
Extending relational database functionality with data
inconsistency resolution support

Ilya Pevzner

Courant Institute, NYU, USA
 pevzner@cs.nyu.edu

Arthur Goldberg

Courant Institute, NYU, USA
 artg@cs.nyu.edu

Abstract
Resolving inconsistent data is a problem of
critical practical importance. Inconsistent data
arises whenever an attribute takes on multiple,
inconsistent, values. This may occur when a
particular entity is stored multiple times in one
database, or in multiple databases that are
combined. We’ve developed an architecture and
methodology that extends relational databases
with support for systematic data inconsistency
resolution. We plan to employ a probabilistic
data model and a machine learning approach.

1. Introduction
Combining the information from multiple databases is an
issue of critical practical importance. We observe that
even if the source databases are free from uncertainty and
are consistent internally, the cross-database query may
produce uncertain results. Standalone databases may also
include inconsistent data since they are often populated
from multiple sources. Consider a real world object
described in multiple databases. If the object is not
identified by the same unique id (UID) in the databases,
we face the object identity problem where the system has
to examine the object descriptions to determine if they
apply to the same object. The problem is non-trivial when
the object descriptions contain different but correct
information in the common key fields. The process of
determining if object descriptions apply to the same
object is called matching and in general produces
uncertain results. We call this “matching uncertainty”.
After object descriptions have been recognized to describe
the same object, they may still contain different values for
the same property. If this is the case, the actual ‘correct’
value of the property is uncertain. The different values for
the same property of the object could arise for multiple
reasons, for example, input or data errors (e.g. ‘Pevzner’
misspelled as ‘Pezner’) or natural variation (e.g. ‘Arthur’
or ‘Art’). We call this “inconsistency uncertainty”. The
goal of data inconsistency resolution is to “merge” such

inconsistent data into a single “best” datum or a
probability distribution.

We are seeking a general and practical solution to the
data inconsistency resolution problem in the form of an
extension to relational database functionality. The
solution will include a data model suitable to represent
both matching and inconsistency uncertainties, a
technique to construct such representations from the
inconsistent data (i.e. merging methodology), SQL
extensions needed to support this model and an
architecture that allows an implementation with
acceptable performance on large data sets. Finally, the
merging methodology needs to be easily adaptable to
various application domains, and require minimal user
intervention.

We are planning to develop a framework where
various models of uncertainty and methodologies for data
inconsistency resolution can be evaluated. This
framework will help us develop a practical model of
uncertainty and a library of data inconsistency resolution
methodologies. We will test our system on several
practical applications and evaluate it by how rapidly and
accurately it merges inconsistent data and how easily the
system can be applied to new domains, schemas and data.

2. Uncertainty models
Extending relational databases to handle uncertain
information has been an active area of research. A survey
of the area can be found, for example in [1]. Early
attempts included experimenting with various semantics
of nulls and extending relational data model with special
operators supporting those semantics (see e.g. [2]).
Further research focused on the following two general
approaches. The first approach uses the possibility theory
to define fuzzy databases (see [3] for an extended list of
references), while the second approach uses probability
theory to define probabilistic databases (see e.g. [1], [4],
[5], [6], [7], [8]).

Although nulls have become an integral part of both
theory and practice of relational databases, they lack the
expressive power we need to represent the matching and
inconsistency uncertainties. Fuzzy set theory and fuzzy

mailto:Email@small.medium.large

databases are more expressive then nulls and have been
fairly well studied but they are limited in that they do not
allow one to express uncertainty quantitatively. The
probabilistic approach is the least studied one, although
there have been multiple techniques attempted. This
approach is attractive because it offers greater expressive
power and the underlying probability theory provides a
good theoretical foundation.

There are many ways to extend the relational model
with probability ([1], [4], [5], [6], [7], [8]). The choice of
such probabilistic model is driven by the desired
theoretical properties and practical requirements. Our
current working model, as described in [9], is based on
the Type-1 and Type-2 probabilistic relations described in
[1].

Type-1 probabilistic relations are generalizations of
the traditional relations obtained by adding a
supplementary attribute w(R, t), indicating the probability
that a tuple t belongs to relation R. We use this type of
probabilistic relations to represent matching uncertainty.

Type-2 probabilistic relations are generalizations of
traditional relations where an attribute value can be either
a constant or a probabilistic set with elements in the
domain of the attribute. A probabilistic set F with
elements from set U is defined as a pair (U, wF) where wF :
U → [0,1] is a probability distribution satisfying

. We use this type of probabilistic relations

to represent inconsistency uncertainty.
1)(≤∑ ∈

uw
Uu F

The final choice of the probabilistic model will be
addressed in future work.

3. Merging Methodologies
Since we are extending a general-purpose system with
data inconsistency resolution functionality, our merging
methodology has to be universal (i.e. work for any
relational schema and any valid instance of that schema)
or at least configurable at the schema level and possibly
tuneable at the database instance level. In the latter case,
any user intervention required for instance level tuning
has to be minimal.

Existing systems ([10], [11], [12]) either rely
exclusively on specifying the exact merging rule for each
potentially conflicting attribute at the schema-level or
require providing such rules as part of the query. Either
approach requires that the rules for merging are
understood at the application development time. Since
such rules are domain-specific and depend on the
properties of the instance data, they are typically
discovered by either interviewing a domain expert or
mining (or “eyeballing”) some sample of the data. Such
rule discovery is not a trivial endeavor and is arguably
one of the most difficult practical problems in database
application development. Furthermore, since the
properties of the instance data may change with time, the

merging rules often need to be updated even after the
application has been deployed.

In our approach, the merging methodology will be
integrated within the extended database system. The
application will simply rely on the system to analyze the
properties of matching instances and present a consistent
view of conflicting data. The whole process will require
minimal user intervention. Since our system will need to
adjust its behavior by analyzing the instance data, this
approach belongs to the general area of machine learning
(see e.g. [13]).

Experts in machine learning still consider developing
a technique more of an “art” then a “science”. A typical
machine learning solution includes a combination of
techniques, often with some problem-specific heuristics
and optimizations (see e.g. [14]). For this reason, the
development of a universal machine learning technique
for data inconsistency resolution that will work for all
relational schemas and all instances is probably not
achievable. We are more likely to find that some machine
learning techniques perform better for some types of data
while other techniques perform better for other. Similarly,
for some types of data no machine learning technique will
work while for others, a trivial machine learning
technique will perform sufficiently well.

We believe that a practically useful (and non-trivial)
system can be engineered without devising a universal
machine learning technique. Such a system would include
an abstract machine-learning component and include a
library of machine learning techniques, each useful for
some types of data. The extended database system should
provide facilities to manage this library and evaluate
methodologies for a specific database instance.

In [9], we described a maximum entropy based data
inconsistency resolution methodology. We are currently
working on a Bayesian dependency-based methodology,
which we believe will reduce the required user
intervention.

We expect that with time, the library of data
inconsistency resolution methodologies will be rich
enough to provide an acceptable solution to most practical
problems.

4. SQL Extensions
To provide access to the new database functionality
described in the previous section, we need to extend SQL
to (a) deal with the selected uncertainty model (b) manage
the library of machine learning algorithms and (c) support
matching and merging operations. In this section we
summarize the extensions we described in [9] that address
(a) and (c) in the framework of the uncertainty model
based on Type-1 and Type-2 probabilistic relations
introduced in [1]. The (b) requirement will be addressed
in future work.

In the rest of this section we provide a review of the
SQL extensions described in [9].

4.1 The MATCH predicate

The MATCH predicate can be used in the WHERE clause
of the SELECT statement. It takes a pair of tuples of
attributes that are tested for object identity and the
reference to the corresponding instance of the object
identification methodology. MATCH returns true if the
model predicts that the tuples describe the same object.
Any select statement using one or more MATCH
predicates results in a probabilistic relation where the
probability associated with each tuple is computed by the
object identification methodology.

Example 1. Consider two data source relations S1
and S2 with the following data describing people’s names,
social security and telephone numbers.
S1

Id Name SSN
50 John 111-22-

3333
60 Johnny 222-33-

4444

S2
Id Name Phone
100 Jon 212-555-

1212
200 Johnny 646-444-

1212
The following query is seeking a list of people

together with their telephone and social security numbers,
obtained by matching their names.

SELECT S1.NAME, S1.SSN, S2.PHONE FROM S1, S2
WHERE MATCH(‘NAME_MATCHER’, S1.NAME, S2.NAME)
The resulting Type-1 probabilistic relation is below:

Name SSN Phone w(R, t)
John 111-22-3333 212-555-1212 .6
John 111-22-3333 646-444-1212 .8
Johnny 222-33-4444 212-555-1212 .5
Johnny 222-33-4444 646-444-1212 .9

The probabilities w(R, t) are computed by the
matching algorithm denoted as ‘NAME_MATCHER’.

4.1 The MERGE function

The MERGE function can be used in the select list of the
SELECT statement. It takes a list of conflicting values
for an attribute and a reference to the corresponding
merging methodology. MERGE returns a table with the
columns (v, wF) where wF is the probability that the object
property takes the value v. The probability wF is
computed by the merging methodology. Any select
statement with one or more MERGE functions results in a
probabilistic relation with probabilistic sets associated
with the attributes corresponding to the positions where
the MERGE functions appear in the select list. Each table
(v, wF) returned by MERGE defines the corresponding
probabilistic set F.

Example 2. Consider two source relations S1 and S2:
S1

SSN Name
111-22-3333 John
222-33-4444 Johnny

S2
SSN Name
111-22-3333 Jon
222-33-4444 John

The following query is seeking a list of people with their
correct names.

SELECT S1.SSN,
MERGE(‘NAME_MERGER’,(S1.NAME,S2.NAME))AS NAME
FROM S1, S2
WHERE S1.SSN=S2.SSN
The resulting Type-2 probabilistic relation is below:

SSN Name
111-22-3333 {(John,.7), (Jon, 25)}
222-33-4444 {(Johnny, .2), (John, .6)}

The probabilities in the probabilistic sets are computed
by the merging algorithm denoted as
‘NAME_MERGER’.

4.1 The PROB function

The PROB function provides access to probabilities in the
probabilistic relations. PROB can be used in the WHERE
clause or in the SELECT list of the SELECT statement
that produces a probabilistic relation. PROB either takes
no parameters or accepts a name of the attribute from the
select list. If no parameters are passed, PROB returns the
probability associated with the current row. If an attribute
name is specified, PROB references the probability
associated with the specified attribute. In this form,
PROB can only be used in the WHERE clause.

For instance, to limit the output of the query used in
Example 1 we could write:

SELECT S1.NAME, S1.SSN, S2.PHONE
FROM S1, S2
WHERE MATCH(‘NAME_MATCHER’, S1.NAME, S2.NAME)
AND PROB>.5
In this case PROB refers to the probability associated

with the current row. The result is a Type-1 probabilistic
relation is shown below.

Name SSN Phone w(R, t)
John 111-22-3333 212-555-1212 .6
John 111-22-3333 646-444-1212 .8
Johnny 222-33-4444 646-444-1212 .9

To limit the output of the query in Example 2 we
could write:

SELECT S1.SSN,
MERGE(‘NAME_MERGER’,(S1.NAME,S2.NAME))AS NAME
FROM S1, S2
WHERE S1.SSN=S2.SSN AND PROB(NAME)>.2
In the above query PROB refers to the probability

within the probabilistic set returned by the MERGE
function. The result is a Type-2 probabilistic relation
shown below.

SSN Name
111-22-3333 {(John, .7), (Jon, .25)}
222-33-4444 {(John, .6)}

5. Extended Database Architecture

5.1 Query Processing

The architecture of the extended database includes the
query processing module, application interfaces and
development tools. The query-processing module includes
integrated support for object identification and
inconsistency resolution. The high-level diagram of the
query-processing module is presented on Figure 1.

On Figure 1, a user or application issues a query with
SQL extensions; the preprocessor converts the extended
SQL query into standard a SQL query, generates merging
instructions (derived from MERGE function calls) for the
machine learning engine and post-processing instructions
(derived from PROB function calls) for the postprocessor
and sends the standard SQL query to the database with
inconsistent data. The machine-learning engine receives
the result of the query (inconsistent relation), uses
merging instructions to compute the resulting
probabilistic relation, and sends the relation to the post-
processor. Finally, the post-processor evaluates the post-
processing instructions and produces the final result. The
result can be a probabilistic relation or one or more
classical relations representing some or all of the resulting
possible worlds.

Further design details and optimization techniques
will be addressed in future work.

5.2 Application Interfaces

To provide compatibility with applications written against
traditional relational systems, our system will provide a
standard SQL interface. When this interface is used, the
merging instructions are generated from application-
specific configuration parameters. The post-processing
instructions are fixed, as the query results must always be
presented as a single traditional relation. The
postprocessor will generate such a relation for the most
probable possible world. By design, any tools designed
for traditional relational databases will work with the
extended database using this interface.

To support the applications that use the SQL
extensions to select and customize merging
methodologies and specify conditions on probabilities,
our system will provide the extended SQL interface. The
queries issued using this interface always result in a single
traditional relation, thus the application is isolated from
the complexity of dealing with probabilistic relations or
multiple possible worlds. If the conditions on
probabilities specified in an extended SQL query make it
impossible to provide a result as a traditional relation, the
postprocessor will generate an error condition. Since the
existing database tools work with traditional relations, it is
still possible to use them with this interface, although
modifications may be required to support the SQL
extensions.

Figure 1. Extended SQL query processing diagram

Preprocessor Postprocessor

Machine
Learning
Engine

Inconsistent
Data

MergingInstructions

SQL Query Result
(Inconsistent Relation)

Postprocessing
Instructions

Extended
SQL
Query

Traditional
or Probabilistic

Relations

Standard
SQL
Query

Probabilistic
Relations

To support the advanced applications that require
access to probabilistic relations or multiple possible
worlds, the extended database will provide an advanced
interface. This interface is different from the extended
SQL interface, in that it may return probabilistic relations.
For this interface, new database tools will need to be
developed.

The three interfaces described above are shown on
Figure 2.

Standard
SQL

Application

Extended
SQL

Application

Advanced
Inconsistency

Resolution
Application

Standard
SQL
Traditional
Relation

Traditional
Relation

Probabilistic
Relation

Extended
SQL

Extended
SQL

Figure 2. Application Interfaces

Standard
SQL

Interface

Extended
SQL

Interface

Advanced
SQL

Interface

Extended
Database
System

Inconsistent
Data

5.3 Development tools

Our extended database system will include the tools for
development, integration, training, tuning and evaluation
of machine learning methodologies for data inconsistency
resolution. These tools would be similar to ModelMaker,
a ChoiceMaker [15] development environment for
matching methodologies.

6. Experimenting with real-world data
As discussed in the methodology section above, the
performance of machine learning methodologies will
largely depend on the specific data set. This makes it very
important to find several realistic data sets to use for
development, testing and tuning of the methodologies and
validation of the complete system.

Finding a significant corpus of publicly available real-
world data suitable for the task has been a non-trivial
endeavor. Although there are numerous of public data sets
available for machine learning research (see, e.g. [16]),
those data sets seem to fall in one or more of the
following unsuitable categories.

The first category includes data sets that do not
contain any duplicates or inconsistencies. Such data sets
are commonly used in research; however, databases with
duplicates frequently occur in practice—witness the $100
million market for deduplication software. One approach
to creating test data from such a set would be to apply
some artificial perturbation to the data, but doing so in a
way that preserves the real-world dependencies is tricky,
and even if successful may not address the problems of
the other two categories. The second category includes
data sets that are too noisy or do not contain any
dependencies between attributes. Such data sets often
result from some artificial data perturbation techniques.
Many production databases contain enough
interdependencies between attributes to use some
attributes to help correct other attributes. The third
category includes data sets that do not have enough
objects or attributes to reliably train a machine learning
methodology. We believe that large business data sets
where manual data cleaning is impractical and our
approach is most relevant do not fall in this category.

We have recently identified a data set that seems to
satisfy the requirements. It is a database with information
about approximately 11 million medical research articles
[17]. The database can be leased free of charge from The
National Library of Medicine. We are currently
experimenting with 2,391,822 affiliations that includes
the name of the institution and optionally a department,
street address and e-mail address for the main author of a
paper. To avoid the object identity problem, we chose
523,140 annotations that contain an e-mail address. The
merging problem for this data involves determining the
correct department and street address for a given e-mail
address. To simplify the parsing of the free-form address,
we chose 182,892 records with US addresses. Of those
records, 32,505 e-mail addresses have duplicate records
for department and street address. This data set is
promising because it contains sufficiently large number of
records, with easily identifiable duplicates and potentially
large number of conflicts resulting from merging data
from different source databases.

7. Summary
The general nature and importance of data inconsistency
resolution in practical application is well recognized.
We’ve identified the following issues in extending the
relational database functionality with a data inconsistency
resolution function: 1) choice the uncertainty model 2)
choice of merging methodology 3) design of SQL
extensions 4) system architecture and 5) validating the

system with real data. We’ve further described our initial
approach to each of those issues and identified possible
directions for future work.

8. References

[1] E Zimanyi and A. Pirotte. Imperfect Information in
Relational Databases. In Uncertainty Management in
Information Systems, A. Motro and P. Smets, Eds.,
Kulwer Publ., 1997.
[2] J. Biskup. A foundation of Codd’s relational maybe-
operations. ACM TODS, 8(4), December 1993.
[3] K. V. S. V. N. Raju and Arun K. Majumdar. Fuzzy
functional dependencies and lossless join decomposition
of fuzzy relational database systems. ACM TODS, 13(2),
June 1988.
[4] V.S. Lakshmanan, N. Leone, R. Ross and V.S.
Subrahmanian. ProbView: A Flexible Probabilistic
Database System. ACM TODS, 22(3), September 1997.
[5] L. Getoor, N. Friedman, D. Koller and A. Pfeifer.
Learning probabilistic relational models. In Relational
Data Mining, S. Dzeroski and N. Lavrac, Eds., Springer-
Verlag, 2001.
[6] D. Dey and S. Sarkar. A Probabilistic Relational
Model and Algebra. ACM TODS, 21(3), September 1996
[7] R. Cavallo and M. Pittarelli. The Theory of
Probabilistic Databases. In Proc. VLDB, 1987.
[8] D. Barbara, H. Garcia-Molina and D. Porter. The
Management of Probabilistic Data. IEEE TKDE, 4(5),
October 1992.
[9] I. Pevzner and A. Goldberg MDQ -- A System for
Resolving Data Inconsistencies in Multiple Relational
Databases. In Proc. BNCOD Ph.D. Summer School, S. D.
North, B. Eaglestone, Eds., Sheffield Unversity, 2002.
[10] H. Galhardas, D. Florescu, D. Shasha and E. Simon.
An Extensible Framework for Data Cleaning. Proc.
ICDE, 2000.
[11] P. Anokhin and A. Motro. Resolving Inconsistencies
in the Multiplex Multidatabase System. GMU Technical
Report 99_07, May 1999.
[12] F. Naumann and M. Haussler. Declarative Data
Merging. In Proc. ICDQ, 2002.
[13] T. M. Mitchel. Machine Learning. McGraw Hill
1997.
[15] M. Buechi, A. Borthwick and A. Goldberg. The
MEDD White paper. ChoiceMaker Technologies, 2001
[16] UCI Machine Learning Repository
(http://www.ics.uci.edu/~mlearn/MLSummary.html)
[17] MEDLINE Database
(http://www.nlm.nih.gov/databases/leased.html)

