
Adaptive Distributed Query Processing

Yongluan Zhou

Department of Computer Science
National University of Singapore

zhouyong@comp.nus.edu.sg

Abstract

For a large-scale distributed query engine,
which supports long running queries over fed-
erated data sources, it is hard to obtain statis-
tics of data sources, servers and other re-
sources. In addition, the characteristics of
data sources and servers are changing at run-
time. A traditional distributed query opti-
mizer or centralized adaptive techniques is
inadequate in this situation. In this pa-
per, we introduce a new highly scalable dis-
tributed query processing mechanism called
SwAP (Scalable & Adaptable query Proces-
sor). SwAP can quickly learn and adapt to
the fluctuations of the selectivities of opera-
tions, the workload of servers, as well as the
connection speed without any statistics, and
accordingly change the operation order of a
distributed query.

1 Introduction

In a large scale distributed system, it is often very diffi-
cult to find an optimal plan for a query. This is because
a query processor may not have accurate statistics of
the participating relations stored at other nodes and
the selectivities of operations. Moreover, the workload
and network bandwidth of the processing servers may
change during runtime. This problem is particularly
severe in systems supporting continuous queries, which
will run for a long time.

There have been a lot of works on adaptive query
processing that address this problem [2]. Most of them
are mainly focused on centralized processing environ-
ments. However, in many cases, data sources are geo-
graphically distributed and the query engine is inher-
ently distributed. Furthermore, it is obvious that the
number of queries and size of data a single server can
handle are limited. Therefore, there is a need to design
a distributed query engine that adapts to the changing
environment during runtime.

The ultimate aim of the PhD thesis is to build up
the infrastructure for a highly adaptive distributed

query processing engine that should have the following
features:

• The system is highly distributed. It supports both
continuous queries and ad-hoc queries over feder-
ated data sources.

• The system can adaptively approach to an opti-
mal processing plan with little or without statis-
tics. It can also adapt to the fluctuations of envi-
ronment mentioned above.

• Based on the adaptivity mechanism, the system
can support QoS management for user queries.

To date, we have worked out a new distributed
query processor, called SwAP (Scalable & Adaptable
query Processor). The system builds on and goes
beyond a straightforward adaptation of Eddies [1],
a centralized adaptive query processing mechanism,
to reorder operations of a distributed query plan at
runtime. The reordering of operations is realized by
dynamically changing the orders in which tuples are
routed through the processing sites according to fluc-
tuations in the selectivities and cost of operations, as
well as the workload and connection speeds of servers.
As a result, SwAP can lead to an optimal plan.

SwAP harnesses both the horizontal and vertical
parallelism between processing sites. For both types
of parallelism, there is an eddy at each site providing
adaptivity for operations running locally. Vertical par-
allelism offers greater opportunity for adaptivity. In
particular, we propose a new mechanism for vertical
parallelism to learn the selectivity, workload and con-
nection speed of the processing servers, and then ac-
cordingly adapt the orders in which tuples are routed
through the servers. There are two key components
in this scheme: Remote Meta-Operator (RMO) and
Virtual Tuples. Each RMO represents the operations
running on one remote site. Sending tuples to a RMO
means sending a tuple to that remote site for process-
ing. Virtual Tuples are sent back by the remote site for
gathering statistics about operations running on the
remote site, e.g. tickets in the lottery routing scheme.
We also proposed a variant of the SteM [5] to reduce



the overhead when dealing with the intermediate tu-
ples from a remote site. Furthermore, this mechanism
can continuously adapt to the runtime changes of the
characteristics of the servers mentioned above.

We first review related work in Section 2. Details
of the design of SwAP are given in Section 3. Finally,
we conclude in Section 4 with our agenda for future
work.

2 Related work

Due to the space limit, we only reviewed the most re-
lated work here. Eddy [1] is actually an iterator inter-
posed between operators and source data. Operators
are continuously fetching tuples via eddy and may re-
turn the result tuples. By routing tuples through op-
erators in different orders (under a routing scheme),
eddy is able to adaptively change the order of opera-
tions during runtime without generating a query plan.
The authors also introduced the back-pressure effect
and lottery routing scheme, that enable eddy to adap-
tively observe the operator behavior (cost and selec-
tivity) and thus route tuples through operators in an
order approaching the optimal plan. The idea of back-
pressure effect is that a high cost operator consumes
tuples more slowly and thus forces the eddy to route
tuples to lower cost operators. Under the lottery rout-
ing scheme, each operator is assigned a number of tick-
ets. When two operators vie for a tuple, the operator
with more tickets will “win” the tuple. An operator
gets a ticket when a tuple is routed to it and looses a
ticket when it returns a tuple to the eddy. Thus the
number of tickets can be used to estimate the selectiv-
ity of an operator.

SteMs [5] extend eddies by splitting up the join op-
erator into two state modules called SteMs. One SteM
is created for each base relation addressed in a query.
Tuples arrived are first built into its own SteM and
then used to probe the other relations’ SteMs to get
the join results. By probing SteMs in different orders,
the join ordering, join algorithm and the spanning tree
(for cyclic queries) can be adapted. SteMs also pro-
vide a shared data structure for data from a given ta-
ble, regardless of the number of access methods. This
facilitates the access method adaptation.

A good survey of adaptive query processing can be
found in [2]. Among these works, [4] and [3] have ad-
dressed the problem of inaccurate or unavailable statis-
tics of query optimization. However, they did not ad-
dress the problem of inaccurate estimation of workload
and connection speed of servers and their fluctuations.
In addition, their solution can only re-optimize the re-
maining part of the query plan after materializing the
intermediate results. That means not only increasing
the I/O overhead, but also interrupting the pipelined
processing of the query. DB2’s LEO [7] is an example
of another direction of adaptive query processing. It
computes adjustments for the statistics while process-

ing queries, and hence it can benefit from the adjust-
ments when optimizing subsequent queries.

Flux [6] is a recent work on introducing adaptivity
into parallel query processing. In the scheme, opera-
tors are horizontally distributed across a cluster. Flux
provides load-balancing by online repartitioning of the
data and shipping the states of the corresponding op-
erators. However, only horizontal parallelism is sup-
ported. Our scheme can harness both horizontal and
vertical parallelism. Clearly, we can also incorporate
load-balancing capabilities of Flux into our scheme.

3 Parallelism in SwAP

In SwAP, the operations of a distributed query plan
running on multiple sites are continuously reordered to
adapt to changing factors. SwAP harnesses both hor-
izontal and vertical parallelism. In both cases, there
is an eddy running on each processing site, responsi-
ble for dynamically adapting the order of operations
running locally. For the case of vertical parallelism,
there is a new mechanism for adaptively changing the
order of tuples routed through different sites. In this
section, we will present the schemes to support the
two types of parallelism and an overview of the whole
process of query processing in SwAP. Before that, we
shall introduce the preparatory phase and discuss how
a distributed query plan is generated and set up.

3.1 The preparatory phase

SwAP adapts the operations of a distributed query
plan at runtime. Prior to that, a distributed query
plan must be generated and set up. This is accom-
plished by the preparatory phase. Given a query, a
light-weight optimizer produces a Distributed Process-
ing Graph (DPG)[8]. The DPG is an annotated graph
that captures the processing sites of operations and
the types of parallelism to be employed. The opti-
mizer may produce a spanning tree for a cyclic query
if needed. Traditional distributed query optimization
techniques can be applied here. We postponed the
work of making these decisions adaptive as our future
work. For other optimization options, such as choos-
ing the join algorithms and access methods, adaptivity
can be achieved in the same way as discussed in [5]. An
algorithm is then launched to set up the whole process-
ing plan, including incorporating the Remote Meta-
Operators/Remote Output Operators (RMO/RO) that
represent operations running at remote nodes, and re-
mote access modules (RA) that represent remote data
sources. We would like to refer interested readers to
[8] for further details of the preparatory phase.

3.2 Scheme for horizontal parallelism

In this scheme, different sites are running indepen-
dently either on different partitions of data or on inde-
pendent subtrees of a complex query tree, correspond-



S
i
.
.
.
S
1


E
d
d
y
_
1


R
A

L
A


R
1


σ
p
(
R
)

R
 S


E
d
d
y
_
2


L
A

R
A


R
2


σ
p
(
R
)
 R
S


.
.
.
 S
n


Figure 1: An example of scheme for horizontal paral-
lelism. LA denotes local access module; RA denotes
remote access module.

ing to the intra-operator parallelism and bushy par-
allelism. For both cases, there are an eddy and the
required operators running on each processing site. In
the first case, each eddy has the same number of oper-
ators but on different fragments of the source data.
Complete results can be obtained by performing a
union operation on the output of all the processing
sites. The complete results may be further processed
if they are only intermediate results, or be output to
the user if they are final results. In the second case,
the different subtrees running on different sites can be
executed independently and simultaneously. An exam-
ple of these subtrees are subtrees belonging to different
branches of the same node in the query tree. For both
cases, each eddy is running independently to other ed-
dies and provides adaptivity of operations running on
its own site. Therefore, the mechanism of centralized
eddy can be directly applied in this scheme.

Figure 1 is an example of the intra-operator paral-
lelized scheme. In this example, the query is R ./ S.
R1 and R2 are two fragments of the relation R residing
on two different sites. All fragments of S are sent to
these two sites to perform the join operation. Eddy 1
and Eddy 2 are running independently to each other
and provide adaptivity of operations running on their
own sites.

3.3 Scheme for vertical parallelism

In this scheme, a query is split up into several pipelined
sub-queries. Each sub-query is assigned to one pro-
cessing site. Sites are running in a pipelined manner.
The output of one site is the input to another site(s).
Tuples have to undergo all sub-queries before they are
being output as answers. An interesting problem here
is that the output of one site may have the choice of be-
ing routed through other sites in different order. For
example, to evaluate a three-way join R ./ S ./ T ,

where R, S and T are residing on three different sites
and the two joins are to be evaluated in site R and
site T respectively, we can first route tuples of S to
site R to evaluate R ./ S then to site T to perform
the join with T to get the final result, or we can route
the tuples of S to site T first and then to site R. This
is actually the operation ordering problem. A good
choice of this order should balance the workload of
servers while minimizing the cost of communication
and other system resources. We believe this is where
traditional query optimization is inadequate as a static
query plan that fixes the order in which tuples are
routed and hence would be unable to adapt to inac-
curate estimations or changes in workload of servers.
Our scheme, however, makes the routing decision at
runtime and thus can potentially balance the work-
load of servers, and minimize the communication cost
and response time. The decision of choosing which
site to output is done by continuously measuring the
workload, connection speed and the selectivity of op-
erations of the candidate sites. Moreover, this is done
in a distributed manner, i.e., each site is making the
decision for its own output. Therefore, our scheme is
highly scalable.In the following sub-sections, we first
introduce the key components of our scheme and then
provide an illustrating example.

3.3.1 Remote meta-operator and virtual tu-
ples

The first key feature is the Remote Meta-Operator
(RMO). A RMO can be viewed as a local represen-
tation of the operations running on a remote site. It
is responsible for transmitting intermediate results of
the local site to remote sites for further processing,
and it also collects statistical information about op-
erations running at remote sites (through the concept
of Virtual Tuples). For a site that needs to make the
decision of choosing a site from n candidate sites to
output its intermediate results, we will attach to the
eddy n RMOs each corresponding to a remote site.
From the view of the eddy, this type of operator is like
a regular operator, continuously fetching tuples from
the eddy and returning “tuples” to the eddy. However,
the “tuples” returned to the eddy are called Virtual
Tuples and are not typical data tuples. In fact, they
do not contain any data, i.e., has zero data length.
The operator is also continuously sending tuples to its
corresponding remote sites and receiving virtual tuples
from them. However, in order to minimize the com-
munication overhead, the remote sites only return the
number of virtual tuples to be generated to the RMO,
and then the RMO will generate the virtual tuples and
return them to the local eddy.

For a site that can only transmit its intermediate
results to a single remote site, we can attach a Remote
Output (RO) operator to the eddy rather than a RMO.
A RO operator only continuously sends intermediate



results to the corresponding remote site and does not
receive virtual tuples from the remote site.

The virtual tuples returned by the RMO can be
used to gather statistics of operations running on the
remote site. Here we only focused on the lottery rout-
ing scheme, where virtual tuples are counted in the
lottery routing scheme of the local eddy. Therefore,
by using the lottery routing scheme, we can learn the
selectivities of processing sites and adaptively change
the decision on which site to output the intermedi-
ate results. Furthermore, sites with lower workload
consume tuples more quickly, while sites with higher
workload consume tuples more slowly. Similarly, sites
with slower connections to the local site consume tu-
ples more slowly. Under the effect of back-pressure
(limited queue size), more tuples are routed to the sites
with lower workload and faster connections. There-
fore, our scheme can also adapt to the fluctuations
of the workload and the connection bandwidth of the
processing sites. Moreover, all these decisions are done
in a distributed way, i.e. sites are making decisions
for their own output. This means that our scheme is
highly scalable and is not limited by the number of
processing sites.

3.3.2 Intermediate tuples

In a pipelined parallelism, a result tuple must have un-
dergone all the sub-queries. To facilitate the routing
of tuples, we attached to each tuple a bit vector called
Global Footprint, where each bit corresponds to one
sub-query. Setting a bit in the global footprint means
the tuple has undergone the corresponding sub-query.
Eddy is based on a tuple’s global footprint to deter-
mine whether it can be routed through a RMO/RO
operator [8].

For a vertically parallelized plan, the intermediate
results of a processing site will be transmitted to other
sites for further processing. In our scheme, the sites
receiving the intermediate tuples from other sites treat
them as coming from virtual data sources. Hence,
there can be more than one sub-query running on a
single site. For example, for the three-way join ex-
ample R ./ S ./ T stated at the beginning of this
section, under our scheme, there are two joins running
on site R which are R ./ S and R ./ ST , where ST
is the intermediate joining results of a portion of rela-
tion S and the whole relation T . Similarly, there are
two queries running on site T . To avoid unnecessary
overhead, we use only one SteM for all types of virtual
sources containing the same base relation. Building
tuples into the SteM is performed by the correspond-
ing access module. The access module knows exactly
which fields are used to build the tuples into the SteM.
And we also need to add one predicate to each of the
other SteMs involved in the join for each type of virtual
sources. In this way, all sub-queries require tuples to
undergo the same operators and hence there is no need

E
d
d
y
_
2


E
d
d
y
_
1
 E
d
d
y
_
3


R
M
O


R
A


L
A


R
O
 R
A


R
A
 R
O


R
M
O


L
A

R
A


L
A


R
 T


S


S
'
/


R
S

T
R


S
'
/


S
T


Figure 2: An example of the scheme for vertical paral-
lelism. RA denotes remote access module, LA denotes
local access module.

to maintain information for the different sub-queries.

3.3.3 An illustrating example

Figure 2 is an illustrating example of the vertically par-
allelized case. The query in this example is a three-way
join R ./ S ./ T . We assume the three relations are
residing on three different sites. The query is split into
two joins and they are evaluated in site R and site T
respectively. And it is also assumed that each source
is located on only one site. Note that these assump-
tions are made for purpose of illustration; our scheme
does not impose such restrictions. On each site, there
is an eddy that provides online re-ordering of opera-
tions executed locally. For the eddy at site S, there
are a local access module to access tuples of relation
S and two RMOs to represent the operations execut-
ing at the other two sites. For example the left RMO
of Eddy 2 represents all the operations executing on
site R. The RMOs are continuously fetching tuples
from and returning virtual tuples to Eddy 2. The lot-
tery routing scheme [1] can be directly applied here
and thus together with back-pressure effect, Eddy 2
can adaptively choose to output intermediate results
to the site with more selective operations, lower work-
load and faster connection speed.

At site R, there are a local access module to ac-
cess the relation R, two SteMs for the evaluation of
the join operation, two remote access modules to re-
trieve tuples of relation S and intermediate tuples from
site T , and one RO operator to output the intermedi-
ate results. The intermediate results from site S and
site T are represented as tuples from two separate vir-
tual sources: S′ and ST , accessed by two separate
access modules. Other than using separate SteMs for
the two sources, we use only one SteM and tuples are
built into the SteM using the same fields from base



relation S by the access module. There are actually
two join operations: R ./ S and R ./ ST and hence
there are two predicates in SteM of R. When the eddy
routes a result tuple of R ./ S to the RO operator,
it will detect that the tuple contains an intermediate
result tuple from site S which needs the returning of
virtual tuples. Then the eddy will generate a virtual
tuple by calling a function of the representation object
of virtual source S′. The representation object will
accumulate the number of virtual tuples to be sent,
and when the number reaches a threshold, it sends the
number of virtual tuples to the corresponding RMO.
The dotted curves in the figure indicates the flow of
virtual tuples. Similar processing is performed at site
T .

3.4 Overview

Here we present the whole process of query processing
of our scheme. When the system receives a query sub-
mitted by the user, it launches a preparatory phase to
set up the distributed processing plan. The query is
split up into several sub-queries, meanwhile the mode
and degree of parallelism as well as the sites to exe-
cute the sub-queries are also determined. At each site,
there is an eddy and the required operators running
to adaptively evaluate the sub-query. If a site needs
to adaptively choose a site to output its intermediate
results, the system will attach to the eddy the same
number of Remote Meta-Operators as the candidate
output sites. Otherwise, it simply attaches a Remote
Output operator to the eddy, which only outputs re-
sults to a single remote site.

4 Conclusions and future work

In this paper, we have presented a novel distributed
query processing scheme which can adaptively learn
the selectivity, the workload as well as the connection
speed of servers. And when these properties change
during runtime, our system can also adapt its behavior
accordingly to approach an optimal plan. Moreover, in
the proposed scheme, all runtime decisions are made
in a distributed manner. Hence it is highly scalable.
In addition, the proposed scheme is also applicable to
parallel query processing. At the time of writing this
paper, we have already implemented the prototype of
the system and we are under the process of evaluating
the system. Results will be reported soon.

The current result is only the first step in our re-
search agenda. There are some problems we are going
to consider to complete the PhD thesis. In particu-
lar, we will focus on the following. First, the current
scheme still needs an pre-optimizer to make the de-
cision of how to split up the query into several sub-
queries and how to choose sites as processing sites.
One can adaptively change the former decision by
adaptively merging and splitting operations running
on different sites. Mechanisms and policies of merging

and splitting of operations are needed to be consid-
ered. To make the second decision adaptive, one can
try to run the query on the candidate sites at the same
time and learn the cost during runtime. The challenge
here is how to minimize the duplicates and minimize
the communication and system overhead. Second, un-
der the situation of numerous queries running on the
system, sharing the computation, storage and network
bandwidth across queries is essential. In the current
scheme, Remote Meta-Operator and Remote Output
are used only for one query. Sharing them across mul-
tiple queries can reduce the consumption of network
bandwidth and system resources for maintaining mul-
tiple connections.

Yet another direction is to enhance the query en-
gine to support QoS management for the user. This
includes defining QoS properties and the problem of
how the system adapts its behavior during runtime to
maintain the QoS requirements. Some possible QoS
specifications are: the completion time or the result
output rate of the query; the freshness of the data; the
number of result tuples; the affordability of the user;
the penalty of delaying or halting a query, etc.

References

[1] R. Avnur and J. M. Hellerstein. Eddies: contin-
uously adaptive query processing. In SIGMOD,
2000.

[2] J. M. Hellerstein, M. J. Franklin, S. Chan-
drasekaran, A. Deshpande, K. Hildrum, S. Mad-
den, V. Raman, and M. A. Shah. Adaptive query
processing: Technology in evolution. IEEE Data
Engineering Bulletin, 23(2):7–18, 2000.

[3] Z. G. Ives, D. Florescu, M. Friedman, A. Levy, and
D. S. Weld. An adaptive query execution system
for data integration. In SIGMOD, 1999.

[4] N. Kabra and D. J. DeWitt. Efficient mid-query re-
optimization of sub-optimal query execution plans.
In SIGMOD, 1998.

[5] V. Raman, A. Deshpande, and J. M. Hellerstein.
Using state modules for adaptive query processing.
In ICDE, 2003.

[6] M. A. Shah, J. M. Hellerstein, S. Chandrasekaran,
and M. J. Franklin. Flux: An adaptive partitioning
operator for continuous query systems. In ICDE,
2003.

[7] M. Stillger, G. M. Lohman, V. Markl, and
M. Kandil. LEO - DB2’s LEarning Optimizer. In
VLDB, pages 19–28, 2001.

[8] Y. Zhou, B. C. Ooi, and K.-L. Tan. SwAP: A
scalable and adaptable distributed query proces-
sor. Submitted for publication, 2003.


