
Pathfinder: Compiling XQuery
for Execution on the Monet Database Engine

Jens Teubner

University of Konstanz
Dept. of Computer & Information Science

Box D188, 78457 Konstanz, Germany
teubner@inf.uni-konstanz.de

Abstract

The W3 Consortium is currently developing
the XQuery specification to query XML data.
It is still unclear, however, how these data can
be stored and retrieved efficiently. We propose
an XML storage and query execution system
that is based on the main memory database
system Monet. This paper describes a tech-
nique to compile an entire XQuery expression
into a program that can then be executed on
the Monet system.

1 Introduction

XQuery is arising as the new “intergalactic query lan-
guage” to query XML data. The strongly typed lan-
guage operates on XML’s data model, the tree. But al-
though a lot of theoretical work has already been done
in the area, it is still largely unclear how huge amounts
of data can be stored and retrieved efficiently.

Main memory-oriented database systems like Monet
[1] are a promising platform for XML storage. Monet
comes with a powerful interface language (MIL) that
does not only provide a series of algebra-like operators,
but also control structures and variables. Monet can
be extended by user-defined types and functions.

In this article, we propose a technique that compiles
any XQuery expression into a MIL program that can
be executed efficiently on a Monet database system.

The starting point for our mapping scheme will be
an XQuery expression that is already converted to a
normalized form like the “Core” language proposed
by the W3C [5] and statically type-checked. We will
briefly recapitulate the W3C proposal and point out
its relevant properties in Section 2, as well as its con-
sequences for a mapping to an execution system. As
we chose the Monet database system as our execution
system, we will give a short Monet overview in Section
3 before we describe our mapping approach in Section
4 and clarify it with some examples in Section 5. The

results of our mapping will be reviewed and summa-
rized in Section 6.

2 The XQuery Core Language

The World Wide Web Consortium specifies the formal
semantics of XQuery using a subset of XQuery called
“XQuery Core”. This variant is free of syntactic sugar
and — most importantly for us — it is fully statically
typed.

The XQuery Formal Semantics proposal specifies
the type xs:anyItem as the main building block of
the XQuery type system. An item can either be a
value of an XML Schema atomic type like xs:integer
or xs:string, or a node (element, attribute, etc.).
XQuery types are then described using regular expres-
sions of these basic blocks, specifying structural con-
straints on nodes and the shape of their subtrees.

XQuery expressions evaluate to ordered sequences
of items. The items within one sequence do not have
to be of the same type, but can be arbitrarily com-
bined into heterogeneous, although flat sequences. A
sequence like (42, "abc", <a/>) is a valid XQuery
expression that evaluates to a sequence containing an
integer, a string and an element node.

As any expression evaluates to a sequence of items
in the XQuery data model, a single item is defined to
be identical to a sequence containing exactly this one
item. The sequence is then called a singleton sequence.

In particular the last two features demand consid-
erable flexibility from an XQuery execution system. It
must be capable of dealing with a wide range of possi-
ble types, although in most situations the actual types
will be simple.

2.1 Item Type Decidability

The XQuery specifications allow different item types
to be randomly mixed in XQuery expressions. In most
cases, however, sub-expressions will evaluate to val-
ues or sequences of exactly one item type. XPath
expressions, as an example, will always return nodes

only, while string operations will always return strings.
If not explicitly requested by the user (which rarely
makes sense), we will not deal with heterogeneous se-
quences.

2.2 Sequence or Single Item?

Following the XQuery semantics, a single item is iden-
tical to a sequence containing exactly this item. Al-
though this suggests an implementation that stores ev-
erything as a sequence, such an approach will have
significant performance drawbacks.

With a closer look at the static type of XQuery ex-
pressions, we can decide very precisely, which expres-
sions are likely to return a result sequence, and which
ones will definitely return only single values. Exam-
ples are XPath expressions that usually return node
sequences, while for-bound variables or the results of
arithmetic operations will always be single items.

An expression’s item type and an estimation of the
result size are determined during static typing. In
the W3C Formal Semantics draft the respective in-
formation is gathered by the functions prime() and
quantifier(). Our compiler uses an equivalent sub-
type check to estimate the result size. Common op-
timization techniques will further restrict an expres-
sion’s possible type.

It seems indeed feasible to use a monomorphic so-
lution for query execution that uses the actual prim-
itive data types wherever possible instead of a fully
polymorphic solution that uses a “boxed” representa-
tion of all data. The latter solution would pack all
data items in a uniform data structure (“box”) and
use pointers to these boxes instead of actual values for
parameter passing [10]. Although this approach re-
flected XQuery semantics and made a mapping very
uniform, its performance drawbacks due to the neces-
sary boxing/unboxing operations are obvious.

Note that we will still need a boxed data representa-
tion in some cases, as XQuery is inherently polymor-
phic. But in real-world applications these cases are
rare, considering the above observations.

3 The Monet Database System

Main memory-oriented database systems have recently
shown to outperform traditional databases due to their
cache and CPU optimized execution. Besides that,
the Monet database kernel [1] has several aspects that
make it a promising choice for XQuery execution.

3.1 Binary Table Data Model

Monet is a relational system that operates with bi-
nary tables only (“BAT”s, Binary Association Tables).
This fits well with the XML indexing scheme that we
use to encode our XML data. This indexing scheme,

the XPath accelerator [6], uses two integer values to
encode the XML tree structure.

In a nutshell we enumerate the nodes in the XML
tree in a pre- and a postorder tree-walk. The two
integer values (pre- and postorder rank) that we store
for each node contain the full structural information
of the XML tree.

3.2 Algebra-like Interface Language.

The Monet database system can be accessed via the
Monet Interface Language MIL. This language pro-
vides algebra-like operations as well as variables or
control structures which allows to compile an entire
XQuery expression into a single MIL program that will
then evaluate the whole query on the database system.

3.3 Extensibility

Monet can easily be extended with user-defined data
types and operators. We have developed the “staircase
join” operator that has been shown to speedup XQuery
evaluation [7].

Staircase join uses knowledge about properties of
our relational tables that originate from the tree-
structure of the underlying data. Due to this origin,
the values in the pre/post table are not randomly dis-
tributed, but exhibit characteristics that the staircase
join algorithm takes advantage of. Off-the-shelf rela-
tional databases are not aware of these characteristics
and have to rely on their own statistics to optimize
queries. Staircase join can be implemented in exist-
ing relational databases, bringing awareness of tree-
structures to the database system.

Staircase join has proven to be particularly efficient
to evaluate the XPath axes ancestor and descendant,
even for huge amounts of data. Because of their recur-
sive definition, these axes have traditionally been hard
to implement efficiently.

The Pathfinder compiler will translate an XQuery ex-
pression into a MIL program that can then be run in
the Monet database system and evaluate the entire ex-
pression. The generated program will only require a
small extension module to the Monet database kernel,
providing a minimum of additional data types and the
staircase join operator.

4 The Pathfinder Mapping Scheme

4.1 Item Representation in MIL

Following the considerations in Section 2 we use prim-
itive data types wherever possible.

For the simple data types, the mapping from
XQuery to Monet types is straightforward. The types
are either readily available in Monet or provided by
an extension module as user-defined types. The im-
portant node type uses integer values as its imple-
mentation type. This integer is the preorder rank in

the XPath accelerator mapping scheme that we use to
store our XML documents.

Monet’s function overloading mechanisms ensure
that correct semantics are used in function calls or
type-casts. With the help of MIL’s type operator, we
may also determine the actual type of any data object
at runtime.

Additionally, we need a boxed representation for
items where we cannot infer the static type precisely
enough. We define another Monet type, item, that we
use whenever the static type is a choice of at least two
of the types in Table 1. Type item is implemented by
an integer and is basically a foreign key to five global
BATs that store the actual values. The five BATs are
listed in Figure 1. Each item value is unique over all
these tables. Our implementation will use a bit en-
coding scheme of the integers to determine the actual
type of any item value easily.

4.2 Sequence Representation

We store sequences rather straightforward as BATs.
Note that in contrast to SQL database systems BATs
are ordered sequences of value pairs (“BUNs”, Binary
UNits), which matches the XQuery semantics of se-
quences. As we do not need a second column, we use
BATs with nil heads and store our data in the tail.
(The two BAT columns are referenced as head and
tail in Monet.) By declaring the head type as void
(virtual oid), these nil values don’t have to be stored
in the database, reducing memory consumption to a
minimum.

As we want to keep our data representation as sim-
ple as possible for performance reasons, we use this se-
quence representation only for expressions that could
possibly result in a sequence of length longer than one.
Static typing gives us an estimation of the result size
that can be described as one of five quantifiers: 0, 1,
?, +, or * for ‘empty’, ‘exactly one item’, ‘zero or one
items’, ‘one or more items’, and ‘zero or more items’.

Our compiler chooses a BAT representation only for
the latter two cases, + and *. If static typing reveals
a sequence length of at most 1 (quantifiers 1 and ?),
we use primitive Monet values. The decision can be
implemented as a single subtype check. If the expres-
sion’s static type is a subtype of xs:anyItem?, we use
the primitive representation, otherwise we use a BAT.

XQuery type MIL type
xs:boolean bit
xs:integer int
xs:double dbl
xs:string str

node node♦

Table 1: Implementation types for simple XQuery types
(and their subtypes). ♦The node type is a user-defined
extension to Monet’s built-in types.

The quantifier 0 is the statically typed empty se-
quence. Such expressions will be eliminated by a core
optimization phase in most situations. The few re-
maining cases (e. g. the return parts of if-then-elses)
will be treated explicitly during compilation.

Note that we end up in having two representations
for the empty sequence: If static typing lead to the
BAT representation, we use the empty BAT. If we have
at most one item and chose a representation with prim-
itive types, we use Monet’s special symbol nil that can
be described as the equivalent to SQL’s NULL.

4.3 XQuery Mapping

During query optimization, our compiler brings the
input query into a normalized form with two charac-
teristics that are important for the mapping to MIL:

1. The query is in SSA form (static single assign-
ment form [4]). In a nutshell this means that
all variables are assigned exactly once and never
modified afterwards. This is typical for functional
programming languages.

2. Operands of almost all operations must be atomic,
that is, they must be either simple constants or
variables. General expressions are only allowed
in few places, like the right hand side of variable
bindings. This feature is a prerequisite for op-
timization techniques like common subexpression
elimination (CSE, [2]).

This form does not only help a preceding optimiza-
tion phase, but also matches the Monet execution
strategy very well. Monet materializes all interme-
diate results in main memory, which is made explicit
by our normalization form. The mapping to MIL is
thus assignment-based. For a uniform processing, we
rewrite the query e to

result← e;
print(result);

and describe mapping rules only for assignments v ←
ei. In some cases it might be necessary to create new
variables during the mapping.

4.4 Dynamic Typing

XQuery is a strongly-typed language. But although
a large amount of type information can be inferred
during a static typing phase at compile time, the
precise type information of some XQuery expressions
is only known at query evaluation time. In the
XQuery surface language, the operators instance of
and typeswitch (the latter chooses one of several ex-
pressions based on the type of an input value) are avail-
able to query type information at evaluation time.

The W3C Formal Semantics specification describes
the semantics of the above operators with structural

item bit

#8 true
#16 false

bit items

item int

#9 42
#25 17

int items

item dbl

#18 2.74
#26 1.42

dbl items

item str

#11 "foo"
#27 "bar"

str items

item node

#20 %67
#28 %98

node items

Figure 1: Five global BATs, one for each base type, store the actual values that are referenced by items of type item.
Each item value must be unique over all these global BATs. We mark item values with a leading hash mark (#) and node
values with a leading percent sign (%) to make them distinct from integers.

subtyping. Types in the XQuery type system are gen-
erally described by regular expressions. A subtype test
is then an inclusion test of the state machines cor-
responding to the regular expressions [3]. Although
other approaches have been published [9, 11], the test
is in general rather expensive.

Fortunately, the number of possible types to check
against is limited by XQuery’s syntax constraints. The
W3C specifications only allow the basic blocks of the
XQuery type system: named atomic types and restric-
tions on a node’s kind (element, attribute,. . .) or tag
name, but no regular expressions thereof. Further type
restrictions are only allowed in conjunction with vali-
dation (see below).

The type check thus boils down to a simple test on
the Monet implementation type we use. If the data
object in question has the item implementation type,
the unboxed type is determined using the above men-
tioned bit encoding (see Section 4.1). Node kind and
tag name can be tested with lookups in the correspond-
ing BATs.

For further type tests, the expression to be tested
must have been explicitly validated by the user. The
validate operator invokes this process that anno-
tates an expression with type information in form of a
named type. The subtype condition can then be tested
with the rather simple named typing : Only the type
names have to be compared using a hierarchy of type
names.

The expensive part of the subtyping tests is effec-
tively left to the validate operator. Pathfinder will
thus do this well-defined task within its runtime ex-
tension module, where it can be tuned to operate effi-
ciently.

5 Example Mapping Rules

The following examples will show that compiling
XQuery expressions to MIL is indeed feasible. The
compilation strategy keeps data types as simple as pos-
sible which will reduce execution overhead compared
to a fully boxed data representation. The mapping is
described for three basic building blocks of the XQuery
language: for the sequence constructor (·,·), for for-
iterations and for XPath steps.

The following examples use ai for atoms, i. e. for
simple constants or variables. They are mapped to
constants/variables in MIL. In our normalized query

arbitrary expressions, denoted by ei, can only occur in
well defined situations.

5.1 Sequence Construction

J v ← (a1, a2) K
==

v := new (void, item);
v.insert (a1);
v.insert ([item](a2));

Depending on the type information, the correct re-
turn type must be created and the input operands need
to be casted if necessary. In this example we assume
operand a1 to already be a sequence that is imple-
mented as a BAT of items. a2 is, say, a sequence of
integers that needs to be cast to item. The above MIL
notation maps the cast operator item into the BAT a2.

5.2 for-Iterations

J v ← for $x in a1 return e2 K
==

v := new (void, int);
a1@batloop {
x := $t;
J w ← e2; K
v.insert (w);

}

The MIL batloop command iterates over all tu-
ples in the BAT a1 and executes the body for each
tuple.1 Within this body, the current head and tail
values are available as the special variables $h and $t
(our mapping uses the tail column to store sequence
items). The example shows how our assignment-based
mapping scheme nicely fits the mapping to MIL.

5.3 Path Expressions

With the staircase join implemented in a Monet
extension module, XPath evaluation will be a simple
function call for the corresponding step.

J v ← a1/descendant::node() K
==

v := staircasejoin_desc (doc, a1);

1A preceding optimization phase ensures that a1 is a BAT
variable.

6 Summary and Outlook

We propose a technique that will allow for efficient
evaluation of XQuery expressions using existing re-
lational database technology. Our mapping scheme
compiles queries into single MIL programs, the inter-
face language for the main memory database system
Monet.

The generated program mostly operates on primi-
tive data types, minimizing space and processing over-
head during execution. Our mapping technique is
assignment-based and will generate a series of rather
simple MIL operations that are each assigned to tem-
porary variables. This code fits very well with Monet’s
processing paradigms and will lead to efficient XQuery
execution.

This MIL generation phase is part of the ongoing
‘Pathfinder’ project at the University of Konstanz. We
are currently working on the Pathfinder compiler and
aim at a full implementation of the W3C XQuery spec-
ifications. In collaboration with the Monet group at
CWI we will provide a highly efficient XML database
even for huge amounts of data.

Initial experiments that were done with hand-
written MIL programs show that our approach is in
fact promising. With documents generated by the
XMark benchmark suite [12], even in the order of gi-
gabytes, the Monet system has proven to be superior
over an implementation on top of a commercial rela-
tional database system, but also over a “native” XML
database system. [6, 8]

References

[1] Peter Alexander Boncz. Monet — A Next-Generation
DBMS Kernel For Query-Intensive Applications. PhD
thesis, University of Amsterdam, The Netherlands,
May 2002.

[2] Olaf Chitil. Common Subexpression Elimination in
a Lazy Functional Language. In Chris Clack, Tony
Davie, and Kevin Hammond, editors, Proceedings of
the 9th International Workshop on Implementation of
Functional Languages, September 1997.

[3] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Automata
Techniques and Applications. Available on: http:
//www.grappa.univ-lille3.fr/tata, 1997. Release
October 1st, 2002.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen,
Mark N. Wegman, and F. Kenneth Zadeck. Efficiently
Computing Static Single Assignment Form and the
Control Dependence Graph. ACM Transactions on
Programming Languages and Systems, 13(4):451–490,
October 1991.

[5] Denise Draper, Peter Fankhauser, Mary F. Fernan-
dez, Ashok Malhotra, Kristoffer Rose, Michael Rys,
Jérôme Siméon, and Philip Wadler. XQuery 1.0
and XPath 2.0 Formal Semantics. Technical Report
W3C Working Draft, World Wide Web Consortium,
November 2002.

[6] Torsten Grust. Accelerating XPath Location Steps. In
Proc. of the 21st Int’l ACM SIGMOD Conference on
Management of Data, pages 109–120, Madison, Wis-
consin, USA, June 2002. ACM Press.

[7] Torsten Grust, Maurice van Keulen, and Jens Teub-
ner. Staircase Join: Teach a Relational DBMS to
Watch its (Axis) Steps. In Proc. of the 29th Int’l Con-
ference on Very Large Data Bases (VLDB), Septem-
ber 2003.

[8] Torsten Grust, Maurice van Keulen, and Jens Teub-
ner. On Accelerating XPath Evaluation in Any
RDBMS. ACM Transactions on Database Systems,
2003, under revision.

[9] Haruo Hosoya. Regular Expression Types for XML.
PhD thesis, The University of Tokyo, December 2000.

[10] Simon L. Peyton Jones. The Implementation of Func-
tional Programming Languages. Prentice Hall, New
York, 1994.

[11] Martin Kempa and Volker Linnemann. Type Check-
ing in XOBE. In Datenbanksysteme für Business,
Technologie und Web (BTW), 10. GI-Fachtagung,
2003.

[12] A. Schmidt, F. Waas, M. Kersten, D. Florescu,
I. Manolescu, M. Carey, and R. Busse. The XML
Benchmark Project. Technical Report INS-R0103,
CWI, April 2001.

