
Analysis and design of approximate queries over XML
documents using statistical techniques.

PhD student: Stefania Marrara advisor: Letizia Tanca

Politecnico di Milano, Dipartimento di Elettronica ed Informazione,
Piazza L. Da Vinci 32, I-20133 Milano, Italy

{marrara, tanca}@elet.polimi.it

Abstract

In the last few years several repositories for
storing XML documents and languages for
querying XML data have been studied and
implemented. All the query languages pro-
posed so far allow to obtain exact answers,
but when applied to large XML repositories
or warehouses, such precise queries may re-
quire high response times. To overcome this
problem, in traditional relational warehouses
fast approximate queries are supported, built
on concise data statistics based on histograms
or sampling techniques. We believe that the
current trend of XML claims for the exten-
sion of such approaches also to query massive
XML data-sets. In our work we propose a
novel approach to summarize an XML doc-
ument collection using concise data statistics
(e.g., histograms), which allows approximate
queries on such data using the XQuery stan-
dard language.

1 Introduction

In the last few years XML, initially proposed for rep-
resenting, exchanging and publishing information on
the Web, has spread in many applications: it is used
as a solution for publishing legacy data, for storing
data that cannot be represented with any other tra-
ditional data model, for guaranteeing interoperability
among different applications, for integrating Web ser-
vices, for mining Web data, and so on. All these ap-
plications put forth a strong demand both for repos-
itories storing XML documents, and for XML query
languages, explicitly conceived for retrieving and re-
structuring XML data. Several proposals address both
issues, but all the languages actually used for XML
data [BC00] allow to obtain only exact answers to
queries. When applied to large XML repositories or
warehouses, precise queries may require high response
times. To overcome this problem, in traditional rela-
tional warehouses fast approximate queries are sup-

ported, based on concise data statistics built using
histograms or sampling techniques. We believe that
the current trend of XML claims for the extension of
such approaches also to query massive XML data-sets.
The basic idea for approximate answers is to store
pre-computed summaries of the XML warehouse, also
called synopses (concise data collections), and to query
them instead of the original database, thus saving time
and computational costs. The first part of this PhD
Thesis proposes a methodology for the semi-automatic
derivation of summarized documents for massive, het-
erogeneous data-sets, with the final aim of producing
query transformation rules from queries on the origi-
nal data-sets to queries on the summarized data-set.
In the next future we intend to elaborate an XQuery
based algebra to model XML queries and to individu-
ate a measure of the error obtained when computing
an approximate answer instead of an exact one. At
the end, we intend to explore also other kinds of sta-
tistical summaries, such as different kinds of sampling,
to individuate the techniques which offer the best per-
formance, and to design a tool for the verification of
the proposed methodology.

2 State of the art

Several works have been proposed for aggregate
queries applied to traditional relational warehouses.
The most important among these approaches are
those of Hellerstein [HHW97], Poosala and Ganti
[VV99a, VV99b], Gibbons and Matias [GM99] et al.
Their works show the possibility to use means such as
histograms, samples and wavelets as statistical sum-
maries to make approximate queries involving a signif-
icantly reduced response time. The approach based on
histograms gathers statistics which describe the data
distribution. The sample technique calculates samples
of the original data in order to decrease the number
of tuples to be queried. A popular technique is the
uniform random sampling (in which every item in the
original data set has the same probability of being sam-
pled) that mirrors the original data distribution. The



wavelets technique is based on a mathematical tool for
the hierarchical decomposition of functions. Wavelets
represent a function in terms of a coarse overall shape,
plus details that range from coarse to fine. The first
step to start the wavelet decomposition procedure is
to choose the wavelet basis function. In traditional
databases, Haar wavelets [BW94] are usually chosen
because they are conceptually the simplest wavelet ba-
sis functions and they are the fastest to compute and
the easiest to implement. The Haar wavelet decom-
position is a set of coefficients representing the overall
average of the original set of values, followed by the
detail coefficients ordered by increasing resolution. If
less detailed coefficients are stored (saving space and
dimension of data), an approximation of the original
data is obtained.

All these techniques have already been employed
in the area of XML data, but only to the purpose of
compressing them [CCPS01]: data can be divided into
homogeneous classes to which specific semantic com-
pressors apply. For example, lossless compressors ap-
ply to integers, real data, strings and IP addresses,
while lossy compressors based on Haar wavelets allow
to code sequences of values efficiently, keeping the pos-
sible error under control. The aim of our proposal is
to apply these techniques to query large repositories
of XML data, reducing the complexity derived from
the need to manage very large amount of data. A first
work about XML synopses is given by a novel approach
to building and using statistical summaries of large
XML data graphs for effective path-expression selec-
tivity estimation. The graph-synopses model, termed
XSketch and proposed in [PG02] by Garofalakis and
Polizotis, exploits localized graph stability to accu-
rately approximate the path and branching distribu-
tion in the data graph. To estimate the selectivity of
complex path expressions over XSketch synopses they
develop an estimation framework that relies on uni-
formity and independence assumptions to compensate
for the lack of detailed distribution information. Their
algorithm constructs an XSketch synopsis by succes-
sive refinements of the label-split graph, the coars-
est summary of the XML data graph. The refine-
ment operations act locally and attempt to capture
important statistical correlations between data paths.
The structural XSketch synopses are specific instan-
tiations of a generic of generic graph-synopsis model
that records some additional edge-label information to
capture localized backward and forward stability con-
ditions across synopsis nodes. Our approach has been
presented in [CMT02, CMT03].

3 Representing summarized XML data

Following a common use, we represent XML docu-
ments as labelled trees T = (V, E), where V is the
node set comprising both nodes representing tags and

nodes representing text content and attributes1, and
E ⊆ V × V represents elements and text containment
arcs. The structure description of a document (i.e.,
its DTD) is also described as a labelled graph GD us-
ing the same notation, while GD={Gj

D} is the set of
graphs representing the DTD’s of the whole document
collection.

Given a set T ={Ti} of XML documents, an XML
synopsis is obtained as a transformation XMLtransf
: {T1, ..., Th} ∈ P(T ) → {T ′1, ..., T ′k} ∈ P(T ), k ≤ h
(often it will be k ¿ h), where {T1, ..., Th} share the
same DTD. Their summarization produces a (small)
number of documents conforming to one or more new
DTDs, which we call synopsis DTDs (DTDsyn). They
can be obtained as a transformation DTDtransf :
GD → P(GD) on the DTD of the initial set of doc-
uments.

3.1 Computation of the synopsis DTD

3.1.1 Preliminary analysis.

So far we have focused our work on the computation of
the XML synopsis. An XML synopsis is composed by
a small collection of documents that store histograms
instead of the data composing the original data-set.
Each histogram stores the statistical distribution of
the values of a certain element divided into disjoint
sets called buckets, each one characterized by a fre-
quency value (i.e., the number of elements falling in
each bucket), and a boundary value(i.e., the highest
value of each set, the data of the element are supposed
ordered), which are different for each histogram type.
In our approach, the computation of (each) DTDsyn

requires a preliminary phase aimed at analyzing the
application aspects of the collection: the type of his-
togram for the current application and the set of ele-
ments to summarize must be chosen. According to the
data to be stored in the synopsis a DTD of the his-
togram DTDH (⊂ DTDsyn) can be defined, dictating
the form of the histogram data that collects the statis-
tics of the XML elements. For example, the following
DTD shows a possible DTDH of a generic histogram
where frequency and boundary values change for each
bucket.

<!ELEMENT hist (bucket+)>
<!ELEMENT bucket (frequency, bv)>
<!ELEMENT frequency (PCDATA)>
<!ELEMENT bv (PCDATA)>

Set of elements to summarize. During the pre-
liminary analysis step it is also necessary to identify
the set Es ⊆ E of elements to summarize.

1Attributes will not be explicitly handled in this paper: how-
ever, if a literal semantics [RJJ99] for the representation of XML
documents is adopted, they can be treated as a particular case
of PCDATA elements.



We represent XML elements with their paths from
the root of the document using a XPath [W3C99] no-
tation, in order to distinguish elements with the same
tag name but with different internal meaning (e.g., a
person’s home address is different from the address of
the company the person belongs to).

Elements can be summarized in two different ways:

1. we can summarize each element content indepen-
dently of the content of the other elements (as-
sumption of element independence) or

2. we can summarize element values taking into ac-
count the values of other (related) elements (as-
sumption of dependent data).

For example, we could summarize the content of
the elements tagged ”age” assuming that the age does
not depend on any other value, or we could summa-
rize them relating people’s ages to the city where they
live. Operationally, we will treat this second case by
grouping the dependent elements w.r.t. the elements
which they depend on and by calculating the statistics
for the separate groupings.

Taking into account this distinction, each element
e ∈ Es is formally represented as a pair (pathe,
{pathg}), where pathe is the path expression of the el-
ement to be summarized, and {pathg} is a set of path
expressions of the elements whereof pathe is grouped
in the summarization process. In case of element in-
dependence we have {pathg} = ∅. Usually, pathe and
pathg will be leaf nodes, otherwise they will be consid-
ered as a shortcut for all their leaf descendant nodes
(i.e., a non leaf element pathe represents the set of all
the paths {pathe′}, such that pathe′ is a leaf node and
is a descendant of pathe). In the sequel we always con-
sider the expanded version of Es containing only leaf
nodes.

Depending on Es, different elements and/or struc-
tures may appear in DTDsyn: for example, in case of
independence assumption, a single histogram will be
created for all the values of each given element in the
document collection; in case of summarization with
grouping, for each element a set of histograms will be
collected, one for each grouping value.

Running example. As an example consider the
DTD shown in Fig. 1 describing a car store: cars are
characterized by their model and color, and for each
car the details of the customers who bought it are
listed. The figure shows also an example of XML doc-
ument fragment conforming to such DTD. In order to
compute the synopsis DTD for this data collection, we
need to choose the appropriate histogram family: since
the XML data describe categories such as colors, car
models and so on, the equi-width family is the most
appropriate to our application.

As far as the set of elements to summarize is con-
cerned, we suppose that the user be interested in stor-
ing a summarized collection about the colors, the city

<? xml version = ”1.0” ?>

<!ELEMENT store (car+)>

<!ELEMENT car(model, color, customer*)>

<!ELEMENT model (PCDATA)>

<!ELEMENT color (PCDATA)>

<!ELEMENT customer (name, city, payment, card)>

<!ELEMENT city (PCDATA)>

<!ELEMENT name (PCDATA)>

<!ELEMENT payment (PCDATA)>

<!ELEMENT card (PCDATA) #implied>

<? xml version=”1.0” encoding=”UTF-8”?>

<store>

<car>

<model>Fiat Brava</model>

<color>white</color>

<customer>

<name>James Smith</name>

<city>New York</city>

<payment>5.000</payment>

<card>Visa</card>

</customer>

<customer>

<name>Lena Brown</name>

<city>Filadelfia</city>

<payment>5.100</payment>

</customer>

...

</car>

<car> ... </car>

...

</store>

Figure 1: DTD and example XML document

and the payment data of the different car models.
Therefore, the set of elements Es to summarize is:
Es={(store/car/color, {store/car/model}),
(store/car/customer/city, {store/car/model}),
(store/car/customer/payment,
{store/car/model})}.

so that colors, cities and payments be grouped by
car model.

3.1.2 Computation of the synopsis DTD

After the analysis step, DTDsyn can be computed.
The process produces a single DTDsyn containing all
the histograms produced by the different groupings
specified in Es. Usually the number of grouping cri-
teria could be too high to summarize all the data into
a single document in a readable and effective way. A
better solution is to store separately different docu-
ments containing all the histograms produced by a
grouping criterion, i.e., to break Es into several sub-
sets Esi ⊆ Es, where each Esi contains compatible or
nested {pathg}. The process is applied to each Esi

and generates a DTDsyn for each grouping criterion.
Two grouping paths Pathg′ = {pathg′1, ...pathg′k} and



Pathg′′ = {pathg′′1 , ...pathg′′m}, with k < m, are com-
patible if Pathg′ ⊆ Pathg′′. Now we are ready
to define synopsis compatibility: two synopsis sub-
graphs represented by e′ = (pathe′, Pathg′) and e′′ =
(pathe′′, Pathg′′) are compatible if and only if pathe′′ is
a descendant of pathe′ and Pathg′ is compatible with
Pathg′′.

The elements which have been discarded belong nei-
ther to elements to be summarized nor to grouping
elements. The only exception is represented by the
elements that appear in paths of elements to be sum-
marized or to paths of grouping elements: their origi-
nal paths are kept also in DTDsyn because unchanged
paths help query formulation.

3.2 Synopsis Creation

3.2.1 Preliminary analysis.

Also the computation of the document synopsis,
DATAsyn, requires a preliminary step, since the ac-
tual summarization depends on the application data:
for each element in Es the parameters needed to com-
pute the histogram (e.g., the number of buckets or the
frequency value) must be defined.

Given DTDsyn, the original data collection, and
the parameters of the histograms, the synopsis can be
automatically created.

The parameters of the histograms to be computed
for each element e ∈ Es are represented by a set of
tuples P = {(e, {f j}, nb, {bvj})}, where 1 < j < nb,
f is the frequency of the element e in bucket j, nb is
the number of its buckets and {bvj} is the set of nb

boundary values of the buckets of the element.
If we consider the running example, the framework

produces following synopsis DTD. Notice that the orig-
inal path store/car/model (i.e., pathg) which is used
to group colors, cities and payments has not been
changed w.r.t. the original DTD and still contains PC-
DATA; instead, the contents of the elements in pathe
(color, city and payment) have been replaced with the
histogram element hist. The elements composing the
histogram structure (buckets, frequency and bv) have
also been added to DTDsyn.

<? xml version = 1.0 ?>
<!ELEMENT orders (car+)>
<!ELEMENT car (model, color, customer)>
<!ELEMENT model (PCDATA)>
<!ELEMENT color (hist)>
<!ELEMENT customer (city, payment)>
<!ELEMENT payment (hist)>
<!ELEMENT city (hist)>
<!ELEMENT hist (bucket+)>
<!ELEMENT bucket (frequency, bv)>
<!ELEMENT frequency (PCDATA)>
<!ELEMENT bv (PCDATA)>

The elements which have been discarded belong nei-
ther to elements to be summarized nor to grouping el-

ements. The only exception in the running example is
represented by the customer elements: these are kept
because they belong to the path of payment. Its orig-
inal path is kept also in DTDsyn: unchanged paths
help query formulation.

3.2.2 Computation of the synopsis.

For each element in Es statistics are computed and
the corresponding data are inserted in the synopsis,
according to the structure defined by DTDsyn. The
following XML document shows the synopsis obtained
by applying algorithm compute synopsis to the ex-
ample of the car store. The result is an XML docu-
ment where the cars details are grouped according to
Esi: cars details are grouped w.r.t the model, and each
summarized node contains the histogram details of the
colors, the cities and the payments of a given model.

<? xml version="1.0" encoding="UTF-8"?>
<store>
<car>
<model>Fiat Brava</model>
<color>
<hist>
<bucket><freq>5</freq>
<b_value>red</b_value></bucket>
<bucket><freq>3</freq>
<b_value>yellow</b_value></bucket>

<!-- other color buckets
are omitted for brevity --!>

</hist>
</color>
<customer>
<city>
<hist><bucket><freq>30</freq>
<b_value>New York</b_value></bucket>

<!-- other buckets are
omitted for brevity -->

</hist>
</city>
<payment>
<hist>
<bucket><freq>0</freq>
<b_value>4000</b_value></bucket>
<!-- other buckets are

omitted for brevity -->
<bucket><freq>55</freq>
<b_value>16000</b_value></bucket>

</hist>
</payment

</customer>
</car>
<car>
<model>Opel Tigra</model>

<!-- other summaries are
omitted for brevity -->

</car>
<car>



<model>Class A</model>
<!-- other summaries

are omitted for brevity>
</car>

</store>

4 Conclusions

In our work we have proposed an approach to con-
struct a synopsis of a huge set of XML documents, in
order to reduce query computation time to the price of
some impreciseness. The structure of the synopsis is
close enough to the structure of the original document
collection in order to the query on the original data to
be transformed into a query on the synopsis.

At the moment we are working to define a set of
XQuery transformation rules in order to capture the
more complex query cases in a uniform transforma-
tion algorithm. The main idea of this approach is
to construct a synopsis with a structure as similar as
possible to the original documents structure, in order
to facilitate and automate the query transformation
from the original data-set to the synopsis. The pa-
per focuses on the construction of the synopsis DTD
and of the summarized collection itself. The approach
is going to be tested using a data set generated by
the benchmark XBench [XB] freely available on the
Internet. Among the number of benchmarks for XML
databases recently proposed such as XMach-1, XMark,
X007 etc., which allow to capture different application
characteristics, we chose to use XBench because it is
a family of benchmarks studied to be application in-
dependent. The XBench database generator can gen-
erate databases ranging from 10MB to 10GB in size.
Moreover we plan to formalize the architecture of a
demo prototype, to formalize and implement the auto-
matic transformation of the query and its optimization
using the XQuery, and to estimate the error resulting
for query applied to summarized data. Then we intend
to formally investigate the problem of summarization
in XML. Starting from the summarization conditions
exposed in [LS97] we will analyze the peculiarity of
the XML structure and formulate a set of conditions
with the aim to formally demonstrate the correctness
of the results obtained by our approximate querying
approach.

References

[BC00] Angela Bonifati and Stefano Ceri. Compar-
ative analysis of five xml query languages.
SIGMOD Record, 29(1):68–79, 2000.

[BW94] Jawerth B. and Sweldens W. An overview
of wavelet based multiresolution analyses.
SIAM Rev., 36, nr.3:377–412, 1994.

[CCPS01] M. Cannataro, G. Carelli, A. Pugliese, and
D. Saccá. Compressione semantica con
perdita di documenti xml. In Atti del IX
Convegno Nazionale SEBD 2001, 2001.

[CMT02] S. Comai, S. Marrara, and L. Tanca. Ap-
proximate aggregate queries on xml data.
In Atti del decimo convegno nazionale su
sistemi evoluti per basi di dati - SEBD,
pages 222–233, 2002.

[CMT03] S. Comai, S. Marrara, and L. Tanca. Repre-
senting and querying summarized xml data.
In Proc. of DEXA 2003 Conf., page to ap-
pear, 2003.

[GM99] Phillip B. Gibbons and Yossi Matias. Syn-
opsis data structures for massive data sets.
DIMACS: Series in Discrete Mathematics
and Theoretical Computer Science: Special
Issue on External Memory Algorithms and
Visualization, A, 1999.

[HHW97] J. M. Hellerstein, P. J. Haas, and H. J.
Wang. Online aggregation. In Proc. ACM
SIGMOD Conference on the Management
of Data, pages 171–182, Tucson, AZ, 1997.

[LS97] Hans-Joachim Lenz and Arie Shoshani.
Summarizability in olap and statistical data
bases. In Statistical and Scientific Database
Management, pages 132–143, 1997.

[PG02] N. Polyzotis and M. Garofalakis. Sta-
tistical synopses for graph-structured
xml databases. In ACM, editor, Proc.
ACM SIGMOD Conference, Madi-
son,Wisconsin,USA, 2002.

[RJJ99] Goldman R., McHugh J., and Widom J.
From semistructured data to xml: Migrat-
ing the lore data model and query language.
In Proc. WebDb, pages 25–30, 1999.

[VV99a] Poosala V. and Ganti V. Fast approxi-
mate answers to aggregate quries on a data
cube. In International working conference
on scientific and statistical database man-
agement, 1999.

[VV99b] Poosala V. and Ganti V. Fast approximate
query answering using precomputed statis-
tics. Proc. of IEEE Conf. on Data Engi-
neering, 1999.

[W3C99] W3C. Xml path language (xpath) version
1.0, 1999. http://www.w3.org/TR/xpath.

[XB] http://db.uwaterloo.ca/ ddbms/projects/
xbench/index.html.


