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Abstract 
Resolving inconsistent data is a problem of 
critical practical importance.  Inconsistent data 
arises whenever an attribute takes on multiple, 
inconsistent, values.  This may occur when a 
particular entity is stored multiple times in one 
database, or in multiple databases that are 
combined.  We’ve developed an architecture and 
methodology that extends relational databases 
with support for systematic data inconsistency 
resolution.  We plan to employ a probabilistic 
data model and a machine learning approach. 

1. Introduction 
Combining the information from multiple databases is an 
issue of critical practical importance. We observe that 
even if the source databases are free from uncertainty and 
are consistent internally, the cross-database query may 
produce uncertain results. Standalone databases may also 
include inconsistent data since they are often populated 
from multiple sources. Consider a real world object 
described in multiple databases. If the object is not 
identified by the same unique id (UID) in the databases, 
we face the object identity problem where the system has 
to examine the object descriptions to determine if they 
apply to the same object. The problem is non-trivial when 
the object descriptions contain different but correct 
information in the common key fields. The process of 
determining if object descriptions apply to the same 
object is called matching and in general produces 
uncertain results. We call this “matching uncertainty”. 
After object descriptions have been recognized to describe 
the same object, they may still contain different values for 
the same property. If this is the case, the actual ‘correct’ 
value of the property is uncertain. The different values for 
the same property of the object could arise for multiple 
reasons, for example, input or data errors (e.g. ‘Pevzner’ 
misspelled as ‘Pezner’) or natural variation (e.g. ‘Arthur’ 
or ‘Art’). We call this “inconsistency uncertainty”. The 
goal of data inconsistency resolution is to “merge” such 

inconsistent data into a single “best” datum or a 
probability distribution. 

We are seeking a general and practical solution to the 
data inconsistency resolution problem in the form of an 
extension to relational database functionality. The 
solution will include a data model suitable to represent 
both matching and inconsistency uncertainties, a 
technique to construct such representations from the 
inconsistent data (i.e. merging methodology), SQL 
extensions needed to support this model and an 
architecture that allows an implementation with 
acceptable performance on large data sets. Finally, the 
merging methodology needs to be easily adaptable to 
various application domains, and require minimal user 
intervention.  

We are planning to develop a framework where 
various models of uncertainty and methodologies for data 
inconsistency resolution can be evaluated. This 
framework will help us develop a practical model of 
uncertainty and a library of data inconsistency resolution 
methodologies. We will test our system on several 
practical applications and evaluate it by how rapidly and 
accurately it merges inconsistent data and how easily the 
system can be applied to new domains, schemas and data. 

2.   Uncertainty models 
Extending relational databases to handle uncertain 
information has been an active area of research. A survey 
of the area can be found, for example in [1]. Early 
attempts included experimenting with various semantics 
of nulls and extending relational data model with special 
operators supporting those semantics (see e.g. [2]). 
Further research focused on the following two general 
approaches. The first approach uses the possibility theory 
to define fuzzy databases (see [3] for an extended list of 
references), while the second approach uses probability 
theory to define probabilistic databases (see e.g. [1], [4], 
[5], [6], [7], [8]). 

Although nulls have become an integral part of both 
theory and practice of relational databases, they lack the 
expressive power we need to represent the matching and 
inconsistency uncertainties.  Fuzzy set theory and fuzzy 
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databases are more expressive then nulls and have been 
fairly well studied but they are limited in that they do not 
allow one to express uncertainty quantitatively.  The 
probabilistic approach is the least studied one, although 
there have been multiple techniques attempted.  This 
approach is attractive because it offers greater expressive 
power and the underlying probability theory provides a 
good theoretical foundation. 

There are many ways to extend the relational model 
with probability ([1], [4], [5], [6], [7], [8]). The choice of 
such probabilistic model is driven by the desired 
theoretical properties and practical requirements. Our 
current working model, as described in [9], is based on 
the Type-1 and Type-2 probabilistic relations described in 
[1].  

Type-1 probabilistic relations are generalizations of 
the traditional relations obtained by adding a 
supplementary attribute w(R, t), indicating the probability 
that a tuple t belongs to relation R.  We use this type of 
probabilistic relations to represent matching uncertainty. 

Type-2 probabilistic relations are generalizations of 
traditional relations where an attribute value can be either 
a constant or a probabilistic set with elements in the 
domain of the attribute. A probabilistic set F with 
elements from set U is defined as a pair (U, wF) where wF : 
U → [0,1]  is a probability distribution satisfying 

. We use this type of probabilistic relations 

to represent inconsistency uncertainty. 
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The final choice of the probabilistic model will be 
addressed in future work. 

3.   Merging Methodologies 
Since we are extending a general-purpose system with 
data inconsistency resolution functionality, our merging 
methodology has to be universal (i.e. work for any 
relational schema and any valid instance of that schema) 
or at least configurable at the schema level and possibly 
tuneable at the database instance level.  In the latter case, 
any user intervention required for instance level tuning 
has to be minimal. 

Existing systems ([10], [11], [12]) either rely 
exclusively on specifying the exact merging rule for each 
potentially conflicting attribute at the schema-level or 
require providing such rules as part of the query.  Either 
approach requires that the rules for merging are 
understood at the application development time.  Since 
such rules are domain-specific and depend on the 
properties of the instance data, they are typically 
discovered by either interviewing a domain expert or 
mining (or “eyeballing”) some sample of the data.  Such 
rule discovery is not a trivial endeavor and is arguably 
one of the most difficult practical problems in database 
application development.  Furthermore, since the 
properties of the instance data may change with time, the 

merging rules often need to be updated even after the 
application has been deployed. 

In our approach, the merging methodology will be 
integrated within the extended database system.  The 
application will simply rely on the system to analyze the 
properties of matching instances and present a consistent 
view of conflicting data.  The whole process will require 
minimal user intervention.  Since our system will need to 
adjust its behavior by analyzing the instance data, this 
approach belongs to the general area of machine learning 
(see e.g. [13]). 

Experts in machine learning still consider developing 
a technique more of an “art” then a “science”. A typical 
machine learning solution includes a combination of 
techniques, often with some problem-specific heuristics 
and optimizations (see e.g. [14]). For this reason, the 
development of a universal machine learning technique 
for data inconsistency resolution that will work for all 
relational schemas and all instances is probably not 
achievable. We are more likely to find that some machine 
learning techniques perform better for some types of data 
while other techniques perform better for other. Similarly, 
for some types of data no machine learning technique will 
work while for others, a trivial machine learning 
technique will perform sufficiently well. 

We believe that a practically useful (and non-trivial) 
system can be engineered without devising a universal 
machine learning technique. Such a system would include 
an abstract machine-learning component and include a 
library of machine learning techniques, each useful for 
some types of data. The extended database system should 
provide facilities to manage this library and evaluate 
methodologies for a specific database instance. 

In [9], we described a maximum entropy based data 
inconsistency resolution methodology.  We are currently 
working on a Bayesian dependency-based methodology, 
which we believe will reduce the required user 
intervention. 

We expect that with time, the library of data 
inconsistency resolution methodologies will be rich 
enough to provide an acceptable solution to most practical 
problems. 

4.   SQL Extensions 
To provide access to the new database functionality 
described in the previous section, we need to extend SQL 
to (a) deal with the selected uncertainty model (b) manage 
the library of machine learning algorithms and (c) support 
matching and merging operations. In this section we 
summarize the extensions we described in [9] that address 
(a) and (c) in the framework of the uncertainty model 
based on Type-1 and Type-2 probabilistic relations 
introduced in [1]. The (b) requirement will be addressed 
in future work. 

In the rest of this section we provide a review of the 
SQL extensions described in [9]. 



4.1   The MATCH predicate 

The MATCH predicate can be used in the WHERE clause 
of the SELECT statement.  It takes a pair of tuples of 
attributes that are tested for object identity and the 
reference to the corresponding instance of the object 
identification methodology.  MATCH returns true if the 
model predicts that the tuples describe the same object.  
Any select statement using one or more MATCH 
predicates results in a probabilistic relation where the 
probability associated with each tuple is computed by the 
object identification methodology.  

Example 1.  Consider two data source relations S1 
and S2 with the following data describing people’s names, 
social security and telephone numbers. 
S1 

Id Name SSN 
50 John 111-22-

3333 
60 Johnny 222-33-

4444  

S2 
Id Name Phone 
100 Jon 212-555-

1212 
200 Johnny 646-444-

1212  
The following query is seeking a list of people 

together with their telephone and social security numbers, 
obtained by matching their names.  

SELECT S1.NAME, S1.SSN, S2.PHONE FROM S1, S2 
WHERE MATCH(‘NAME_MATCHER’, S1.NAME, S2.NAME) 
The resulting Type-1 probabilistic relation is below: 

Name SSN Phone w(R, t) 
John 111-22-3333 212-555-1212 .6 
John 111-22-3333 646-444-1212 .8 
Johnny 222-33-4444 212-555-1212 .5 
Johnny 222-33-4444 646-444-1212 .9 

The probabilities w(R, t) are computed by the 
matching algorithm denoted as ‘NAME_MATCHER’. 

 

4.1   The MERGE function  

The MERGE function can be used in the select list of the 
SELECT statement.  It takes a list of conflicting values 
for an attribute and a reference to the corresponding 
merging methodology.  MERGE returns a table with the 
columns (v, wF) where wF is the probability that the object 
property takes the value v.  The probability wF is 
computed by the merging methodology.  Any select 
statement with one or more MERGE functions results in a 
probabilistic relation with probabilistic sets associated 
with the attributes corresponding to the positions where 
the MERGE functions appear in the select list.  Each table 
(v, wF) returned by MERGE defines the corresponding 
probabilistic set F. 

Example 2. Consider two source relations S1 and S2: 
S1 

SSN Name 
111-22-3333 John 
222-33-4444 Johnny  

S2 
SSN Name 
111-22-3333 Jon 
222-33-4444 John  

 

The following query is seeking a list of people with their 
correct names. 

SELECT S1.SSN,  
MERGE(‘NAME_MERGER’,(S1.NAME,S2.NAME))AS NAME 
FROM S1, S2 
WHERE S1.SSN=S2.SSN 
The resulting Type-2 probabilistic relation is below: 

SSN Name 
111-22-3333 {(John,.7), (Jon, 25)} 
222-33-4444 {(Johnny, .2), (John, .6)} 

The probabilities in the probabilistic sets are computed 
by the merging algorithm denoted as 
‘NAME_MERGER’. 

4.1   The PROB function 

The PROB function provides access to probabilities in the 
probabilistic relations.  PROB can be used in the WHERE 
clause or in the SELECT list of the SELECT statement 
that produces a probabilistic relation.  PROB either takes 
no parameters or accepts a name of the attribute from the 
select list.  If no parameters are passed, PROB returns the 
probability associated with the current row.  If an attribute 
name is specified, PROB references the probability 
associated with the specified attribute.  In this form, 
PROB can only be used in the WHERE clause. 

For instance, to limit the output of the query used in 
Example 1 we could write: 

SELECT S1.NAME, S1.SSN, S2.PHONE  
FROM S1, S2 
WHERE MATCH(‘NAME_MATCHER’, S1.NAME, S2.NAME)  
AND PROB>.5 
In this case PROB refers to the probability associated 

with the current row.  The result is a Type-1 probabilistic 
relation is shown below. 

Name SSN Phone w(R, t) 
John 111-22-3333 212-555-1212 .6 
John 111-22-3333 646-444-1212 .8 
Johnny 222-33-4444 646-444-1212 .9 

To limit the output of the query in Example 2 we 
could write: 

SELECT S1.SSN,  
MERGE(‘NAME_MERGER’,(S1.NAME,S2.NAME))AS NAME 
FROM S1, S2  
WHERE S1.SSN=S2.SSN AND PROB(NAME)>.2 
In the above query PROB refers to the probability 

within the probabilistic set returned by the MERGE 
function.  The result is a Type-2 probabilistic relation 
shown below. 

SSN Name 
111-22-3333 {(John, .7), (Jon, .25)} 
222-33-4444 {(John, .6)} 

 



5.   Extended Database Architecture 

5.1   Query Processing 

The architecture of the extended database includes the 
query processing module, application interfaces and 
development tools. The query-processing module includes 
integrated support for object identification and 
inconsistency resolution. The high-level diagram of the 
query-processing module is presented on Figure 1. 

On Figure 1, a user or application issues a query with 
SQL extensions; the preprocessor converts the extended 
SQL query into standard a SQL query, generates merging 
instructions (derived from MERGE function calls) for the 
machine learning engine and post-processing instructions 
(derived from PROB function calls) for the postprocessor 
and sends the standard SQL query to the database with 
inconsistent data. The machine-learning engine receives 
the result of the query (inconsistent relation), uses 
merging instructions to compute the resulting 
probabilistic relation, and sends the relation to the post-
processor. Finally, the post-processor evaluates the post-
processing instructions and produces the final result. The 
result can be a probabilistic relation or one or more 
classical relations representing some or all of the resulting 
possible worlds. 

Further design details and optimization techniques 
will be addressed in future work. 

5.2   Application Interfaces 

To provide compatibility with applications written against 
traditional relational systems, our system will provide a 
standard SQL interface.  When this interface is used, the 
merging instructions are generated from application-
specific configuration parameters.  The post-processing 
instructions are fixed, as the query results must always be 
presented as a single traditional relation. The 
postprocessor will generate such a relation for the most 
probable possible world.  By design, any tools designed 
for traditional relational databases will work with the 
extended database using this interface. 

To support the applications that use the SQL 
extensions to select and customize merging 
methodologies and specify conditions on probabilities, 
our system will provide the extended SQL interface.  The 
queries issued using this interface always result in a single 
traditional relation, thus the application is isolated from 
the complexity of dealing with probabilistic relations or 
multiple possible worlds.  If the conditions on 
probabilities specified in an extended SQL query make it 
impossible to provide a result as a traditional relation, the 
postprocessor will generate an error condition.  Since the 
existing database tools work with traditional relations, it is 
still possible to use them with this interface, although 
modifications may be required to support the SQL 
extensions. 

Figure 1. Extended SQL query processing diagram
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To support the advanced applications that require 
access to probabilistic relations or multiple possible 
worlds, the extended database will provide an advanced 
interface.  This interface is different from the extended 
SQL interface, in that it may return probabilistic relations.  
For this interface, new database tools will need to be 
developed. 

The three interfaces described above are shown on 
Figure 2. 
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Figure 2. Application Interfaces
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5.3   Development tools 

Our extended database system will include the tools for 
development, integration, training, tuning and evaluation 
of machine learning methodologies for data inconsistency 
resolution.  These tools would be similar to ModelMaker, 
a ChoiceMaker [15] development environment for 
matching methodologies. 

6.   Experimenting with real-world data 
As discussed in the methodology section above, the 
performance of machine learning methodologies will 
largely depend on the specific data set. This makes it very 
important to find several realistic data sets to use for 
development, testing and tuning of the methodologies and 
validation of the complete system. 



Finding a significant corpus of publicly available real-
world data suitable for the task has been a non-trivial 
endeavor. Although there are numerous of public data sets 
available for machine learning research (see, e.g. [16]), 
those data sets seem to fall in one or more of the 
following unsuitable categories. 

The first category includes data sets that do not 
contain any duplicates or inconsistencies.  Such data sets 
are commonly used in research; however, databases with 
duplicates frequently occur in practice—witness  the $100 
million market for deduplication software.  One approach 
to creating test data from such a set would be to apply 
some artificial perturbation to the data, but doing so in a 
way that preserves the real-world dependencies is tricky, 
and even if successful may not address the problems of 
the other two categories. The second category includes 
data sets that are too noisy or do not contain any 
dependencies between attributes.  Such data sets often 
result from some artificial data perturbation techniques. 
Many production databases contain enough 
interdependencies between attributes to use some 
attributes to help correct other attributes.  The third 
category includes data sets that do not have enough 
objects or attributes to reliably train a machine learning 
methodology.  We believe that large business data sets 
where manual data cleaning is impractical and our 
approach is most relevant do not fall in this category. 

We have recently identified a data set that seems to 
satisfy the requirements. It is a database with information 
about approximately 11 million medical research articles 
[17]. The database can be leased free of charge from The 
National Library of Medicine. We are currently 
experimenting with 2,391,822 affiliations that includes 
the name of the institution and optionally a department, 
street address and e-mail address for the main author of a 
paper. To avoid the object identity problem, we chose 
523,140 annotations that contain an e-mail address. The 
merging problem for this data involves determining the 
correct department and street address for a given e-mail 
address. To simplify the parsing of the free-form address, 
we chose 182,892 records with US addresses. Of those 
records, 32,505 e-mail addresses have duplicate records 
for department and street address.  This data set is 
promising because it contains sufficiently large number of 
records, with easily identifiable duplicates and potentially 
large number of conflicts resulting from merging data 
from different source databases. 

7.   Summary 
The general nature and importance of data inconsistency 
resolution in practical application is well recognized. 
We’ve identified the following issues in extending the 
relational database functionality with a data inconsistency 
resolution function: 1) choice the uncertainty model 2) 
choice of merging methodology 3) design of SQL 
extensions 4) system architecture and 5) validating the 

system with real data.  We’ve further described our initial 
approach to each of those issues and identified possible 
directions for future work. 
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