap features with the
RLS classifier setup might further improve performance.

Our results indicate that using additional sources of information, such as
the DrugBank and the MetaMap can lead to gains in predictive performance.
In the DDI Extraction 2011 task using any external databases was encouraged
to maximise performance, but when applying such methods to practical text
mining applications care must be exercised. In particular, using lists of known
interactions can increase performance on well known test data, but could also
cause a classifier to rely too much on this information, making it more difficult to
detect the new, unknown interactions. Fortunately, while external databases in-
crease performance, their contribution is a rather small part of the whole system
performance, and as such can be left out in situations that demand it.

At the time of writing this paper, the other teams’ results in the DDI Shared
Task are not available, so we can’t draw many conclusions from our performance.
The F-score of 62.99% is clearly above the all-positive baseline of 19.41%, in-
dicating that the basic machine learning model is suitable for this task. The
performance is somewhat similar to Turku Event Extraction System results for
comparable relation extraction tasks in the BioNLP’11 Shared Task, such as
the Bacteria Gene Interactions (BI) task F-score of 77% and the Bacteria Gene
Renaming (REN) task text-only features F-score of 67.85% [1].

For the DDI corpus, to the best of our knowledge, the only available point
of comparison is the task authors’ F-score of 60.01% using a shallow linguistic
kernel [13]. For the DDI Extraction 2011 task the corpus has been somewhat
updated and the training and test set division seems slightly different. Even if
these results are not directly comparable, we can presume our result to be in
roughly the same performance range.

We have extended the Turku Event Extraction System for the task of DDI
extraction, and have developed optimized feature and machine learning models
for achieving good performance. We hope our work can contribute to further
developments in the field of DDI extraction, and will publish our software for
download from bionlp.utu.fi under an open source license.
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In: Muñoz, R., Montoyo, A., Métais, E. (eds.) Natural Language Processing and
Information Systems, Lecture Notes in Computer Science, vol. 6716, pp. 274–277.
Springer Berlin / Heidelberg (2011)

13. Segura-Bedmar, I., Mart́ınez, P., de Pablo-Sánchez, C.: Using a shallow linguistic
kernel for drug-drug interaction extraction. Journal of Biomedical Informatics In
Press, Corrected Proof, – (2011)

14. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large Margin Methods
for Structured and Interdependent Output Variables. Journal of Machine Learning
Research (JMLR) 6(Sep), 1453–1484 (2005)

15. Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York,
Inc., New York, NY, USA (1995)

16. Wishart, D.S., Knox, C., Guo, A.C., Cheng, D., Shrivastava, S., Tzur, D.,
Gautam, B., Hassanali, M.: DrugBank: a knowledgebase for drugs, drug ac-
tions and drug targets. Nucleic Acids Research 36(suppl 1), D901–D906 (2008),
http://nar.oxfordjournals.org/content/36/suppl1/D901.abstract

$�

,��
�-./���!�0���
�0
����!�1�"
�����
�����!�1�"
��'������



